
Hydrol. Earth Syst. Sci., 18, 1625–1640, 2014
www.hydrol-earth-syst-sci.net/18/1625/2014/
doi:10.5194/hess-18-1625-2014
© Author(s) 2014. CC Attribution 3.0 License.

Hydrology and 
Earth System

Sciences
O

pen A
ccess

Comparison of drought indicators derived from multiple data sets
over Africa

G. Naumann1, E. Dutra2, P. Barbosa1, F. Pappenberger2, F. Wetterhall2, and J. V. Vogt1

1European Commission, Joint Research Centre, Ispra, Italy
2European Centre for Medium Range Weather Forecasts, Reading, UK

Correspondence to:G. Naumann (gustavo.naumann@jrc.ec.europa.eu)

Received: 13 October 2013 – Published in Hydrol. Earth Syst. Sci. Discuss.: 7 November 2013
Revised: 19 March 2014 – Accepted: 22 March 2014 – Published: 7 May 2014

Abstract. Drought monitoring is a key component to miti-
gate impacts of droughts. Lack of reliable and up-to-date pre-
cipitation data sets is a common challenge across the globe.
This study investigates different data sets and drought indi-
cators on their capability to improve drought monitoring in
Africa. The study was performed for four river basins located
in different climatic regions (the Oum er-Rbia in Morocco,
the Blue Nile in eastern Africa, the Upper Niger in western
Africa, and the Limpopo in southeastern Africa) as well as
the Greater Horn of Africa.

The five precipitation data sets compared are the ECMWF
ERA-Interim reanalysis, the Tropical Rainfall Measuring
Mission satellite monthly rainfall product 3B-43, the Global
Precipitation Climatology Centre gridded precipitation data
set, the Global Precipitation Climatology Project Global
Monthly Merged Precipitation Analyses, and the Climate
Prediction Center Merged Analysis of Precipitation. The set
of drought indicators used includes the Standardized Precip-
itation Index, the Standardized Precipitation-Evaporation In-
dex, and Soil Moisture Anomalies.

A comparison of the annual cycle and monthly precipita-
tion time series shows a good agreement in the timing of the
rainy seasons. The main differences between the data sets are
in the ability to represent the magnitude of the wet seasons
and extremes. Moreover, for the areas affected by drought,
all the drought indicators agree on the time of drought on-
set and recovery although there is disagreement on the extent
of the affected area. In regions with limited rain gauge data
the estimation of the different drought indicators is charac-
terized by a higher uncertainty. Further comparison suggests
that the main source of differences in the computation of the

drought indicators is the uncertainty in the precipitation data
sets rather than the estimation of the distribution parameters
of the drought indicators.

1 Introduction

Assessment of drought impacts requires understanding of re-
gional historical droughts as well as the behaviours on human
activities during their occurrences. Traditional methods for
drought assessment are mainly based on water supply indices
derived from precipitation time series alone (Heim, 2002).
A sparse distribution of rain gauges and short or incomplete
historical rainfall records may, however, lead to significant
errors in the estimation of water supply indices derived from
precipitation time series.

As a consequence of drought, many countries in Africa
have seen recurrent famines that affected millions of people
(Rojas et al., 2011). Since precipitation is fundamental for
rain-fed crops in these drought-prone regions, improvements
in drought monitoring and early warning will improve our
capacity to detect, anticipate and mitigate famine (Wilhite
and Svoboda, 2000; Rowland et al., 2005). However, the
lack of reliable and up-to-date climatological data in many
regions of Africa hinders the development of effective real-
time drought monitoring and early warning systems.

Recently, several rain gauge and remote sensing based es-
timations of precipitation have become available, which ex-
hibit discrepancies and limitations in representing rainfall at
local and regional scale. This has been highlighted for daily
and monthly precipitation data sets by Dinku et al. (2007,
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Table 1.Geographical extent of the African regions and number of grid cells analysed for each data set. For GPCC, the percentage of stations
per grid and the percentage of pixels without stations are respectively shown in parentheses.

Region Area Longitude–latitude GPCC grid
(106

× km2) cells

A – Oum er-Rbia 0.49 [10◦ W–0◦ E] × [31–35◦ N] 36 (52, 65)
B – Niger 1.48 [10◦ W–0◦ E] × [6–18◦ N] 120 (23, 70)
C – Eastern Nile 1.23 [30–40◦ E] × [7–17◦ N] 100 (23, 75)
D – Limpopo 0.94 [25–34◦ E] × [26–20◦ S] 54 (56, 44)
E – GHA 2.22 [40–52◦ E] × [2◦ S–12◦ N] 180 (15, 85)

2008) and Hirpa et al. (2010). Those authors studied a rel-
atively dense station network over the Ethiopian highlands
and found that at a monthly time scale and a spatial resolu-
tion of 2.5◦ CMAP and TRMM 3B-43 performed very well
with a bias of less than 10 % and a root mean square error
of about 25 %. Thiemig et al. (2012, 2013) found that the
Rainfall Estimation Algorithm and TRMM 3B-42 showed a
high potential in reproducing the interannual variability, the
spatial and quantitative distribution and the timing of rainfall
events.

Liebmann et al. (2012) studied the spatial variations in
the annual cycle comparing GPCP with TRMM and gauge-
based Famine Early Warning System data sets. They found
that GPCP estimates are generally higher than TRMM in the
wettest parts of Africa, but the timing of the annual cycle and
onset dates are consistent. Dutra et al. (2013a) found signifi-
cant differences (mainly in the equatorial area) in the quality
of the precipitation between the ERA-Interim, GPCP and the
Climate Anomaly Monitoring System – Outgoing Longwave
Radiation Precipitation Index (CAMS-OPI) data sets for dif-
ferent river basins in Africa. From these studies it is evident
that the question of which data set best represents African
precipitation is still not sufficiently answered.

The difficulty in establishing a “ground truth” of precip-
itation in Africa also affects the uncertainty in the calcula-
tion of derivatives of precipitation, like drought indicators,
since the relationship between the quality of a precipitation
product and any drought indicator is nonlinear. This means
that errors in the precipitation can be amplified or damp-
ened when a drought index is computed. Previous works have
reviewed and compared several drought indicators (Heim,
2002; Anderson et al., 2011; Shukla et al., 2011; Vicente-
Serrano et al., 2012). However, an agreement between dif-
ferent indicators is not necessarily observed as the capabil-
ity to detect droughts changes between indicator, system and
region.

The main goal of this study was to identify the main
sources of uncertainty in the computation of the drought indi-
cators. Furthermore, an assessment was done on the ability of
the different data sets and drought indicators (SPI, SPEI and
SMA) to represent the spatio-temporal features of droughts
in different climate regimes across Africa.

Fig. 1. Annual mean precipitation from the GPCC data set and
African regions used in this analysis as defined in Table 1. OER:
Oum er-Rbia; NIG: Inner Niger Delta; ENL: Eastern Nile, LIM:
Limpopo Basin and GHA: Greater Horn of Africa.

2 Data and methods

2.1 Study area

The analysis was performed at continental level over Africa
with particular focus on the areas falling in four river basins
(Oum er-Rbia, Limpopo, Niger, and Eastern Nile) as well as
the Greater Horn of Africa (GHA). The regions were defined
as the land areas inside each bounding box (see Fig. 1). The
area and geographical extent of the study areas are detailed
in Table 1. The regional study areas selected cover a range of
climates and socio-economic systems in Africa.

2.2 Precipitation data

The five precipitation data sets used were the ECMWF ERA-
Interim (ERA-I) reanalysis (approximately 0.7◦

× 0.7◦,
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Table 2.Description of global data sets available in near-real-time that could be used for monitoring precipitation conditions at continental
level.

Data sets Resolution Period Source Update

ERA 0.5◦ × 0.5◦ 1979– ECMWF Reanalysis 1/2 month
INTERIM present

TRMM 0.25◦ × 0.25◦ 1998– Remote Sensing Estimate (combination 3B-42, 1 or 2
3B-43 v.6 present CAMS and/or GPCC) months

GPCC v.5 0.5◦ × 0.5◦ 1901– In situ data 1 month
2010

GPCP v.2.2 2.5◦ × 2.5◦ 1979– Remote Sensing Estimate (merged from microwave, irregular
2010 infrared and sounder data and precipitation gauge

analyses (GPCC).

CMAP 2.5◦ × 2.5◦ 1979– Remote Sensing Estimate (GPI, OPI,S SM/I irregular
2009 scattering, SSM/I emission and MSU+

NCEP/NCAR Reanalysis)

bilinear interpolation to 0.5◦ × 0.5◦), Tropical Rainfall Mea-
suring Mission (TRMM) satellite monthly rainfall prod-
uct 3B-43 (0.25◦ × 0.25◦), the Global Precipitation Clima-
tology Centre (GPCC) gridded precipitation data set V.5
(0.5◦

× 0.5◦), the Global Precipitation Climatology Project
(GPCP) Global Monthly Merged Precipitation Analyses
(2.5◦

× 2.5◦) and the CPC Merged Analysis of Precipitation
(CMAP, 2.5◦ × 2.5◦) (Table 2).

This work uses the TRMM Multisatellite Precipita-
tion Analysis estimation computed at monthly intervals as
TRMM 3B-43 data set for the period 1998–2010 (Huffman et
al., 2007). This product combines the estimates generated by
the TRMM and other satellite products (3B-42) with the Cli-
mate Anomaly Monitoring System gridded rain gauge data
and/or the GPCC global rain gauge data at 0.25◦

× 0.25◦

resolution. The GPCC full reanalysis version 5 (Rudolf et
al., 1994) was used for 1979 to 2010. This data set is based
on quality-controlled precipitation observations from a large
number of stations (up to 43 000 globally) with irregular cov-
erage in time.

The ECMWF ERA-I reanalysis, the latest global atmo-
spheric reanalysis produced by ECMWF, extends from 1 Jan-
uary 1979 to the present date. See Dee et al. (2011) for de-
tailed descriptions of the atmospheric model used in ERA-
I, the data assimilation system, the observations used, and
various performance aspects. The ERA-I configuration has
a spectral T255 horizontal resolution (about 0.7◦

× 0.7◦ in
the grid-point space) with 60 model vertical levels. For the
present application, the monthly precipitation means were
spatially interpolated (bilinear) to a regular 0.5◦

× 0.5◦ grid.
Three-hourly ERA-I precipitation estimates are produced by
12 h model integrations starting at 00:00 and 12:00 UTC.
These short-range forecasts are therefore mainly constrained
by the analysis of upper-air observations of temperature and
humidity, from satellites and in situ instruments.

The Global Precipitation Climatology Project (GPCP,
Huffman et al., 2009) combines the precipitation informa-
tion available from several sources such as the Special Sensor
Microwave/Imager (SSM/I) data from the US Defense Mete-
orological Satellite Program satellites, infrared precipitation
estimates computed primarily from geostationary satellites,
low-Earth orbit estimates including the Atmospheric Infrared
Sounder Television Infrared Observation Satellite Program
(TIROS) Operational Vertical Sounder (TOVS), and Outgo-
ing Longwave Radiation Precipitation Index data from the
NOAA series satellites. The gauge data included are assem-
bled and analysed by the Global Precipitation Climatology
Centre (GPCC). The latest version of GPCP v2.2 that was
used is available for the period January 1979 to Decem-
ber 2010 in a regular 2.5◦ × 2.5◦ grid.

The CPC Merged Analysis of Precipitation (“CMAP”)
is a technique which produces pentad and monthly analy-
ses of global precipitation in which observations from rain
gauges are merged with precipitation estimates from sev-
eral satellite-based sensors (infrared and microwave). The
analyses are on a 2.5◦

× 2.5◦ latitude/longitude grid and ex-
tend back to 1979. For further information refer to Xie and
Arkin (1997).

2.3 Drought indicators

The set of hydro-meteorological indicators analysed in-
cluded the Standardized Precipitation Index (SPI), Standard-
ized Precipitation-Evaporation Index (SPEI), and Soil Mois-
ture Anomalies (SMA). The SPI was computed with all the
data sets (ERA-I, TRMM, and GPCP) since it only uses
precipitation data. The SPEI was computed with precipita-
tion and potential evapotranspiration from ERA-I, as well as
with precipitation from GPCP and potential evapotranspira-
tion from ERA-I. SMA and PET were directly obtained from
the ERA-I reanalysis. The individual drought episodes from
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the time series of all indicators were determined by consid-
ering different thresholds of the standardized indicators. The
duration of each dry event was determined as the number of
consecutive months with negative values of the drought in-
dices over the period 1998–2010. The monthly drought frac-
tional area was computed for different thresholds but is only
shown for the values below the−1.0 threshold.

2.3.1 Standardized Precipitation Index (SPI)

The Standardized Precipitation Index (SPI) was developed
by McKee et al. (1993, 1995) to provide a spatially and tem-
porally invariant measure of the precipitation deficit (or sur-
plus) for any accumulation timescale (e.g. 3, 6, 12 months). It
is computed by fitting a parametric Cumulative Distribution
Function (CDF) to a homogenized precipitation time series
and applying an equi-probability transformation to the stan-
dard normal variable. This gives the SPI in units of number
of standard deviations from the median.

Typically, the gamma distribution is the parametric CDF
chosen to represent the precipitation time series (e.g. McKee
et al., 1993, 1995; Lloyd-Hughes and Saunders, 2002; Husak
et al., 2007) since it has the advantage of being bounded
on the left at zero and positively skewed (Thom, 1958;
Wilks, 2002). Moreover, Husak et al. (2007) and Naumann et
al. (2012) have shown that the gamma distribution adequately
models precipitation time series in most of the locations over
Africa. In this study we use the maximum-likelihood estima-
tion (MLE) method to estimate the parameters of the gamma
distribution.

A persistent negative anomaly of precipitation is the pri-
mary driver of drought, resulting in a successive shortage of
water for different natural and human needs. Since SPI val-
ues are given in units of standard deviation from the stan-
dardized mean, negative values correspond to drier periods
than normal and positive values correspond to wetter periods
than normal. The magnitude of the departure from the me-
dian is a probabilistic measure of the severity of a wet or dry
event.

2.3.2 Standardized Precipitation Evapotranspiration
Index (SPEI)

The Standardized Precipitation Evapotranspiration Index
(SPEI, Vicente-Serrano et al., 2010) is based on precipitation
and temperature data, and it has the advantage of combining
different time dimensions (like the SPI) with the capacity to
include the effects of temperature variability on drought. The
calculation combines a climatic water balance, the accumu-
lation of a water deficit/surplus at different timescales, and
an adjustment to a log-logistic probability distribution. SPEI
is similar to SPI, but it includes the temperature impact via
the potential evapotranspiration (PET) that is calculated fol-
lowing Thornthwaite (1948). In the current work, we used
ERA-I 2 m temperature to derive PET, and the multiscalar

index is calculated asP − PET over the different timescales
and normalized (like the SPI) using the log-logistic probabil-
ity distribution.

2.3.3 Soil Moisture Anomalies (SMA)

Soil moisture anomalies were derived from ERA-I simula-
tions by removing the mean annual cycle. Further standard-
ization could be achieved by fitting the soil moisture distri-
bution to a probability distribution (similar to SPI or, SPEI)
such as the Beta distribution (Sheffield et al., 2004) or just a
simplez score (Dutra et al., 2008). In the current work we
compare the SMAz score following the considerations de-
picted in Dutra et al. (2008). By normalizing the soil mois-
ture with thez score, a classification scheme is obtained that
is similar and comparable to that of McKee et al. (1993) and
Vicente Serrano et al. (2012).

2.4 Evaluation metrics

The precipitation data sets and drought indicators were as-
sessed using different scores available in the hydroGOF R
package (Zambrano-Bigarini, 2013): Spearman’s correlation
coefficient (r), mean absolute difference (MAD), percent
bias (PBIAS) between two products and the index of agree-
ment (d). Details of the evaluation scores are listed in the
Appendix.

A direct quantitative assessment at continental level is dif-
ficult due to the lack of an actual validation data set that
represents the ground truth with adequately high spatial or
temporal resolution. The performance metrics (mean abso-
lute difference, relative bias and index of agreement) were
used to diagnose the relative reliability of each indicator over
different drought properties. This analysis does not assume
that a single data set or indicator is better than the other but
highlights their temporal and spatial coherency.

3 Results and discussion

3.1 Comparison of global precipitation data sets

The data sets analysed are based on in situ data (GPCC), re-
mote sensing estimations (TRMM, GPCP) and a global cir-
culation model (ERA-I). The data sets are not completely in-
dependent. For example, TRMM and GPCP are mainly based
on remote sensing data and GPCP uses GPCC over land).
Figure 2 shows the mean annual precipitation for the ERA-
I, GPCC, GPCP, CMAP and TRMM data sets over Africa.
There is an overall agreement between the data sets with
respect to the mean as well as the general spatial patterns
of annual precipitation. These data sets agree on the north–
south gradient from the Sahara desert areas in the north to
the tropical savannahs in the Sahel (an area centred at ap-
proximately 10◦ N spanning from the Atlantic Ocean in the
west to the Red Sea in the east). The data sets also agree in
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Fig. 2. (A)–(E) Mean annual precipitation (mm year−1) from different data sets for the common period 1998–2010,(F) longitudinal cross-
section at 25◦ E of mean annual precipitation.

the areas of maximum precipitation over the African rain-
forests related to the location of the Intertropical Conver-
gence Zone (ITCZ), as well as in the drier climate of the
southwestern part of Africa. The main differences are ob-
served in the tropical area and over un-gauged areas. In tran-
sition regions from the Sahel to the Sahara TRMM estima-
tions can exceed GPCC more than twofold while TRMM
is substantially lower than the other estimations along the
southwestern coast of West Africa (Liebmann et al., 2012).
There is also a tendency of higher precipitation in the trop-
ical rainforest in GPCP (Liebmann et al., 2012) and ERA-I
(Dutra et al., 2013a, b) compared with the other data sets.

ERA-I overestimates the rainfall in the central African re-
gion which is likely to be associated with a substantial warm
bias in the model due to an underestimation of aerosol optical
depth in the region (Dee et al., 2011).

For all the data sets and regions analysed the mean annual
cycle of precipitation shows good agreement with respect to
the onset and end of the rainy season. This is true even for
the GHA region which is characterized by two rainy seasons
(Fig. 3). However, with respect to intensity the results are
more heterogeneous. Although in the Limpopo and Oum er-
Rbia basins there is a good agreement between the data sets,
for the basins located in the tropical band the discrepancies
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Fig. 3. Mean annual cycle of precipitation from the different data sets averaged over the five regions defined in Fig. 1 (OER: Oum er-Rbia,
NIG: Inner Niger Delta, NIL: Eastern Nile, LIM: Limpopo Basin and GHA: Greater Horn of Africa) for the common period 1998–2010.

are higher with an overestimation of ERA-I in the Eastern
Nile Basin and GHA and an underestimation in the Niger
Basin.

Apparently the density of rain gauges plays a role in de-
termining the agreement between data sets. The best gauged
regions (Oum er-Rbia and Limpopo; Table 1) are those with
the lowest dispersion in terms of annual cycle. These two re-
gions (Oum er-Rbia and Limpopo) are located outside the
tropical region, and their precipitation variability is mainly
controlled by large-scale synoptic weather systems, while in
the tropical region small-scale convective events play an im-
portant role. In these regions, model uncertainties (for ex-
ample land–atmosphere coupling), uncertainties in satellite
retrievals as well as poor gauge cover contribute to the large
spread in the mean annual cycles computed with the different
data sets.

The monthly data sets show a reasonable agreement over
all regions in terms of the correlation coefficients which are
usually greater than 0.8 (Table 3). The CMAP data set de-
viates with values below 0.7 in some regions. Oum er-Rbia

and Limpopo areas show the best agreement between data
sets with MAE values below 10 mm month−1. The bias in
those two regions is below 20 % in all the cases except when
TRMM and CMAP are compared (30 %).

The biggest differences were observed for ERA-I in the
Blue Nile and GHA regions. In these regions the overestima-
tion of monthly precipitation reached 40 mm month−1 and
the bias can reach 90 % in the Blue Nile and around 50 % in
the GHA. These discrepancies are mainly due to the prob-
lems of representation of the mean annual cycle of precipita-
tion by atmospherics models and the lack of in situ observa-
tions (Mariotti et al., 2011; Dutra et al., 2013b).

3.2 Comparison of drought indicators

The monthly patterns of drought over Africa for Jan-
uary 2000, 2003, 2006 and 2009 show that dry areas (indica-
tors with negative values) are generally depicted in more than
one indicator, but their consistency varies with the drought
characteristics, as well as the spatial and temporal coverage
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Fig. 4. Monthly standardized anomalies in SPI-3 (ERA-I, GPCP, TRMM), SPEI (ERA-I and GPCP) and Soil Moisture (SMA) for Jan-
uary 2000, 2003, 2006 and 2009. Solid lines indicates the zero contour. White areas represent regions where it was not possible to compute
the gamma parameters for SPI due to the large amount of zeros.
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Fig. 5. Index of agreement (d) between SPI, SPEI and SMA computed using ERA-I for the five case studies and the whole continent. OER:
Oum er-Rbia, NIG: Inner Niger Delta, NIL: Eastern Nile, LIM: Limpopo Basin and GHA: Greater Horn of Africa. Dashed lines extend from
5th to 95th percentile of estimations, boxes extend from 25th to 75th percentile and middle horizontal lines within each box indicate the
mean for each region.

(Fig. 4). Although there is in general a good spatial corre-
spondence between all the indicators over the study period,
there are also areas where there is no agreement between
some indicators, such as in central Africa between SPI and
SPEI.

Figure 5 shows the index of agreement (d) between all the
drought indicators computed with ERA-I. Overall, the index
of agreement shows that there is a good correspondence be-
tween indicators in all regions with meand values greater
than 0.5 for almost all the comparisons. Moreover, the effect
of PET on the computations of the SPEI is not major since
the agreement of this indicator with the others is still high.

Figure 6 shows the evolution of drought areas in 2000,
2003, 2006 and 2009 characterized by the number of indi-
cators below a certain threshold. In almost all areas there is a
good agreement, with usually more than three indicators re-
porting drought conditions per grid cell. However, there are
some areas with only one indicator below the defined thresh-
old, mostly over central Africa. There is scope to take ad-
vantage of these discrepancies and agreements and propose
the construction of a composite indicator (Svoboda et al.,
2002; Sepulcre-Canto et al., 2012; Hao and AghaKouchak,
2013). The development of a single composite drought indi-
cator could improve the detection of the onset of a drought

and help to monitor its evolution more efficiently, at the same
time providing information on the uncertainty in the data.
This will allow decision makers and stakeholders to better
handle uncertainties in early warning systems.

The individual drought episodes were computed from the
time series of all indicators considering as dry periods all
values of standardized indicators below zero. The duration
of each dry event was determined as the number of consec-
utive months with negative values for the period 1998–2010.
The average duration of dry episodes lasted between 2 to
6 months for all indicators, with the largest differences in du-
ration for different indicators being found in the Niger Basin
and in the GHA (Fig. 7). Overall, dry periods measured with
SPEI tend to be 1 or 2 months more persistent if compared
with the other estimations.

Figure 8 shows the monthly fractional area under standard-
ized values below−1.0. For the areas that are under drought,
all the data sets agree with the time of onset and recovery
but there are sometimes disagreements on the area affected
and this disagreement tends to be dependent on the threshold
selected. In general there is a better agreement if the areas
covered by any standardized indicator below−1.0 are con-
sidered. In this analysis the Niger Basin and Greater Horn
of Africa present more discrepancies, reaching a difference
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Fig. 6. Month by month evolution of droughts in 2000, 2003, 2006 and 2009 according to grid cells with SPI-3/SPEI-3 computed using
ERA-I GPCP, and TRMM below−1.0. Values are ranged between 0 (no data set with SPI-3/SPEI-3 below the threshold) and 5 (all data sets
below threshold).

of more than 50 % between SPI and SPEI estimations during
the 2009/2010 and 2005/2006 periods, respectively. The soil
moisture anomalies tend to define less generalized droughts
as it is hard to reach half the region under dry conditions.
However, even if the magnitude of the area is smaller with

respect to the other indicators, the soil moisture shows a good
correspondence except for the period 2000/2002 in the Inner
Niger Delta.

In order to define how the selected threshold could affect
the agreement between data sets a correlation analysis was
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Table 3. Correlation coefficient (r), mean absolute difference (MAD) and percentage bias (%) between the different precipitation data sets
averaged over each region for the common period 1998–2010. All correlations are significant at 99 %.

TRMM GPCC GPCP CMAP ERA-I

r MAD BIAS r MAD BIAS r MAD BIAS r MAD BIAS r MAD BIAS

OER TRMM – – – 0.99 2.5 2.7 0.99 2.9 6.7 0.74 7.8 42.8 0.95 7.3 26.3
GPCC 0.99 2.5 −2.6 – – – 0.99 2.5 4.2 0.94 4.7 23.1 0.95 6.7 24.4
GPCP 0.99 2.9 −6.2 0.99 2.5 −4 – – – 0.73 6.5 33.9 0.95 5.7 18.4
CMAP 0.74 7.8 −30 0.94 4.6 −18.7 0.73 6.5 −25.3 – – – 0.68 7.0 −11.6
ERA-I 0.95 7.3 −20.8 0.95 6.6 −19.6 0.95 5.7 −15.5 0.68 7.0 13.1 – – –

NIG TRMM – – – 0.99 5.8 −1.9 0.98 13.6 −14.5 0.8 13.9 7.2 0.94 23.2 8
GPCC 0.99 5.8 1.9 – – – 0.99 11.6−14.1 0.97 6.9 −1 0.95 22.2 8.3
GPCP 0.98 13.6 17 0.99 11.5 16.4 – – – 0.82 16.7 25.4 0.95 25.8 26.4
CMAP 0.8 13.8 −6.7 0.97 6.9 1 0.82 16.8 −20.3 – – – 0.78 25.8 0.7
ERA-I 0.94 23.1 −7.4 0.95 22.2 −7.7 0.95 25.8 −20.9 0.78 25.8 −0.7 – – –

ENL TRMM – – – 0.94 17.6 −23.7 0.93 17.4 −22.4 0.82 15.3 −0.6 0.93 43.9 −48.1
GPCC 0.94 17.6 31 – – – 1 2.7 1.9 0.97 12.1 22.5 0.97 29.9−32.3
GPCP 0.93 17.4 28.9 1 2.66 −1.9 – – – 0.85 14.3 28.2 0.97 30.1−33.1
CMAP 0.82 15.3 0.6 0.97 12.1 −18.4 0.85 14.3 −22 – – – 0.86 43.4 −47.8
ERA-I 0.93 43.9 92.8 0.97 29.9 47.6 0.97 30.1 49.5 0.86 43.4 91.7 – – –

LIM TRMM – – – 0.98 7.03 8.9 0.97 8.4 6.7 0.76 12.6 20.6 0.96 10.4 9
GPCC 0.98 7.0 −8.2 – – – 0.99 5.1 −3.3 0.91 8.3 1.8 0.98 8.1 −1.5
GPCP 0.97 8.4 −6.3 0.99 5.1 3.4 – – – 0.79 9.9 13 0.97 8.8 2.1
CMAP 0.76 12.6 −17 0.91 8.3 −1.8 0.79 9.9 −11.5 – – – 0.79 12.8 −9.6
ERA-I 0.96 10.4 −8.2 0.98 8.1 1.5 0.97 8.8 −2.1 0.79 12.8 10.6 – – –

GHA TRMM – – – 0.82 9.8 −4.2 0.88 6.6 1.7 0.72 9.2 11.2 0.84 17.8−34
GPCC 0.82 9.8 4.4 – – – 0.9 8.2 7.1 0.84 9.4 8.4 0.83 17.1−30.9
GPCP 0.88 6.6 −1.7 0.9 8.2 −6.6 – – – 0.7 9.6 9.3 0.92 16.4 −35.1
CMAP 0.72 9.2 −10.1 0.84 9.4 −7.8 0.7 9.6 −8.5 – – – 0.61 22.7 −40.6
ERA-I 0.84 17.8 51.5 0.83 17.1 44.7 0.92 16.4 54.1 0.61 22.7 68.4 – – –

Fig. 7.Duration of dry periods for the standardized indicators below zero in the common period 1998–2010. OER: Oum er-Rbia, NIG: Inner
Niger Delta, NIL: Eastern Nile, LIM: Limpopo Basin and GHA: Great Horn of Africa. Dashed lines extend from 5th to 95th percentile of
estimations, boxes extend from 25th to 75th percentile and middle horizontal lines within each box indicate the mean for each region.
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Fig. 8. Fractional area of each region under SPI, SPEI and SMA below−1.0 for the period 1998–2010. OER: Oum er-Rbia, NIG: Inner
Niger Delta, NIL: Eastern Nile, LIM: Limpopo Basin and GHA: Greater Horn of Africa.

performed between different thresholds of SPI and the ar-
eas affected by droughts in each region. Here the results of
the different SPI estimations are presented (Table 4). How-
ever, similar results were found for the other indicators (not
shown). For almost all regions (except for Oum er-Rbia
where this relationship is almost constant) the correlation be-
tween the different SPIs is higher for thresholds closer to zero
(Fig. 9). To consider a higher threshold (i.e. less negative) to
define areas affected by drought (e.g.−0.8 or−1), therefore,
will reduce the disagreement between indicators. However, it
puts a limit on the detection of the significance and severity
of a drought. These results highlight that the main differences
between the indicators appear in the extreme events.

Also, the bias between estimations indicates an acceptable
departure between estimations from normal conditions un-
til values near−0.5 (Fig. 10). Below this threshold the bias
increases exponentially, surpassing quickly a bias of 100 %
around SPI values of−1. For Niger and GHA regions there
is only a reasonable agreement between ERA-I and GPCC
estimations.

Generally in the Oum er-Rbia and Limpopo basins, both
extra-tropical regions, the agreement is high, possibly due to
the greater number of in situ observations and the importance
of large-scale synoptic weather systems in these areas.

For the basins located between the tropics a greater dis-
agreement is observed due to different factors. The main
common factor is the remarkable absence of observations to
calibrate and test the data sets. These deficiencies are also
more evident in complex mountainous areas such as the East-
ern Nile Basin. Furthermore, droughts in equatorial regions
are mainly driven by the absence of convective events during
the rainy season. These mesoscale dimension events are hard
to be reproduced by models and even difficult to monitor in
areas with scarce in situ rain gauges.

For drier regions, such as the Inner Niger Delta and the
GHA, the estimation of the distribution parameters needed
for the computation of the standardized indicators can be
biased (or lower bounded) by the large amount of zero or
near-null precipitation observations. As depicted in Wu et
al. (2007), the estimation of the gamma probability density
function and the limited sample size in dry areas reduce the
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Fig. 9.Correlation coefficient of fractional areas under drought between different data sets and thresholds. The horizontal axis represents the
SPI threshold below which areas are considered to be under drought.

Fig. 10. Relative bias between the estimation of fractional areas under drought for different data sets and thresholds. The horizontal axis
represents the SPI threshold below which areas are considered to be under drought.

confidence of the SPI values. In these cases, the SPI may
never attain the necessary threshold, hence failing to de-
tect some drought occurrences (e.g. SPI always above−1 in
Niger and GHA). The discrepancies between indicators for
lower thresholds over regions with limited rain gauge data
is characterized by the uncertainties of extreme values. This
suggests that the main sources of error are the uncertainties in
the precipitation data sets that are propagated in the estima-
tion of the distribution parameters of the drought indicators.

The above discussion underlines the fact that drought
monitoring and assessment is a difficult task, not only due to
the nature of the phenomenon, but also due to the limitations
inherent in the availability of long-term and high-quality data
sets for extended regions. The meteorological data sets as
well as the indicators and models used must be selected care-
fully and their limitations need to be taken into account. As a
consequence no definite conclusion can be drawn for the use
of a single data set or indicator. Depending on the region to
be studied, different combinations may have to be chosen.
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Table 4. Spearman correlation coefficient (r) and mean absolute difference (MAD) between the different SPI-3 estimations averaged over
each region for the common period 1998–2010.

TRMM GPCC GPCP ERA-I

r MAD r MAD r MAD r MAD

Oum er-Rbia TRMM – – 0.89 0.28 0.81 0.38 0.84 0.37
GPCC 0.89 0.28 – – 0.81 0.35 0.81 0.34
GPCP 0.81 0.38 0.81 0.35 – – 0.74 0.5
ERA-I 0.84 0.37 0.81 0.34 0.74 0.5 – –

Niger TRMM – – 0.85 0.26 0.79 0.38 0.71 0.5
GPCC 0.85 0.26 – – 0.91 0.29 0.72 0.46
GPCP 0.79 0.38 0.91 0.29 – – 0.67 0.65
ERA-I 0.71 0.5 0.72 0.46 0.67 0.65 – –

Blue Nile TRMM – – 0.54 0.54 0.53 0.55 0.6 0.5
GPCC 0.54 0.54 – – 0.92 0.27 0.57 0.41
GPCP 0.53 0.55 0.92 0.27 – – 0.67 0.46
ERA-I 0.6 0.5 0.57 0.41 0.67 0.46 – –

Limpopo TRMM – – 0.91 0.28 0.84 0.39 0.8 0.46
GPCC 0.91 0.28 – – 0.92 0.27 0.91 0.33
GPCP 0.84 0.39 0.92 0.27 – – 0.88 0.35
ERA-I 0.8 0.46 0.91 0.33 0.88 0.35 – –

GHA TRMM – – 0.58 0.4 0.65 0.44 0.61 0.44
GPCC 0.58 0.4 – – 0.86 0.29 0.58 0.42
GPCP 0.65 0.44 0.86 0.29 – – 0.68 0.45
ERA-I 0.61 0.44 0.58 0.42 0.68 0.45 – –

Our results further underline the value of maintaining an
operational monitoring network at country, continental or
even global level since indirect observations have their intrin-
sic uncertainties linked to the availability and reliability of
“ground truth” for their calibration. Without proper calibra-
tion, model (ERA-I) or algorithm (TRMM) inherent errors
can propagate resulting in large drought indicator uncertain-
ties, bringing no added value with respect to using standard
climatology.

The development of a combined indicator based on a prob-
abilistic approach (e.g. Dutra et al., 2014) could be useful as
a monitoring product at continental level. However, at local
scale the kind of indicator and the source of data must be
chosen carefully, taking into account their limitations.

4 Conclusions

This study evaluated the capabilities of different drought in-
dicators, including SPI, SPEI and SMA, in detecting the tim-
ing and extension of drought across Africa, using five dif-
ferent precipitation data sets (TRMM, ERA-Interim, GPCC,
GPCP and CMAP). The analysis was performed on a pan-
African scale and on a regional scale focused on four river
basins and on the Greater Horn of Africa.

A comparison of the annual cycle and monthly precipita-
tion time series shows a good agreement in the timing of the

peaks, including the Greater Horn of Africa where there are
two rainy seasons. The main differences are observed in the
ability to represent the magnitude of the wet seasons.

The monthly mean precipitation data sets shows good
agreement over all regions with the only exception of the
CMAP data set that shows a lower agreement. In the Oum
er-Rbia and Limpopo basins there is a good agreement be-
tween the data sets with mean absolute differences below
10 mm month−1. The bias in those two regions is below
20 %. The worst performance of ERA-I was observed in the
Blue Nile Basin, overestimating the monthly precipitation up
to 40 mm month−1 with a bias of up to 92 % with respect to
the other data sets. Also in the GHA region the bias is around
50 % with an overestimation of up to 17 mm month−1.

The comparative analysis between TRMM, ERA-I, GPCP
and GPCC data sets suggests that it is feasible to use TRMM
time series with high spatial resolution for reliable drought
monitoring over parts of Africa. It is possible to take ad-
vantage of this data set mainly at regional level due to its
high spatial resolution. However, higher discrepancies in SPI
estimations are shown in mountainous areas and areas with
a sparse in situ station density. On the other hand, drought
monitoring at continental level with ERA-I performs better
outside the areas influenced by the ITCZ.

The comparison between drought indicators suggests that
the main discrepancies are due to the uncertainties in the data
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sets (driven by a lack of ground information, uncertainties
in the estimation algorithms or the parameterization of the
convection) rather than to the estimation of the distribution
parameters. This is why the SPI estimations for the Oum
er-Rbia and Limpopo regions exhibit a better agreement be-
tween estimations. While for the other regions the discrepan-
cies between data sets are in many cases acceptable, greater
discrepancies are observed for the Inner Niger Delta when
comparing ERA-I estimations with the other data sets.

Regarding the areas that are under drought, all the indica-
tors agree with the time of onset and recovery but there are
sometimes disagreements with respect to the area affected,
and the level of disagreement tends to be dependent on the
threshold selected.

It is proposed to integrate different indicators and accumu-
lation periods in the form of a multivariate combined indica-
tor in order to take advantage of their different drought prop-
erties. The probabilistic nature of such an approach would be
very helpful for decision makers and for the combined anal-
ysis of multiple risks (Dutra et al., 2014).
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Appendix A

Description of evaluation metrics

The Spearman correlation represents the Pearson correlation
coefficient computed using the ranks of the data. Concep-
tually, the Pearson correlation coefficient is applied to the
ranks of the data rather than to the data values themselves.
The Spearman coefficient is a more robust and resistant alter-
native to the Pearson product-moment correlation coefficient
(Wilks, 2002). Computation of the Spearman rank correla-
tion can be described as

r = 1 −
6

∑
R2

i

n
(
n2 − 1

) , (A1)

whereRi is the difference in ranks between theith pair of
data values. In cases of ties, where a particular data value
appears more than once, all of these equal values are assigned
their average rank before computing theRi .

The MAD measures the average magnitude of the differ-
ences in a set of different estimations of a certain indicator. It
measures accuracy for continuous variables without consid-
ering the direction of the error. Also, this quantity is usually
used to measure how close are two data sets or indicators as
in

MAD =
1

n

n∑
i=1

|X1i − X2i | , (A2)

whereX1 andX are the values of precipitation or drought
indicator of data set 1 andn represents the number of pairs
The percent bias (PBIAS) measures the average tendency of
the values of a certain data set to be larger or smaller than a
reference one:

PBIAS = 100

n∑
i=1

|X1i− − X2i |

n∑
i=1

X1i

. (A3)

The optimal value of PBIAS is 0, with low-magnitude values
indicating accurate representation of drought indicators. Pos-
itive values indicate an overestimation bias, whereas negative
values indicate an underestimation bias. It must be taken into
account that this metric depends on which data set is consid-
ered to represent the observations.

The Index of Agreement (d) developed by Willmott (1981)
as a standardized measure of the degree of model prediction
error varies between 0 and 1. A value of 1 indicates a perfect
match, and 0 indicates no agreement at all (Willmott, 1981).
The index of agreement can detect additive and proportional
differences in the observed and simulated means and vari-
ances; however, it is overly sensitive to extreme values due
to the squared differences (Legates and McCabe Jr., 1999):

d = 1 −

∑
(X1 − X2)2∑

(|X2 − X1| + |X1 − X1|)
. (A4)
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