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Abstract. The pattern of streamflow recession after rain 1 Introduction

events offers clues about the relationship between watershed

runoff (observable as river discharge) and water storage (nof he observation that river flow gradually decreases after a
directly observable) and can help in water resource assessainstorm was modeled mathematically by the beginning of
ment and prediction. However, there have been few systemthe 20th century with the concept of a “recession curve” that
atic assessments of how streamflow recession varies acro§escribes the characteristic decay of flow rate with time dur-
flow rates and how it relates to independent assessments d#g rainless periods. Such recession curves have been used
terrestrial water storage. We characterized the streamflow rel0 forecast flows, estimate the probabilities of low flows, in-
cession pattern in 61 relatively undisturbed small watershedéer groundwater storage or aquifer characteristics, and detect
(1-100 kn?) across the coterminous United States with mul- change in watershed characteristics over time. Analytical ex-
tiyear records of hourly streamflow from automated gaugespressions for the form of the recession curve could be de-
We used the North American Regional Reanalysis to helprived for idealized basin shapes and subsurface flow proper-
identify periods where precipitation, snowmelt, and evap-ties, or curves could be fit empirically from streamflow mea-
oration were small compared to streamflow. The order ofsurements. Early applications were held back in part by the
magnitude of the recession timescale increases from 1 dalgck of a systematic procedure for determining an appropri-
at high flow rates{£1 mmh 1) to 10 days at low flow rates ate functional form and parameters for the recession curve
(~0.01 mm i), leveling off at low flow rates. There is sig- Shape from river discharge measurements (for reviews, see
nificant variability in the recession timescale at a given flow Hall, 1968 Tallaksen1993.

rate between basins, which correlates with climate and ge- Brutsaertand Niebgd977) developed a procedure for vi-
omorphic variables such as the ratio of mean streamflow téualizing the recession curve for a given river that has been
precipitation and soil water infiltration capacity. Stepwise Widely used and adapted. A family of functions describing
multiple regression was used to construct a six-variable preliver recessions is given by the power law

dictive model that explained some 80 % of the variance inre-¢) — _; ? (1)

cession timescale at high flow rates and 30-50 % at low flow

rates. Seasonal and interannual variability in inferred storagd/here @ is river discharge@ is its rate of changed(Q/dr), I
shows similar time evolution to regional-scale water storageanda andb are parameters. = 1 corresponds to exponentia

variability estimated from GRACE satellite gravity data and 9€cay of the flowQ.(1) = 0(0)-¢™, while forb # 1, Eq. ()
from land surface modeling forced by observed meteorology MPli€s

but is up to a factor of 10 smaller. Study of this discrepancy Q(r) = ((Q(0)}? —a(1—b)t)Y/A=D), 2)
in the inferred storage amplitude may provide clues to the
range of validity of the recession curve approach to relating

runoff and storage.

For a river recession that follows this pattern, a scatter
plot of log(Q) vs. log Q) should approximate a straight line,
since from Eq. 1),

log(— Q) =log(a) +blog(Q), 3)
when Q > 0. This is convenient because values doand
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can be assessed by how well the points in the scatter plot-Q at a givenQ (Weisman 1977 Wittenberg 2003. It
are described by a straight line. In practi@utsaert and adds the complication of requiring hourly, rather than daily,
Nieber(1977 took time series of daily streamflow for several streamflow data, since in most tropical and temperate water-
streams in New York state and plottédas the difference in  sheds, potential evaporation under rainless conditions is only
stream flow between consecutive days (that were at least bkely to be much lower than streamflow at night; until re-
days after the most recent rain) against the corresponding cently, only daily streamflow data have generally been made
(estimated as the average of the two dayg)andb were  available to the hydrological communityKirchner (2009
then estimated by drawing lines to match the lower envelopeshowed that for two small watersheds in Wales, an empiri-
of the cloud of(log(Q),log(—Q)) points. The slope of this cally chosen quadratic functional form
lower envelope, corresponding#otended to be higher than : 2
1 —around 1.5 at low flows, possibly increasing to about 3 atlog(_Q) =log(a) +blog(Q) +clog™(0) )
high flows. Wittenberg(1999 fit a power law to data from fits the binned hourly data welh. was found to be close to 2,
German watersheds, also finding thavas around 1.5. and the departure (expressed by the quadratic term) from the
A number of studies have determined or assumed that, dg-linear power-law relationship was found to be small but
least well after rain event$,= 1 to acceptable accuracy, so significantly different from zero.
that only one parameter, must be estimated from measured We adopt the approach #¢firchner (2009 as a starting
streamflow (e.g.Vogel and Kroll 1992 Brandes et a]2005 point because it has the advantage of making use of all hours
Eng and Milly, 2007 van Dijk, 2010. In this case the recip- for which streamflow data is available, excluding only those
rocal ofa is the recession timescate corresponding to the where other fluxes such as precipitation and evaporation are
ratio —Q/Q. In general, for other shapes of the recessionlikely to be significant. Other common selection criteria,
curve (functional relationships betweg@randQ), thisreces-  such as fitting the lower envelope of leg0)) or exclud-
sion timescale would vary as a function of the flow rat@. ing streamflow records from a certain number of days after
Brutsaert(2008 argued that the recession timescale is fairly rain events, involve arbitrary thresholds and make it difficult
constant not only for a given stream but also across streamgp estimate the error of the fitted recession timescBleit-
at least during summer low flows and for large basins, atsaert and Niebe(1977) chose to fit the lower envelope of
45415 days. log(—Q) on physical grounds — to select conditions under
A large number of studies have examined the variability which groundwater flow is dominant, as opposed to other
in recession timescale across streams, most often in smathodes of flow with shorter recession timescales. In this
regions (e.gBingham 1986 Vogel and Krol| 1992 Brut- study, our interest is in total streamflow, not in the ground-
saert and LopeA 998 Wittenberg 1999 Zhang et al.2009 water component as such. For this objective, averaging all
Biswal and Marani201Q Zhu et al, 2010, but also on con-  streamflow data that meet the selection criteria is more appro-
tinental and larger scalesgn Dijk, 201Q Pdia-Arancibia  priate. Using hourly, as compared to daily, streamflow data
et al, 2010, and related inter-stream variability in the reces- enables the selection of low-evaporation periods and avoids
sion timescale to climate, topographic, or geologic factors.bias in recession time estimates at higher flow rates when the
However, these studies have tended to concentrate on lowecession timescale= —Q/Q is 1 day or lessRupp and
flow periods and fit a simple functional form of the recession Selker 2006a Rupp and Woods2008. In this study, we
curve, generally the power law (Eg, often withb =1 so  consider only small watersheds 100 kn¥), so that the lag
that the recession timescale is taken to be constant), to derivieetween runoff generation within the watershed and stream-
the recession timescale. Therefore, it is not clear how thdlow at the gauge is not much more than an hour and the mea-
recession timescale and its spatial distribution varies acrossured discharge gives a reasonable estimate of hourly runoff.
flow rates. Thus, one purpose of the current study is to exam- The recession curve, expressed as the funati@), can
ine the characteristics of recession curves derived with unitelate the streamflow to the basin water stor& The rate
form procedures from hourly streamflow data across a rang®f change of storages, is the sum of the water fluxes in
of climate and terrain. and out of the basin, namely streamflow, precipitatiyrand
Kirchner (2009 refined the estimation of recession curves evaporatiornE:
based on measurad and Q. In the approach oKirchner S=P—_E—0. )
(2009, the time series of hourly streamflo@s is sorted into
bins and the average is determined for each bin, usingonly ~ When streamflow is the major flux of water in or out of
time periods when both measured precipitation and estimatethe basin (precipitation and evaporation are small), we can
potential evaporation are small compared to streamflow, andnake the approximation
parameters describing the relationship betw@esnd O are §=—0 (6)
fit for the binned data. Excluding time periods when evapo-
ration might be a substantial part of the water budget avoidsind therefore
possible bias in the recession curve due to evaporation, whickp 0 0 .
would be expected to increase the streamflow recession ratgg ~— ¢ — 5 =T )
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Having estimated as a function ofQ for periods with
low P and E from recession curve analysis, one can there- =
fore estimate the change in stora§je Sp corresponding to

observed streamflows: (j;\z{;

0 0
S(0)—S =f d5=/ £(0)dQ. ® | o7
° Qo Qo o %g\?‘?"

where the reference streamflo@y and reference storage = ° .
level So = S(Qgp) are arbitrary. Kirchner (2009 observed Vean seemfon (nml)
that by invoking water balance, one can estimate not only | 2 °=
the rate of change in storage but also the net flow into thesw.| 2 °*

Q1
watershed® = P —E: o fvers

F=0+5=0+r0. ©) Fig. 1. Locations of sample watersheds (circless 61) within the

The fitted functiont(Q) is derived from the recession coterminous United States. Circle size shows mean streamflow per
curve over hours with negligible precipitation and evapora_unit area, an indication of local moisture conditions.
tion; estimatingS and F' for other conditions from the above
equations requires the assumption that the deduced relation-
ship betweerQ andS continues to holdKirchner (2009 ar-
gued that this is indeed the case for his two study watersheds,
as evidenced by the ability of the basin storage-discharge re-
lationship estimated using Ed7)(to successfully infer rain- 2. How does the variability in basin water storage inferred
fall using only streamflow observations, and to predict the from streamflow recession curve analysis compare
evolution of streamflow using measured precipitation and es-  to basin water storage variability inferred from other,
timated evaporation. If so, streamflow time series could be independent methods?
used to infer other water flows (precipitation, evaporation)
and stores at the catchment scale, whidhchner (2009
termed “doing hydrology backward” compared with the con-
ventional hydrology approach of deriving streamflow from 2 Methods
meteorological forcing and the basin characteristics, which
are often quite uncertain. 2.1 Streamflow data

One recent application of “doing hydrology backward is The Hydroclimatic Data Network (HCDN) includes about
by Palmroth et al(2010, who applied recession curve anal- 1500 stream gauge records from the United States Geolog-

ysis to construct storage-discharge relationships to estimatﬁ:al Survey (USGS) stream gauge network chosen to rep-
evapotranspiration over parts of North Carolina state, aI'resent streams with long monitoring histories and whose

though correlation with independent (eddy covariance) meag o\ has experienced minimal human disturbargie¢k and
surements of evapotranspiration was found to be @rt- Landwehr 1999. For this study, we chose HCDN gauges
saert(2010 quantified changes in summer terrestrial Waterdraining small watersheds (area'under 108)im the coter-
storage across the central United States in recent decad‘?ﬁinous United States (i.e. the first 48 states, excluding

based on changes in summer streamflows along with an 4Klaska and Hawaii) which had daily records over at leg8t 2

.SL;meddre(r:]essmn ymescalebased on prev]:ousdstudijes. The. of the period 1979-2008. High-resolution streamflow mea-
inferred changes in water storage were foun to be consisg ;e ments for these streams were obtained from the USGS
tent with groundwater observations in lllinois statrt-

2008. To utilize thi h idelv. h Instantaneous Data Archive (IDAftp://ida.water.usgs.gov/
saert §. To utilize this approach more widely, however, ida/, Showstack2007. The selection criteria yielded 75

the validity of water storage changes inferred from recessiongyoams. of which 61 had flow records at hourly or better

curve analysis warrants further testing and comparison withyoq 1 tion available through IDA. The median basin area for
available watershed-scale hydrometeorological data. these 61 streams was 59 kirange: 6.1-98 ki), and basin

Multi-year time series of strgamflow measuremen.ts at hlghIocations covered a wide range of climate as well as topogra-
(sub-hourly) temporal resolution are now freely available for

hy, although most were in the wetter regions of the country,
many streams. Here, we employ these data to construct reEear the Atlantic and Pacific coasts (F1§. Median stream-
cession curves across a range of topography, geology,

i . ) A anI‘I-jow per unit basin area was 1.17 mm day(range: 0.14—
climate in order to answer the following questions: 4.10mmday?) (Fig. 1), compared to an average of about
1. What is the variability across streams of the recessior0-44mmday? for the coterminous United States (USA)

timescale at different flow rates? How much of this over the same period(akauer and Fung008.

variability is correlated with factors such as climate and
topography?
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The IDA streamflow records, typically at 15-min resolu-
tion, were averaged to generate hourly streamflow series. 10°1
Streamflow values within one minute of the turn of the hour
were assigned half-weight for estimating both hours’ stream- _
flow. Only hours with at least one streamflow measurement”il o
(or two measurements at their borders) were used in the anal—g
ysis. The 61 streams in this study had an average of 148 —~
thousand usable hours (equivalent to 17 years; range: 87-5
232 thousand). While these hours were not all consecutive & 10

L T ek
(records frequently had gaps), this is not a problem for our K ﬁf@ i
analysis procedures. A
-4
10 + ++
2.2 Meteorology o
-2 -1 0
L . 10 10 10
Precipitation and evaporation records for the study water- 0 (mm/h)

sheds were used to isolate hours with low/no precipitation
or evaporgtion to use for estimating re'C(.ess.ion curves. Sincgig_ 2. Scatter of hourlyQ vs. 0, excluding periods with precip-
sub-daily field measurements of precipitation and evaporasation, high evaporation, or rising flow, at an example site (USGS

tion for each of the watersheds were not in general availablegauge 01384500, Ringwood Creek, New Jersey; nonnegatixe-
precipitation and evaporation were obtained from the Na-ues not shown).

tional Centers for Environmental Prediction (NCEP) North

American Regional Reanalysis (NARRMé¢singer et al.

2009 for 1979-2008, which uses the Eta Model to simu- the maximum lagged cross-correlation between precipitation

late regional atmospheric circulation at relatively high hori- and 0. The streamflow time series were then shifted rela-

zontal resolution (32 km). For each watershed, meteorologitive to the precipitation and evaporation time series by that

cal fields were taken from the closest grid cell to the streamamount before deciding what hours to exclude from the re-

gauge — because the watersheds are<aD0kn? while a  cession curve analysis as affected by precipitation or evapo-

NARR grid cell is~10%km?, the entire watershed is likely ration. The small size of the basins we analyzed kept this lag

to lie within a single grid cell. small (0-2 h for 50/61 basins and 0-5 h for 59/61, ranging
Precipitation in NARR assimilates rain gauge and satelliteup to 11 h).

observations and is therefore much more accurate than pre- Because the NARR grid size is bigger than the areas of our

vious reanalyses. Evaporation in NARR is simulated by thewatersheds, there remains the concern that localized bursts

Noah land surface model and is only indirectly tied to obser-of precipitation are not reflected in the NARR precipitation

vations Mesinger et a|.2006. record. To reduce the effect that such unrecorded precipi-
tation might have on the estimated recession curve, we fur-
2.3 Binning streamflow recession data ther excluded periods of two or more consecutive positive

) hourly O (rising streamflow), on the assumption that these

Following Brutsaert and Nieb&977), hourly—Q was esti-  correspond to precipitation or snowmelt events not neces-
mated asAl—t(Qh—QhH),the difference between streamflow sarily captured in NARR. Altogether, exclusion based on
in adjacent hours, while the corresponding hoylyvas the  NARR precipitation, snowmelt, and evaporation and on ob-
average for those hourg) = %(Qh + Qn+1). Pairs of hours  served rising flow left 0.6-27 % (median 7.3 %, or 10 thou-
were selected for which both precipitation plus snowmeltsand hours) of the original number of hours for construct-
and evaporation were less than 10 % of average streamflowng the streamflow recession curve, with the lower percent-
(Fig. 2). ages found in arid basins (where there was often very little

The NARR output fields include snowmelt, but the precip- streamflow) and the higher percentages found in more humid
itation field is not divided into rain vs. snow. For determin- basins.
ing rain-free hours, we required that the precipitation plus The selected values @ (i.e. those when the lagged pre-
snowmelt be less than 0.1 of streamflow. For determiningcipitation and snowmelt were small, and excluding periods
hours with low evaporation, we required that evaporation beof rising streamflow) were then averaged over rangeg of
less than 0.1 of streamflow (dfirchner, 2009. These ranges were selected as follows Kafchner, 2009:

NARR output fields are available at 3 h time resolution and (1) begin with the top 1 % of the logarithmic rangedh (2)
were matched to the corresponding hourly streamflow datacompute the mean and standard erroQofor all Q in that
To account for delay between runoff generation and streamrange; (3) if the number of values in the range is less than
flow at the gauge location, we followedirchner (2009 9 or the mean) is nonnegative or the standard error¢h
in estimating this lag for each basin from the position of is more than half its absolute mean value, expand the bin by
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another 1 % of the logarithmic range; (4) otherwise, keep the
meanQ and Q of the bin and continue with the next 1% of |
the logarithmic range. This resulted in typically 20—70 bins
(median 58 bins), each with a me@h mean(Q, and stan-  &.,2 |
dard error ofQ. Regression on the binned values is basically £
equivalent to weighted regression on the original hourly data, §10,3 I
where weighting is by the inverse variance@bver a small

o
T

range inQ.

Occasionally (1 of our 61 sites) this procedure did not con- /
verge (i.e. the scatter i@ was large enough that the standard 0?7 107 100 07 100 100
error did not drop sufficiently even when the bins were ex- Q (mn/h) Q (mm/h)

panded). In such cases, the rang@imwas divided into bins

each with roughly equal numbers of elements (approximately '9- 3 (&) Binned mean hourly-Q vs. ¢ for the same exam-
the square root of the number of usable hours), and the mea%le site as in Fig2, together with the piecewise linear functional

dth dard - h bi lculated: bi smoothed fit (middle line). Error bars are standard errors for each
and the standard error @ in each bin was calculated; bins bin; upper and lower lines show uncertainty of fit  standard

with nonnegative) were simply discarded. error). (b) Binned mean recession timevs. Q for sample site,
. . together with the piecewise linear smoothed fit (error bars are stan-
2.4 Fitting recession curves dard errors for each bin; upper and lower lines show fit uncertainty

. . . . as=+ 1 standard error).
We experimented with different functional forms for the re-

cession curve, as fit to the binned (@) and log—Q), in-

cluding the linear-in-logs (power law) relationship (E).  normally distributed, then, the weighted sum of squares of

and the quadratic-in-logs relationship (Ey. The goodness  the residuals from the fitted function,
of fit of different functional forms was assessed by fitting the

functional form to one half of each streamflow record and (Iog(—Q)—Iog(—Q'A-)) 2
calculating the misfit between the fitted values and the binned = Z ( : : : )
values found for the other half of the same streamflow record. i Ei/log(=0Qi)

We found that for our sample of watersheds, a nonparamet- R

ric functional form corresponding to locally-weighted least (where log—Q;) is the value of the fitted function at
squares linear regression (similar to LOWESSlevelang ~ 109(Q;)), should be close to the effective number of degrees
1979 gave a better fit than the linear or quadratic relation- Of freedomn —m, wheren is the number of bins and the ef-
ships. At each bin's value of ld@) (log(Qpin)), a smoothed  fective number of fitted parameters (which will increaseas
value of log— Q) is obtained by weighted linear regression decreases). In practice, we found that theas often some-

(11)

with weights that favor adjacent bins, namely what larger than this, presumably reflecting non-lognormal
_ errors in streamflow measurements that propagate to the cal-
Whin,i = W; X €Xp(—[10g(Q;) —10g(Qpin)| /) (10)  culated—Q; the median ratio-/(n —m) across our sample

where; is weighting based on the standard error at eachvas 1.5. Therefore, calculated uncertainties were multiplied

bin (w; = (Ei/|Og(—Qi))_2, whereE; is the standard error by ,/+=.-. This adjusted uncertainty for the fitted reces-
of the binnedQ',-) anda is a parameter that sets the size of sion curve was found to be realistic: the difference between
the neighborhood that is considered in the locally weightedthe binned log— 0) and log Q) derived from one half of
linear regression. Between the points(Qg), the function  a streamflow record and the fitted recession curve function
was taken to be piecewise linear in (@). derived from the other half was consistent with the adjusted
We used generalized cross validation (GG¥aven and  uncertainty in the fit. Figur& shows the fitted function and
Wahba 1979 Krakauer et al.2004 to estimate a suitable its estimated uncertainty for an example site.
value fora for each stream, which typically was around 0.3  Alternative flexible functions to fit the recession curve are
log units. A lower limit of 0.1 log units was imposed en  available, and should perform similarly to the piecewise lin-
to limit the tendency of GCV to occasionally return under- ear (LOWESS-like) method we used. As an example, #ig.
smoothed curvesSjlverman 1984. At the limit « — oo, shows a smoothing cubic spline fitgok and Peterd 981)
the result approaches a straight line (B.while asa — 0 to binned discharge data along with the piecewise linear fit,
the fitted function becomes less smooth and approaches linwith the smoothing parameter determined to approximate the
ear interpolation. mean square misfit of the corresponding piecewise linear
Given the above weights, uncertainties for the fitted func-curve oltring, 1986. (In this particular case, estimating
tion value were then calculated using standard linear regresthe cubic spline smoothing parameter with GCV resulted in a
sion methodology. If£;/log(—Q;) in fact reflect the error  clearly undersmoothed fit.) Both the piecewise linear and the
standard deviation of the binned values and if this error iscubic spline functions fit the data acceptably. In this study,
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we chose to use the piecewise linear fit rather than the cubic
spline because the former gives straightforward estimates of
the local uncertainty of the fit and because it has more pre-
dictable behavior at the extremes of the range of available
streamflows. By contrast, linear regression does not repre- *°
sent the trend of the data well, while quadratic regression
gives reasonable results for most of the observed range bufg
does not capture the observed flattening of the recession time.
at both extremes (Figl). Given that the slope of the rela-
tionship between lag- Q) and log Q) is known to vary over
the period following a rain evenMizumura 2005, reflect-
ing changing saturated-zone thickneSgilagyi 2009, and
that the details of this response will be modulated by hetero-
geneity in hydraulic properties within the watershétha(- 10t B .
man et al. 2009 as well as drainage morphologRiéwal 10 0 (mrln(}h) 10
and Maranj 2010, a linear or quadratic function with few
adjustable parameters is likely to be generally less suitablgg 4. pifferent functional fits to the binned mean recession time
for modeling the streamflow recession curve as compared tQ vs. @ for the example site. The piecewise linear fit is the same as
a flexible locally smooth function. that shown in Fig3b.

Given the fitted recession curve, which gives(le@) as
a piecewise linear function of l@@) with associated un-

linear

2

certainty, the corresponding recession tinf@) is —Q/Q, s a significantly correlated te(Q) at the 0.05 level. Step-
with fractional uncertainty equal to that i (Fig. 3b). A Wwise multiple linear regression against {0y (weighted by
lookup table was generated for the estimated stofagmre-  its site-specific estimated uncertainty) was also performed,

sponding to various streamflow levels in the observed rangavhere at each step the predictor variable was added whose
by numerically integrating (Q)dQ (Eq. 8). Monthly mean  inclusion most increased the weighted mektof the re-
watershed storage was then computed as the mean of hour@fession model. The procedure was terminated when the in-
S calculated from the observe@, and the variability of this ~ crease ink? from another variable being added to the regres-
monthly storage was compared with satellite and model estision model was not significant at the 0.05 level, as quanti-

mates of water storage variability. fied by comparing to the increase Rf when values for that
variable were randomly permuted before being added to the
2.5 Explaining inter-stream variability in recession regression. Any missing values for predictor variables in the
curves HCDN data file were filled in with the average value for that

variable, to minimize bias in the estimated regression coeffi-
For understanding the relationship between the recessiopients.
curve and watershed hydrological processes, analysis of fac-
tors correlated with variability in the recession curve, as ex-2-6 ~Water storage data
pressed by the function(Q), is helpful. For each stream,

the function was expressed as 31 values fofog- ) i o :

arithmically ;Egc):ed in0 f%r 0 ranging between 00%48 grid for 2002-2008, estimated from gravitational anomalies
and 1.3mmh, corresponding to the median rangé of the reflected in the GRACE satellite positions, were obtained
streamflow bins used to fit the recession curves. Potentiairom the ‘]EI_ Propulsion I._aboratory (‘]P!‘)' .The Water stor.-
j9e anomalies were derived from gravitational fields esti-
mated from the satellite orbits by CSR (U. Texas/Center for

from the streamflow time series); gauge longitude, Iatitude,S R ) destrioed to minimi . ifact
and elevation, basin area, precipitation, climatological Jan- pace Research), destriped 1o minimize processing artifacts,

vy i temperatre, mean elevaon,percet foresf E2CAEC basedon  ad surce o) o e e
cover, percent lake cover, and soil water infiltration capac- 9 y mag

ity, and stream length and slope (taken from the HCDN datafrom adjacent areas to the measured gravity anonSe(-

files); and annual mean precipitation, snowfall, and evapo—Son a_nd Wahr2006 Swensoq unpubllsheai Another set .
ration (taken from NARR). The nonparametric (Spearman)Of est|mat<§s qf monthly terrestrial water storage anomalies
correlation coefficient of each variable against(logat each onalxi gf'd for 2001-2008 from th? Noah I_and surface
of the 31 flow rates was calculated, and the mean square cof: odel run using observeq m_etgorologmal forcing as part of
relation coefficient across the 31 flow rates was compared t he Global Land Data ASS|m|Iat|pn SystetaK et al, 2003

that obtained from regressions with 1000 random permuta- odell et al, 2004 was also obtained from JPL.

tions of the predictor values to assess whether this variable

Monthly terrestrial water storage anomalies on ‘ax11°
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F—
10?
3 ] - 10°
o 1) z
] -
101 —
1072 107t 10° 10t
Q (mm/h) Q (mm/h)
Fig. 5. (a)Fitted recession time vs. Q0 across the 61 streams. 1072 107t 10°
(b) Inverse-variance weighted mean recession timescaeolid Q (mm/h)

curve, with range from weighted within-site uncertainty shown __ . . . .
Fig. 6. Inverse-variance weighted mean recession timescale

by upper and lower dashed curves) along with variability across . e . o
streams (weighted standard deviation shown by error bars). Vari&Cross sites (as in Figb) along with the mean recession timescale
ability in recession curves across streams is consistently muct0’ Sensitivity analyses where the hours considered (1) included

greater than the uncertainty associated with recession-curve estim&€riods of high evaporation, (2) included periods of rising flow,
tion for individual streams, meaning that most of the variability in (3) used an absolute rather than a relative precipitation-intensity

recession times seen across streams is real threshold for excluding hours with precipitation.

Measures of water storage variability calculated from thepower-law relationship, Edl), while it decreases with in-
stream recession curves and for the corresponding grid cellgreasingQ at higher streamflows (correspondingste: 1.6);
in the GRACE and Noah datasets included the seasonal cythus, no single power-law relationship can represent accu-
cle amplitude (the standard deviation of the mean seasondptely the typical recession curve.
cycle) and interannual variability (the standard deviation of We see from Fig5a that there is across-stream variabil-
monthly storage anomalies once the mean seasonal cycle hify of an order of magnitude in the recession timéor any
been removed). Additionally, we calculated correlation coef-given flow rateQ. Comparing with Fig3b suggests that this
ficients to assess to what extent the spatial pattern of seasongdriability is larger than the uncertainty in the fitted reces-
to interannual variability magnitudes was consistent betweersion time curve for any one stream. This is confirmed by
the streamflow-based, GRACE, and Noah storages, and teomparing the weighted mean fit uncertainty (spread of lines
compare the temporal variation in water storage during then Fig. 5b) with the total standard deviation across streams

period of overlap of the different estimates. (error bars in Fig5b), which is much greater across flow
rates.
We performed three sensitivity analyses to understand
3 Results the impact of the criteria for choosing suitable hours on

the recession curve. In one analysis, we did not exclude
hours with high evaporation, as most previous analyses did
Recession time as a function of streamflaW showed not. This typically resulted in little change in the recession
broadly similar patterns across the sample of watersheds;urve at high flows (when evaporation was likely small com-
characteristically decreasing from 10 days at the low- pared to flow), but lowered the recession timescale by up to
est streamflow rates resolvable with our binning method40 % during low flow, qualitatively similar to the finding of
(~0.005mmil) to ~ 1 day at high streamflow rates seen Weisman(1977) that flow diminished faster during periods
soon after rain or snowmelt{1mmh1) (Fig. 5). These of high evaporation than during periods of low evaporation
timescales are similar to the pattern seen in stream recessidifrig. 6). In a second analysis, we did not exclude hours
curves constructed in previous studiBsutsaert and Nieber  with rising streamflow (but little precipitation according to
1977 Vogel and Kroll 1992 Brandes et al.2005 Kirch- NARR). This resulted in a longer recession timescale at all
ner, 2009 van Dijk, 201Q Pdia-Arancibia et a).2010, al- flow rates, with the recession timescale almost doubling at
though notably smaller than the 4515 day timescale for low flow rates (Fig6). In a third analysis, we excluded hours
low-flow conditions seen in the studies cited Byutsaert  with precipitation based on an absolute cutoff (precipitation
(2008, perhaps because of differences in the estimation proef 0.01 mm it or more) rather than a relative cutoff (pre-
cedure. The lower-envelope approach would tend to givecipitation equal to 10 % of streamflow or more). This led to
smaller O and largerr compared to an averaging like the small increases (up to 11 %) in the mean recession timescale
one used here. Note that the functiofQ) is on average al- at low flow rates (where some hours with slight precipita-
most flat at low streamflows (correspondingbte: 1 in the  tion were now included) and small decreases (up to 4 %) in

3.1 Recession curves
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the mean recession timescale at high flow rates (where some o8 0.2
hours with slight precipitation were now excluded) (Faj.

Given the variability across streams in recession
timescales, it is of interest to determine what basin-
specific factors could influence the recession timescale.
Longer recession timescales were significantly correlated (in
decreasing order of significance) with higher ratio of stream-
flow to precipitation, larger channel slope, higher elevation,
more forest cover, higher basin soil infiltration capacity, s
lower |Ongitude (|e western as Compared to eastern USA), 107 10% 10t 10° 10t 107 107 10 10° 10t
lower temperature, higher latitude (i.e. northern as compared @ (mm/m) Q (mm/m)

to southern USA), and higher cold-season precipitation_. ' . - .

fraction. Many of these predictor variables were highly Fig. 7. (a)_Non_parametrlc (Spearman) correlation coeffl_czlent Wlth
. .7 the recession timescale at different streamflows of the six variables

correlated with each other (for example, slope and elevationyy jongitude, (2) soil infiltration capacity, (3) latitude, (4) channel

or latitude and temperature). Recession timescales for thgyngih, (5) forest cover, (6) precipitatiof] > 0.3 is significantly

studied sample of small watersheds were not significantlygifferent from zero at the 0.05 leve{b) Coefficient of determina-

correlated with lake cover, channel length, watershed areajon R? for multivariate linear regression with these six predictor

or mean precipitation, streamflow, or evaporation. Ratiosvariables;R2 > 0.3 is significant at the 0.05 level.

of stream channel length to drainage area, which occur in

many analytical expressions for recession time constants

of idealized aquifersRupp and Selker2006h Table 3),

also were not significant predictors in this sample of small3-2 Basin storage

watersheds.

Stepwise multiple regression analysis yielded a modelSeasonal variability in storage inferred from streamflow and
with six predictor variables, in the order they were added thethe recession curve showed good coherence with the variabil-
model: (1) longitude, (2) soil infiltration capacity, (3) lati- ity in terrestrial water storage inferred from GRACE, with a
tude, (4) channel length, (5) forest cover, (6) HCDN precipi- median (across sites) coefficient of determinati&?)(be-
tation. Of these, (4) and (6) were not found to be significanttween the two of 0.69, compared with a medi@f of 0.41
predictors in the univariate analysis, (cf. F&tp). The rela- between the modeled (Noah) seasonal cycle and GRACE
tionship of the predictor variables to the recession timescal@ver the same grid cells. This performance of the reces-
varied across flow rates: for example, the soil infiltration ca-Sion curve technique in matching the phase of the GRACE
pacity showed a significant positive association with reces-seasonal cycle in water storage is particularly impressive be-
sion timescale only at low and moderate flow rates, whilecause of the scale difference between the watershed size and
forest cover showed a significant positive association withthe GRACE data (tens of kfrversus~ 10*km?), as com-
recession timescale only at higher flow rates; the correlatiorPared to the similarity in scale between GRACE and the
of recession timescale with latitude was positive only at highNoah simulations. Interannual variability in storage (com-
flow rates (Fig.7a). The multivariate model best predicted puted for each site over months when the two data sets
recession timescales at high flow rates, whefevas above  overlapped) was less coherent between the streamflow and
0.8, while at low flow rateR2 was 0.3-0.5; the average? ~ GRACE approaches, with a medi&? of 0.22, but this was
across the range of flow rates was 0.57 (Flg). (Modeling better than the correlation of Noah interannual variability
recession timescale with the same predictor variables acrosgith GRACE, where the mediaR? was only 0.06.
flow rates simplifies the determination of overall model sta- Both the seasonal and interannual variability in storage
tistical significance, since the recession timescales at differas inferred from the recession curves were generally lower
ent flow rates are not assumed to be independent. We alsilvan those derived from GRACE by around a factor of 10
tried an alternative approach, where a multivariate regres{Fig. 8). The median ratio between streamflow-inferred and
sion model was fitted independently for each flow rate. TheGRACE standard deviation in storage was 0.081 for the an-
significant predictor variables were different between flow nual cycle and 0.106 for interannual variability. Storage
rates, as suggested by Fita, and high flow rates tended to variability in the Noah model was lower than the results
have more significant predictor variables and higher modefrom GRACE, because Noah does not represent variability
R? compared to low flow rates.) in groundwater and surface wateyed et al. 2008, but

Spatial semi-variograms of the recession timescale at pamwas still generally higher than the variability inferred from
ticular flow rates (not shown) showed no evidence of spatialthe recession curves. The median ratio between streamflow-
clustering, beyond the continental-scale east-west and northinferred and Noah standard deviation in storage was 0.389
south trends captured by the linear relationship with longi-for the annual cycle and 0.227 for interannual variability.
tude and latitude. Also, there was little correlation across watersheds between
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storage amplitude inferred from streamflow and that inferred s )

from GRACE (Fig.8). Lol @ Sopr

4 Discussion e : v

4.1 What accounts for variability in recession 3 L w% T i*ﬁ*ﬂ +
timescales across streams? ; 2 o ? o H’% 4

i M 3 £ *+F
In our sample, inter-stream variability in the recession §1°'3 3 i p bt - g - " +7,
timescaler (Q) was correlated with measures of climate (ra- * eeace scasamal scorage 5 GRacE interammual storage ()

tio of streamflow to precipitation, forest cover, temperature), ) .
Fig. 8. Scatter of the amplitude ¢&) seasonal an¢b) interannual

topography (elevation, channel slope), and soil (infiltration i ST -
water storage variability inferred from the recession curve vs. that

g:g:‘i((:)l:ly)ti r;rggcgtla;sg :2'3,{?:2 svaet;?rgi;?ls?t’xeifgm;ggigfr rrii__nferred from GRACE gravimetry for the 61 watersheds, quantified
orth) P Y €35 the standard deviation @) the mean seasonal cycle afin de-

lated to the continental gradient in climate and geomo"phc’l'seasonalized monthly values. Amplitudes inferred from recession

ogy. The influencing variables and the direction of corre- ¢ rve analysis are generally low compared to GRACE (the solid
lations between them and streamflow are largely consistentnes correspond to 1-1 relationships).

with those found in previous studies.

In studies byvan Dijk (2010 in Australia andPdia-
Arancibia et al.(2010 across the tropics and subtropics, contributing aquifer has a larger slope, it would be expected
basin aridity was found to be a dominant control on re-to drain faster, all else being equdr(itsaert and Nieber
cession time, with more arid areas having shorter recession977 Vogel and Kroll 1992. A negative correlation is also
timescales. In the current sample of temperate-zone wateseen in some observational studies covering smaller spatial
sheds, we found a similar pattern: a lower ratio of streamflowscales Zecharias and Brutsaeft988 Brandes et al2005.
to precipitation correlated with shorter recession timescale. One possible explanation for this discrepancy is that local

High forest cover, typically associated with moist condi- or watershed-level attributes like channel slope and elevation
tions, was associated with longer recession times, as alsdo not necessarily correspond to aquifer properties, which
found byPdia-Arancibia et al(2010. The positive correla- would depend more on regional topography and geology
tion between forest cover and recession timescale was founffemimi et al, 2010. The positive correlation between soil
only at relatively high flow rates. Vegetation cover and den-infiltration capacity and recession timescale is more intuitive,
sity has a major impact on the spatial organization of soilalthoughPdia-Arancibia et al(2010 found no correlation
moisture Mohanty et al. 2000 Gobmez-Plaza et al200Q between the recession timescale and mapped soil infiltrabil-
2001 Qiu et al, 200L Canbn et al, 2004 Temimi et al, ity and drainage indices.
2010. The presence of vegetation fosters the retention of An original contribution of this study is the attempt to
water in the canopy, litter layer, and root zone, which leadsquantify the factors controlling the recession timescale at dif-
to slower drainage and therefore longer recession timescaldgrent flow rates, rather than estimating a single recession
immediately after stormsRoering et al(2010 found that  timescale for each watershed. We found that some variables
trees modify the topography around them by promoting soilwere significant predictors of the recession timescale only at
formation and porosity and reducing erosion, which would high or low flow rates, showing the value of explicitly includ-
tend to enhance the percolation of precipitation. The reducing flow rate in this sort of regression analysis. Particularly
tion of surface evaporation by vegetation shadidgl{rard  at low flow rates, there also appeared to be substantial inter-
et al, 2006 would also tend to increase recession timescale stream variability in the recession timescale not captured by
On the other hand, the high transpiration rates of forests tenthe set of predictor variables we used. Studies of variability
to drive down deep soil moisture during dry spells and re-in recession timescales across smaller spatial scales of tens to
duce summer low flows, which would correspond to shorterhundreds of km point to important geological controls associ-
recession timescale5€derer1973 Johnson1999. These  ated with indicators such as bedrock porosity, drainage den-
evaporation-related impacts should be less pronounced in owity (based on total channel length, including tributaries), and
analysis because we excluded periods with high evaporatiosoil group (e.g. Bingham 1986 Brandes et al.2005 that

when computing recession curves. were not available for our sample of watershedan Dijk
We found that channel slope and basin elevation werg2010 found that, after controlling for aridity, variability
positively correlated with the recession timescalPdia-  in recession timescales in Australia was spatially correlated

Arancibia et al.(2010 also found a positive correlation be- over distances of 100-150 km, presumably reflecting geo-
tween basin slope and recession timescale. This contradictegic or topographic controls on soil and bedrock properties
the theoretical expectation of a negative correlation: if thethat was not reflected in the set of predictor variables used.
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Intensive studies of flow pathways in research watersheds as
well as studies of large samples of small gauged watersheds
with watershed properties estimated from remote sensing and
other distributed data sets can help characterize the link be-
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cancel out in the regional mean to the extent that they
are not completely in phase.

and stream hydrology as reflected in the recession timescale,
on the other, on a regional to global scale.

4.2 Why are storage amplitudes inferred from the
recession curve so small?

We found that recession timescales derived from the re-
cession curve constructed for periods of low precipitation,
evaporation, and snowmelt to estimate a watershed storage-
discharge relationship can be used to estimate monthly stor-
age fluctuations that are coherent with those inferred from
GRACE - more so, in fact, than those estimated by a state-of-
the-art land surface model forced by observed meteorology
(Noah/GLDAS). Thus, recession curve analysis is promising
for extending the GRACE record of terrestrial water storage
variability to higher spatial and temporal resolution or over
longer time periods. Additional study is required to extend
discharge-based storage estimates to larger basins with con-

centration times of days or weeks, where the method used 3

here to construct recession curves probably would not work,
for direct comparisons with GRACE and with models over a
regional spatial scale.

The annual cycle and the interannual variability estimated
from streamflow recession curve analysis prove to be similar
in time evolution to those measured by GRACE, but are typi-
cally smaller by a factor of 10. This suggests that quantitative
estimates of basin storage based on streamflow fluctuations
and recession analysis should be treated with caution. We see
several possible reasons for the small dynamic storage found
with the recession curve approach. No single reason appears
sufficient to explain the full magnitude of the disparity with

GRACE, but several of them taken together may do so. 4

1. Because of the scale mismatch between GRACE and
our study watersheds, the storage variability is being
compared over quite different spatial scales. It is
possible that our sample of watersheds represents
a subset of the coterminous USA with particularly
low water storage capacity, perhaps because these
are disproportionally mountainous watersheds with
high hydraulic gradients and limited soil profile de-
velopment. However, we see low storage amplitude,

as compared to GRACE, even in watersheds with 5.

relatively little topographic relief. Further, we would
expect that if all things are equal, storage amplitude
measured over a small watershed would be larger than
the regional mean sensed by GRACE, because storage
variations in adjacent watersheds within a region partly

Hydrol. Earth Syst. Sci., 15, 2372389 2011

ing periods with low precipitation, evaporation, and
snowmelt (according to the reanalysis), streamflow is
the dominant flux of water in or out of the watershed.
If so, then the streamflow-storage relationship we con-
struct would be biased. It is clear from the streamflow
record that the reanalysis frequently misses periods
of heavy snowmelt in high-mountain basins, partly
because the large topographic relief in these basins
(which impacts the periods of snow accumulation and
melt) is not captured by the-32 km grid spacing of
the reanalysis. The atmospheric model used in NARR
tends to underestimate mountain snowfall, so that snow
is added to the model land surface in the analysis steps
to nudge NARR toward observed snow covéud

et al, 2007). However, this would not explain the low
storage amplitudes compared to GRACE observed in
basins where snow is not a major part of the water
budget.

Schaller and Far{2009 suggested that groundwater
movement out of headwater basins that is not re-
flected in streamflow could be an important term in
basin-scale water balance over the USA, which would
also seriously bias the storage-discharge relationships
we constructed. However, given that basins with net
groundwater outflow must be largely balanced on the
continental scale by those with net groundwater inflow,
it is difficult to see how this effect could be large
and consistent enough to account for the systematic
underestimation of the storage amplitude seen in almost
our entire sample.

. We assumed that when flow drops to zero, basin storage

remains constant at a minimum value extrapolated
from the storage-discharge relationship for periods
of positive flow. This unquestionably results in an
underestimate of the storage variability, since evapo-
ration will result in decreasing storage over periods of
zero flow. However, this cannot explain the disparity
seen, since only 15/61 of our sample basins have any
recorded hours of zero flow.

As we saw, assuming that a particular stream follows a
single recession curve can be taken to imply that dis-
charge for that stream is a single-valued function of
basin water storage. While this assumption holds in
analytical solution of some very simple aquifer models
and for flow systems dominated by deep, homogenous
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aquifers Brutsaert and Niebed 977 Dewandel et aJ. 10° ‘ ‘ ‘ 1
2003 Rupp and Selker20068, more complex water-
shed models show a clear dependence of flow rate on
the time history of water input (rainfall or snowmelt), so
that flow is not a single-valued function of basin storage 3
and a recession curve plot will show systematic scatter -
(Sloan 200Q Rupp et al.2009. In such cases our ap-
proach to fitting a recession curve will produce averages
of the rate of change in flow at given flow rates).
However, using these averages may lead to biased esti- 10! S = X 0 5

10° 10° 10 10 10 10

mates of the re£ession timescal@) = —Q/Q (since 0 (mm/h) 0 (mm/h)
in general—Q/Q # —Q(1/0)). This bias propagates

2 L

(log units)

(o)

to the dynamic storage, estimated by integratt Fig. 9. (a) Scatter of flow recession timescales from power-law
y 9 y grating) curve fits to individual recession limbs over the record period at

(Eq' 8). For example, if—Q at a_ given@ is dis- the example site.(b) Standard deviatiom of the log recession
tributed lognormally across recession events, our aver-

. > - timescale at the example site (solid line) and its median across all
ager = —Q/Q would be biased low, which would lead ;oo (dashed line). P ( )
to too-low calculated storage amplitude: specifically, if
the standard deviation of lgg Q) is o, the actual aver-

ager would bee?” times the value estimated using our
method.

To roughly estimate the magnitude of this bias, we fit
power law curves (ER) to individual recession events
(defined as at least 48 consecutive hours of declining
flow, with negligible rain and snowmelt, but including

This would mean that “doing hydrology backward”
based on the storage-discharge relationship inferred
from recession curve analysis using E8) ¢loes not
work for small watersheds generally, although the con-
cept may nevertheless have value when it is approxi-
mately valid, for example, over periods of light pre-

cipitation. Note, however, that explaining the majority
of the observed discrepancy as due to a non-constant
storage-discharge relationship would require this rela-
tionship to undergo very large fluctuations over peri-
ods of high precipitation, evaporation, and/or snowmelt
(enough to increase the mean recession timescale by a
factor of 10; cf. Eq7), compared to the relatively mod-
est change seen when the subset of hours chosen for
constructing the recession curve is modified ()g.

hours with non-negligible evaporation) for streams in
our sample. We found that the standard deviation
across recession events was typically 0.3-0.6 log units
(Fig. 9), and inspection of published data for other
streams (e.g. Fig. 7 dRupp et al. 2009 shows sim-

ilar spreads. If this spread is dominated by real vari-
ability rather than by measurement error or error arising
from our approximation of each recession event as fol-
lowing a power law, then the mean recession timescales
and storage amplitude may be some 10 %—-40 % higher

(e‘72 —1) than estimated from the mean recession curve.
Further study of how best to quantify and correct forthis 5  Conclusions
source of bias in recession curve analysis is heeded.
We have outlined a systematic method for constructing re-
6. Finally, the assumption that the storage-discharge recession curves for small watersheds based on high-frequency
lationship as determined for hours of low precipita- streamflow measurements combined with reanalysis meteo-
tion, evaporation, and snowmelt is valid for other pe- rology. We found that for the selected continent-wide sam-
riods, which is necessary for computing monthly-meanple of small, undisturbed watersheds, recession curves, as
storage, may not hold. For example, the pool of constructed by a uniform method intended to minimize the
water contributing to evaporation (largely soil mois- impacts of precipitation, snowmelt, and evapotranspiration,
ture) and the pool of water contributing to stream- had broad similarities, with recession timescales typically in-
flow (largely groundwater) may be partly decoupled, creasing by a factor of 10 going from high flows as seen im-
so that changes in basin storage due to evaporatiomediately after storms to flows near the median level, and
would not be reflected in streamflow to the same ex-leveling off at low flows. We were able to quantify the un-
tent as changes in basin storage due to streamflow. Simeertainty in each recession curve, and linked variability in the
ilarly, when there is precipitation, streamflow gener- recession timescale across watersheds to known climatic and
ation is likely to be qualitatively different than dur- geomorphological factors, but with a component of small-
ing periods without precipitation, with overland flow scale variability (particularly at low flow rates) which needs
and greater contributing area, resulting in a differentto be investigated in larger samples or with more explana-
storage-discharge relationship than that inferred heretory variables. Storage variations inferred from the recession
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curve agree in terms of timing, but not amplitude, with in- Ek, M. B., Mitchell, K. E., Lin, Y., Rogers, E., Grunmann, P., Ko-
dependent gravimetric estimates. Study of the discrepancy ren, V., Gayno, G., and Tarpley, J. D.: Implementation of Noah
in the inferred storage amplitude may provide clues to the land surface model advances in the National Centers for Environ-

range of validity of the recession curve constructed accord- mental Prediction .operational mesoscale Eta model, J. Geophys.
ing to the method used here. Res., 108, 8_85]d0|:10.1029/2(_)02JD00329003. o
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