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Abstract. Uncertainties in the estimation of tree biomass species. This study showed that the combination of ground-
carbon storage across large areas pose challenges for thased inventory data, spaceborne lidar data, land cover clas-
study of forest carbon cycling at regional and global scalessification, and climatic and environmental variables was an
In this study, we attempted to estimate the present aboveefficient way to estimate the quantity, distribution and varia-
ground biomass (AGB) in Alberta, Canada, by taking advan-tion of forest biomass carbon stocks across large regions.
tage of a spatially explicit data set derived from a combi-
nation of forest inventory data from 1968 plots and space-

borne light detection and ranging (lidar) canopy height data.

Ten climatic variables, together with elevation, were usedl Introduction

for model development and assessment. Four approaches, in-

cluding spatial interpolation, non-spatial and spatial regresf-orest ecosystems, accounting for over 80% of terrestrial
sion models, and decision-tree-based modeling with randonyegetation biomass, play a major role in balancing the re-
forests algorithm (a machine-learning technique), were comgional and global carbon (C) budget and analyzing the fate
pared to find the “best” estimates. We found that the randonff carbon dioxide produced by the burning of fossil fuels
forests approach provided the best accuracy for biomass egnd forest harvesting (Dixon et al., 1994; Brown et al., 1997;
timates. Non-spatial and spatial regression models gave estiioughton et al., 2009). The accurate estimation of broad-
mates similar to random forests, while spatial interpolationScale biomass C stocks has been a focus of regional and
greatly overestimated the biomass storage. Using randorglobal C cycle studies and has attracted the interest of re-
forests, the total AGB stock in Alberta forests was estimatedsearchers, forest managers and policymakers over the past
to be 2.26x 10° Mg (megagram), with an average AGB den- half century. A proper assessment of actual and potential
sity of 56.30+ 35.94 Mg ha'l. At the species level, three ma- roles of forest ecosystems in the global C cycle requires accu-
jor tree species, lodgepole pine, trembling aspen and whitéate information about carbon storage and change over space
spruce, stocked about 1.3910° Mg biomass, accounting and time (Botkin and Simpson, 1990). However, such ac-
for nearly 62% of total estimated AGB. Spatial distribu- curate information has been lacking at regional and global
tion of biomass varied with natural regions, land cover types Scales.

and species. Furthermore, the relative importance of predic- A number of approaches have been developed to esti-

tor variables on determining biomass distribution varied with Mmate the spatial distribution of biomass C stocks, ranging
from allometric regression equations or biomass expansion
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factors (e.g., Brown, 1997; Cairns et al., 1997; Schroeder eplatforms. While airborne or ground-based lidar methods
al., 1997), local and regional scale forest inventories (Mon-have been intensely used for biomass-related measurements
serud et al., 2006; Blackard et al., 2008), simulation mod-at the stand level or individual tree level, these methods are
eling (Tans et al., 1990; Ciais et al., 1995), to methods us-only feasible at local or small-regional scales, rarely at larger
ing only remote sensing or combined with inventory datascales (Popescu etal., 2011). The main reason for this restric-
(Hall et al., 2011; Myneni et al., 2001; Wulder et al., 2008; tion is because the costs of airborne or ground-based lidar on
Yemshanov et al., 2012). However, the estimates obtained bgata acquisition and analysis are still high to large extents
these different approaches are often inconsistent. For exam{Popescu et al., 2011; Saatchi et al., 2011). For biomass and
ple, Houghton et al. (2001) compared several biomass estiearbon estimation at the regional scale, spaceborne lidar with
mates for the Brazilian Amazon forests and found very low relatively low costs has advantages.
agreement across the estimates, with the values ranging from The boreal forest, containing large amounts of carbon in
39 to 93 gigatons (Gt) of carbon. Blackard et al. (2008) com-its biomass and soils, has been recognized as an important
pared several estimates of C pools in living forest biomass ofglobal contributor to the net balance of carbon exchange be-
the continental U.S. forests and found that satellite-imagetween the atmosphere and the biosphere (Kurz and Apps,
based estimation was two times higher than estimates base®99; Fyles et al., 2002; Pan et al., 2011). According to the
on inventory data. Intergovernmental Panel on Climate Change (IPCC, 2007),

Forest ground-based inventory laid out in a statistically climate warming in northern latitudes is occurring almost
sound design is considered to be the optimum approach téwice as rapidly as the global average. Climate warming in
accurately and precisely measuring forest biomass C stockihe boreal may be leading to increased frequency of wildfires
(Schroeder et al.,, 1997; Ketterings et al., 2001; Brown,(Harden et al., 2000), insect outbreaks (e.g., mountain pine
2002). However, sampling a sufficient number of trees tobeetle, Kurz et al., 2008) and regional drought events (Allen
represent the size and species distribution in a forest is exet al., 2010), thus influencing carbon stocks and dynamics
tremely time-consuming and costly. The task becomes mucl{Kurz et al., 2008; Monserud et al., 2006; Pan et al., 2011).
harder for accurate estimation of biomass C stocks over larg&ince forest biomass is a key biophysical parameter in eval-
areas. For carbon estimation at the regional scale, most raiating and modeling terrestrial carbon stocks and dynamics
searchers tend to measure biomass on a few small, generalifioughton et al., 2009), an accurate estimation of regional
non-randomly selected plots, and use various prediction apbiomass is important for understanding boreal forests and
proaches (e.g., spatial interpolation techniques, and regresheir responses to climate warming. However, most of the
sion models), to estimate regional biomass C stocks baseprevious studies for biomass estimation in the boreal were
on observed values of these small sampling plots. Howevelimited to the regions with high productivity and little dis-
inventories based on ground samplings are not free of probturbance (Botkin and Simpson, 1990). There is a lack of in-
lems. The first problem is related to the scarcity of ground-formation about biomass in regions under other successional
based inventory plots (Botkin and Simpson, 1990; Wulder etstages and different disturbance extents. In addition, for re-
al., 2008; Pan et al., 2011). The lack of sufficient and high-mote areas in northern boreal regions, few ground inventory
quality sample plots has been identified as a major barrier talata are available.
the development of robust biomass estimates and to the sub- In this study, we estimated aboveground biomass stocks in
sequent validation of these estimates (Wulder et al., 2008)the forest regions of Alberta, Canada, using recent forest in-
For example, in a recent report about global carbon storventory data from different forest monitoring networks and
age, Pan et al. (2011) stated that estimates of C stocks amemote sensing data. Our inventory data had a large sample
only limited to the 230 million hectares (Mha) of managed size, covered a broad range, and included different distur-
forest in Canada, leaving about 118 Mha of northern forestdance types, stand age groups, and successional stages. Our
unaccounted for because of data paucity. The second prolpbjectives were to (1) produce a spatially explicit data set of
lem is related to the fact that forest inventories tend to beAlberta forest aboveground biomass stocks; (2) quantify the
conducted in forests that are considered to have commerciaklative contributions of various predictor layers including
value, in other words, closed forests, with little regard to theclimate variables, elevation and canopy height to the biomass
open, drier forests, woodlands, or human-disturbed foreststocks; and (3) assess the variability in estimation of biomass
(Botkin and Simpson, 1990; Brown, 1997). This biased sam-stocks using different techniques.
pling design usually tends to overestimate biomass C stocks
over large areas.

Light detection and ranging (lidar) is perhaps the 2 Methods
most promising remote sensing technology for estimating
biomass, because it directly measures vertical forest struc2.1 Study area
ture, such as canopy height and crown dimensions (Simard
et al., 2011). Generally, lidar remote sensing has three platThe forests of the Canadian province of Alberta (49160
forms, including spaceborne, airborne, and ground-based10-120W) cover an area of about 45 million hectare
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(Mha), accounting for about 68 % of the total area of the
province. They encompass four natural regions: Boreal for-
est, Foothills, Rocky Mountains and Canadian Shield (Al-
berta Natural Regions Committee, 2006). These regions have
short summers and long and cold winters. Mean annual
temperature ranges from —26 in the Canadian Shield to
1.7°C in the Foothills. Mean warmest month temperature
ranges from 11.0C in the Rocky Mountains to 169 in

the Canadian Shield, and mean coldest month temperature
ranges from —25.9C in the Canadian Shield to —1*.C

in the Rocky Mountains. Precipitation follows a summer-
high continental pattern. Mean annual precipitation ranges
from 380 mm in the Canadian Shield to about 800 mm in the

Rocky Mountains. Elevations range from about 150 m near (3
the Alberta—Northwest Territories border to over 3600 m in
the Rocky Mountains. There is also large variation in climatic ‘
variables within the subregions of each natural region.
Variation in climate and topography in this area has pro- o ABMI
duced a wide range of vegetation types across the province. ® PSPs °
In the Boreal region, deciduous aspeRojulus tremu-
loideg, balsam poplar Ropulus balsamifefa coniferous B Boreal 2
white spruce Picea glaucd, black spruceRicea marian Canadian Shield
and jack pine Pinus banksianpforests are the dominant O Foothills
species. In the Foothills, mixed forests of aspen, lodgepole B Grassland
- . . - O Parkland
pine (Pinus contorty, white spruce and balsam poplar with O Rocky Mountain
variable understories are dominant on average sites at lower

elevations, while at higher elevations lodgepole pine forests S ) )

with less diverse understories are typical. In the RockyF'gure 1. Spatial distribution of 1968 inventory plots in Alberta
Mountains. closed coniferous forests are dominant at |owegorests, Canada. Note that in western Alberta, some points represent
elevations, and open coniferous stands and herbaceous alpilsisveral plots.

meadows are the major vegetation types at higher elevations.

In the Canadian Shield, open jack pine, aspen and birchy s were excluded from normal harvesting and other hu-
sta_nds occur whe_re the soil is §uff|C|entIy de.ep for retaining .4 disturbances. Plot sizes ranged from 48q@04 ha)

moisture and nutrients to sustain these species. to 8092n? (0.81ha) (mean: 0.12 ha). Within each PSP of
ESRD, all living trees and standing dead trees (snags) with
a tree height- 1.3 m were tagged and recorded. Within each

) ) . PSP of Weyerhaeuser Canada, all living trees and snags with
We combined three different sources of ground-based inpgy (diameter at breast height} 5cm were measured.

ventory data for our current study, including 342 permanenty;ithin each PSP of West Fraser, all living trees and snags

sample plots (PSPs) from Alberta Environment and Sustain,ith pBH > 7 cm were measured. These 1478 PSPs con-

able Resource Development (ESRD), 635 PSPs from WeYg,ineq 206213 living trees and 17 688 snags over the study
erhaeuser Canada, 501 PSPs from West Fraser Mill Ltd-period.

and 490 plots from Alberta Biodiversity Monitoring Institute

(ABMI). In total, 1968 plots measured in the period 2000-2.2.2  ABMI sampling plots

2012 were selected to estimate current biomass carbon stock

in the Alberta forest region (Fig. 1). For the selected plots ABMI conducts a regional-scale, long-term monitoring pro-
with more than one census, only the latest inventory data wagram to track biodiversity status and trends in Albehtizp(//

2.2 Data sources

selected for the current analysis. www.ABMI.ca). ABMI collects information on thousands of
terrestrial species and habitat structures at over one thousand
2.2.1 Permanent sample plots (PSPs) sites spaced systematically on a 20km grid evenly across

the entire province. Terrestrial survey sites are established
The Alberta PSP network has maintained more than 200®n each grid, with a random distance and directional offset
PSPs established and re-censused by the government anflup to 5.5 km from this grid. Different from the PSP net-
forest companies starting from the 1950s. Most PSPs wereavork, ABMI sampling plots were more randomly distributed
selected in forest regions with high productivity, and theseand were thus more representative of the full range of forest
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stand ages and disturbance regimes at the landscape level9. DD5: degree days above’ g,
The area of each ABMI plot is one hectare (20000 m). On growing degree days

each site, all trees and snags witt25 cm DBH in four se-

lected 25x 25 m plots, all trees and snags wigh cm DBH ~ 10. DI: dryness index (DD5/MAP).
in four 10x 10 m subplots, and all trees and snags in four

5x 5m further subplots were measured regardless of size2-2-5 Alberta land cover map

In total, 490 sampling plots with measurements for 36 059

living trees and 7046 snags were used in this study. The wall-to-wall land cover map of Alberta (AB-

MIw2wLCV2000v2.1) at 30 m spatial resolution was used
2.2.3 Canopy height data from spaceborne lidar for identifying forest lands in the study area (Supplement B,
ABMI 2012). This map is a seamless GIS vector layer with
Spaceborne lidar top canopy height data for Alberta forestnearly a million polygons describing the spatial distribution
regions (Supplement A) were obtained from a global wall-to- of land cover across Alberta, circa 2000, at the 1:125000
wall canopy height map at 1 km spatial resolution (Simard etscale. It consists of a mosaic of 977556 non-overlapping
al., 2011). This map was produced by using the data acquireg@olygons of various sizes, from 0.5ha to thousands of ha.
by the Geoscience Laser Altimeter System (GLAS), onboardEach polygon represents a contiguous area relatively homo-
the Ice, Cloud, and land Elevation Satellite (ICESat), in com-geneous in terms of land cover. The map is derived by apply-
bination with seven global ancillary variables, which corre- ing a semantic and spatial generalization algorithm to com-
spond to climate and vegetation characteristics. These variine two pre-existing land-cover products: the Canadian For-
ables included annual mean precipitation, precipitation seaest Service’s Earth Observation for Sustainable Development
sonality, annual mean temperature, temperature seasonalitfEOSD) map of the forested region, and Agriculture Agri-

elevation, tree cover, and protection status. Food Canada’s map of the agricultural zone. This map con-
sists of 11 land cover classes, including waters, snow/ice,
2.2.4 Climatic variables rock/rubble, exposed land, developed, shrubland, grassland,

_ _ agriculture, coniferous forest, broadleaf forest, and mixed

gram Q.IMATE WNA 4.70 (Wang et al., 2012). This program  he 759 with 11 land cover classes (ABMI Remote Sensing
uses baseline climate data derived from monthly precipita-Group, 2012).

tion and temperature grids (Daly et al., 2008) based on in-

terpolated climate data from weather stations for the perio2.2.6 Alberta natural region and subregion

1961-1990. The program includes a lapse-rate-based down- classification

sampling to 1-km resolution and estimation of biologically

relevant climatic variables. Based on input values for longi- To compare how tree biomass carbon stock varies in differ-
tude and latitude of each inventory plot or each grid, we lo-ent forest regions, we used Alberta natural regions (NRs)
calized 10 climatic variables using the average values acrosand natural subregions (NSRs) classification system (Al-
the last 10 years (2000—2009) to describe local climatic conberta Natural Regions Committee, 2006) as the basis for our

ditions. The 10 climatic variables were as follows: comparisons. In Alberta, this system has informed provin-
cial natural resource management activities since the 1970s.

1. MAT: mean annual temperatured) The current version of this system consists of 6 NRs and 21
2. MWMT: mean warmest month temperatuf€j NSRs. NRs,_ the largest mfapped ecologicgl units in this sys-
tem, are defined geographically on the basis of landscape pat-

3. MCMT: mean coldest month temperatuf€j terns, notably vegetation, soils and physiographic features.
NSRs, subdivisions of a NR, are generally characterized

4. MAP: mean annual by vegetation, climate, elevation, and latitudinal or physio-

precipitation (mm) graphic differences within a given NR.

5. MSP: mean summer (May to September) 2.3 Data analysis
precipitation (mm) '

6. AHM: annual heat: moisture index 2.3.1 Estimation of aboveground biomass (AGB)

(MAT -+ 10)/(MAP/1000)) AGB was estimated for each living individual tree in
7. SHM: summer heat: moisture index all ground inventory plots using DBH- and height-based
((MWMT)/(MSP/1000)) biomass allometric equations and tree-species-specific pa-
rameters provided by Lambert et al. (2005) and Ung et
8. DDO: degree days below, al. (2008). These equations were derived from thousands of
chilling degree days trees sampled across Canada and allow the calculation of tree
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biomass (foliage, branches, stem bark, and stem wood) basedtal biomass (including debris) estimates. The biomass car-
on DBH measurements (for details see Lambert et al., 200%on pool was calculated by multiplying a carbon biomass
and Ung et al., 2008). The form of the allometric equation isconversion factor of 0.5 to the total biomass (Schlesinger

as follows: 1997). Because of the strong correlation between AGB and
total biomass, we restricted our reporting to AGB in our main
Y = p1DP2HP3, () text. Total biomass estimates are reported in the supporting

document (Supplement C and D).

whereY is the biomass component of interest, diamef&r (
is measured on each tree, height)(is measured on a sub- 2.3.3 AGB-environment correlations
sample tree in each plot, arfd, B2 and 83 are parameters.
For trees with missing height measure, the heights are estiVe used simple Pearson correlations to explore covariation
mated from local-species-specific height-diameter equationdMong AGB and 11 environmental variables. Because the
developed by Huang et al. (2009). presence of spatial autocorrelation in model residuals vio-

Since the three sources of PSP data had different minimunlates the assumption of data independence (Bini et al., 2009),
DBH cutoffs, we used the PSP data from ESRD to calcu-Pearson correlations among AGB and biotic and abiotic vari-
late average percentages of AGB at different DBH cutoffs.ables were calculated after accounting for spatial autocor-
The percentages were used to calculate total AGB for Wey/elation using the R packageopTTEST 1.4 (José Manuel
erhaeuser PSPs (0.4 % for trees with DBH <5 cm) and wesBlanco Moreno, Universitat de Barcelona, Spain, personal
Fraser PSPs (0.9 % for trees with DBH <7 cm). Total AGB communication, 2012).
of each PSP was summed up from all trees in each plot. To- _ .
tal aboveground biomass of each ABMI site was summed up2‘3'4 Scaling up to the whole region
from three parts: the biomass per hectare of tre@scm
DBH in the 25x 25 m plots, the biomass per hectare of trees
7-25cm DBH in 10« 10 m subplots, and the biomass per
hectare of trees <7 cm DBH inX65 m subplots.

To get an accurate estimate of AGB distribution, four ap-
proaches were selected for our analysis, including spatial
interpolation of direct field measurements, non-spatial re-
gression model, spatial regression model, and decision-tree-
based modeling with random forests algorithm (RF).

Spatial interpolation methodsthese methods have been

Since total biomass stock has been a major concern of scierﬂsed for mapping fore_st_ variables (e.g. site mdex_, standing
tists, police makers and the public, it is important to report Volume, AGB, productivity, etc.) based on forest inventory
the estimation of total biomass stock. However, the detailed?@t@ Where these variables seemingly have spatial autocor-
data for belowground biomass and debris biomass are spardglation (e.g., Dungan, 1998; Freeman and Moisen, 2007;
or not measured in our study region. Here, we used severayiana et al., 2012). In this stuciy, we compared several dif-
published equations on the relationships between AGB anderent approaches to find the *best” method for spatial in-

belowground biomass and debris biomass to estimate below€rPolation of tree biomass. These approaches included or-

ground and debris biomass. dinary kriging, standardized ordinary cokriging (with eleva-
We estimated belowground tree root biomass using pre_tion as _the coyariate), inver;e digtance weighting, thin—plate
viously developed regression equations developed for boreaim20thing splines, and partial thin-plate smoothing splines.

2.3.2 Estimation of total biomass stock

forests by Li et al. (2003): A cross-validation analysis was used to evaluate effective pa-
rameters for these interpolation methods. The results with
BGBs = 0.222- AGBg ) the highes_'rR2 in cros_s-_validation analyse_s were fina_lly se-
0615 lected. Kriging, cokriging and inverse distance weighting
BGBh = 1.576- AGB,”™, ©) were calculated using the geostatistics software-Gitp:

i , . Ilwww.gammadesign.conand thin-plate smoothing splines
where BGB is the belowground biomass (coarse and fingyere calculated using the R package “fields” (Fields Devel-

roots), and AGB s the aboveground biomass; subscripts g, ment Team 2006). After producing the biomass map for
and h are softwood and hardwood species groups, respeiperta, we used the Alberta Natural Region GIS map to

tively. o _ crop grassland and parkland regions, and the Alberta land
To estimate debris biomass, we calculated the ratios of de(‘:over map to crop the areas with the following land cover

bris biomass (fine and coarse woody debris) to aboveground|asses: waters, snowlice, rock/rubble, exposed land, shrub-
biomass for 90 study sites across Canada’s forest region%nd’ grassland, and agriculture.
(Shaw et al., 2005). The average ratio of debris biomass to
aboveground biomass was 5 %, which was used to estimate
the debris biomass in the plots.
Estimates of belowground biomass, debris biomass and
standing dead tree biomass were added to AGB to produce
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Non-spatial and spatial regression modelfwo steps
were used to estimate biomass stocks using canopy height L
data from spaceborne lidar. First, we used the data from th _* _ ‘
1968 forest inventory plots to establish the relationships be‘-faleE N Z IPRE —OBS|
tween total tree biomass and ground-measured top canopy
height, climatic variables, and elevation. Both non-spatial 1Y )
multiple regression models (ordinary least squares, OLS) antﬁeMSE: N Z(PRE’ —0BS)
spatial linear models (here “spatial simultaneous autoregres- i=1
sive error models (SARs)”, Kissling and Carl, 2008) were NRMSE = 100 x RMSE
used. The SARs models allow the inclusion of the resid- OBSmax— OBSnin’
ual spatial autocorrelation of the data. Among these predic-
tors, some of them were highly correlated. To reduce the
risk of multi-collinearity, we used VIF (Variance Inflation where PREand OBS denote théth predicted and observed
Factors) for variable selection. The variables with VIF > 10, values, respectively. NRMSE is the RMSE divided by the
which represent high collinearity, were removed. The “best”range of observed values of a variable being predicted. The
model is selected based on lower AIC (Akaike information value is often expressed as a percentage, where lower values
criterion) and higherR2. Second, we applied this selected indicate less residual variance.
model to estimate tree biomass density (Mghausing li- We randomly divided the 1968 ground inventory plots into
dar canopy height and other environmental variables in eacifaining data (60 %) and testing data (40 %). These four ap-
1x 1km grid in Alberta forest regions. All analyses were proaches of AGB estimation were fitted with training data
done using R language (R Core Team, 2013), and SARs werand evaluated with testing data. MAE, RMSE and NRMSE
calculated using the R package “spdep” (version 0.5-33). were calculated to assess model accuracy. This procedure
Decision-tree-based modeling with random forests algo-was repeated 100 times, and the average values of these three
rithm (RF) This method is an ensemble machine learningmodel accuracy indicators were reported.
technigue, where many decision trees are constructed based
on random sub-sampling of the given data set (Breiman
2001). As one of the tree-based models, RF performs re—3 Results
cursivg partition_ing of Qata sets, .and makes no assumption§.1 Biomass variations among forest inventory plots
regarding the distribution of the input data. RF can capture
non-linear relationships between the response variable (trejrect field measurements yielded an estimate of
biomass in our study) and predictor variables (canopy heighty 28 24+ 76.64 Mg ha lfor the density of AGB for Alberta
climate, and other environmental variables in our study), anckprests, with a range from nearly zero to 450.64 Mgha
can deal with correlated variables while producing a lowin these inventory plots. For the PSP inventory plots only,
generalization error (Breiman, 2001). In addition, RF canthe average biomass density estimate was 148.08 My ha
be used to rank the importance of variables in a regressiokyhich is more than double the density of 67.09 Mgh#or
or classification problem in a natural way. In our study, this the ABMI inventory plots ¢ < 0.0001, two-sample test).
method was used to detect the relative importance of climate, For forest inventory plots at the species level, the average
topography and other environmental variables, and predichGB density estimates for lodgepole pine, trembling aspen,
the distributions of forest biomass. All analyses were imple-angd white spruce were 75.79, 73.21, and 38.84 Mg} hee-
mented in the R package “randomForest” (Liaw and Wiener,spectively.
2002). Based on our inventory data, we detected a large varia-
tion of AGB along forest stand ages (Fig. 2a, b). We clas-
sified these plots into four forest age groups (young, im-
Three well-known error statistics were calculated to mea_mature, mature, and old-growth forests). Old-growth forests
sure the difference between the observed and predicted fore%"flge >120 years) and mature forests (80-120years) had the
biomass, including mean absolute error (MAE), root mean- |ghe§t average tree AGB, 148.76 a.mdll4.8.26 Mg hae-
square error (RMSE), and the normalized root-mean-squar%pecuvely' The average AGB density in Immature forests
error (NRMSE). They are defined as 50-80 years) was 92.22 Mghh and the average in young
forests (<50 years) was 48.28 MgHa

i=1

2.3.5 Model accuracy assessment
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Figure 2. Total tree aboveground biomass (AGB) versus canopy height and stand age of 1968 inventory plots.

Table 1. Pearson correlations of log-transformed tree aboveground biomass (AGB) with climatic variables, elevation, and observed canopy
height, after accounting for spatial autocorrelation.

IN(AGB) Elevation Canopy height MAT MWMT MCMT MAP MSP  AHM SHM DDO DD5

Elevation 0.296

Canopy height 0.702 0.045

MAT 0.327 0.32& 0.29F

MWMT -0.280° -0.94% -0.043 -0.259

MCMT 0.378P 0.78% 0.21%  0.82% -0.746

MAP 0.272° 0.848 0.092 0458 -0.826 0.78F

MSP 0.264 0.74% 0.14® 0.60F -0.673 0.82F 0.83F

AHM -0.11#2  -0.762 0.070  0.078 0780 -0.41F -0.83% -0.604

SHM -0.31%  -0.86F -0.145 -0.612 0.826 -0.89% -0.87Ff -0.94¢ 0.66F

DDO -0.378  -0.68% 0249 -090% 0.63F -098F -0.716 -0.79% 0.28% 0.85¢

DD5 -0.17P  -0.89% 0.072 0.054 093 -0508 -0.71Ff -054% 0854 0.67F 0.366
DI -0.279  -0.94% -0.060 -0.35% 0.95¢ -0.794 -0.924 -0.81F 0.85¢ 091 0.69F 0.88F

8<0.05;°<0.01;°<0.001. MAT: mean annual temperatuf€); MWMT: mean warmest month temperatuf€}; MCMT: mean coldest month temperatuf€j; MAP: mean
annual precipitation (mm); MSP: mean summer precipitation (mm); AHM: annual heat: moisture index; SHM: summer heat: moisture index; DDO: degree dags b&6w 0
degree days aboveé 6; DI: dryness index.

3.2 AGB-environment correlations 3.3 AGB estimates from four different approaches

We compared the results of four approaches for AGB es-
The results of Pearson correlations after accounting for spatimation (Table 2, Fig. 3). The RF approach provided
tial autocorrelation showed that total AGB of each groundthe best accuracy for AGB estimatiolR{= 0.62, MAE
plot was strongly correlated with observed canopy height= 35.97 Mghal, RMSE = 47.03Mgha!, NRMSE =
(R2=0.702, P < 0.001, Table 1, Fig. 2c). Elevation also 62.40 %) (Table 2). Non-spatial and spatial regression mod-
showed significant correlations with total AGB. Among the els performed nearly as well as the RF approach, while
10 climatic variables, most variables were highly correlatedspatial interpolation had the poorest estimai? £ 0.30,
with others. MCMT (mean coldest month temperature) andMAE = 50.22 Mg ha', RMSE = 63.90 Mg ha', NRMSE
DDO (degree days below°®) had relatively stronger corre- = 84.20%). Total tree AGB estimation from spatial interpo-
lations with total AGB. lation was 4.68< 10° Mg, which was much larger than the
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Spatial interpolation Spatial regression model Random forests

Figure 3. The estimates of total AGB density (Mg*n%n) using spatial interpolation, spatial multiple regression model, and decision-tree-
based modeling with random forests algorithm (Projection: UTM zone = 11; spatial resolution: 1 km).

Table 2. Validation statistics for four different approaches for total tree AGB estimation.

Methods for biomass estimation R? MAE (Mgha™1) RMSE (Mghal) NRMSE (%)
Spatial interpolation 0.30 50.22 63.90 84.20
Non-spatial regression model 0.59 37.30 49.70 63.60
Spatial regression model 0.60 37.30 49.70 63.70
Decision-tree modeling with random forests algorithm  0.62 35.97 47.03 62.40

Notes: MAE: mean absolute error; RMSE: root mean square error; NRMSE: the normalized root mean square error.

35

Fig. 3). The average AGB density in eachx1 km grid
was 56.30t 35.94 Mg hal. Around 23 % of total forest ar-
eas had AGB densities between 40-60 Mghand around
14 % of total forest areas had AGB densities larger than
100 Mg ha'® (Fig. 4).

Total tree AGB in the boreal region (RF approach)
was about 1.3& 10° Mg, accounting for 57.67 % of total
tree AGB in Alberta forests among the four main natu-
ral regions of Alberta (Table 3). The estimated AGB was
about 0.5 10° Mg in the Foothills, 0.3% 10° Mg in the
Rocky Mountain, and 0.02 10° Mg in the Canadian Shield.

020 oo 05 G080 (01001 (100150 (150248 Among the 14 n_atural subregions (Table 3), Central Mixed-

' " AGB &ensity (Mg per hectare) : wood had the highest tgtal tree AQB (0.86.0° Mg), fol-

lowed by Lower Foothills, Subalpine and Lower Boreal

Figure 4. Histogram of forest AGB density based on the estimate Highlands.

of decision-tree-based modeling. The average AGB density of inventory plots across all
regions was 128.24 Mghd (Table 3). The Foothills and
Rocky Mountain natural regions had higher AGB densities

estimates from the spatial regression model (218° Mg)  of 143.35 and 141.75Mgha, respectively, than the oth-

and RF (2.26¢ 10° Mg) (Fig. 3). ers. Average AGB densities showed even greater variations
Using the RF approach, the estimated total AGB for all

forest regions across Alberta was 2:260° Mg (Table 3,
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Table 3.Total tree AGB estimated by decision-tree-based modeling with random forests algorithm in different natural regions and subregions

in Alberta forests.

\ Summary based on 1 km pixels \ Summary based on forest inventory plots
Forest regions Area Total Percentage Mean Number Mean Range
(Mha) | AGB (%) AGB ofplots (Mghal) (Mgha?l)
(10° Mg) density+ SD
(Mg ha~1)
The whole study area 40.3 \ 2.26 100 56.36-35.94 \ 1968 128.24 0.01-450.64
Natural Boreal 30.2 1.30 57.67 43.10-22.67 571 93.62 0.01-450.64
regions Foothills 6.1 0.57 25.06 93.9431.19 1137 143.35 0.05-420.73
Rocky Mountain 3.1 0.37 16.27 120.45% 33.59 247 141.75 3.00-327.90
Canadian Shield 0.9 0.02 1.01 27.68-8.40 13 39.10 0.02-90.18
Natural Central Mixedwood 145 0.66 29.11 45.3%23.20 349 98.90 0.01-450.64
subregions Lower Foothills 4.1 0.35 15.52 87.3%27.89 677 147.60 0.32-420.73
Subalpine 2.1 0.26 11.71 123.73:31.88 216 143.07 3.00-327.90
Lower Boreal Highlands 5.2 0.24 10.80 47.4%20.73 80 101.20 0.39-377.66
Dry Mixedwood 4.3 0.22 9.80 51.6% 23.45 82 94.29 4.16-262.18
Upper Foothills 2 0.22 9.54 106.86-33.28 460 137.09 0.05-337.67
Northern Mixedwood 2.7 0.08 3.41 28.349.59 20 67.92 0.08-206.41
Montane 0.7 0.08 3.59 118.73-34.39 30 132.43 38.33-241.58
Upper Boreal Highlands 1.1 0.05 2.01 40.64-22.77 9 36.59 1.41-117.98
Athabasca Plain 1.1 0.03 1.23 25.9412.00 25 28.66 2.16-67.23
Boreal Subarctic 1.1 0.02 0.91 18.8@:-5.62 4 13.18 0.07-41.23
Alpine 0.3 0.02 0.98 92.24-32.72 1 - -
Kazan Uplands 0.8 0.02 1.01 27.688.40 13 39.10 0.02-90.18
Peace—Athabasca Delta 0.3 0.01 0.40 31.64-13.38 2 83.64 74.96-92.32

among subregions, from 13.18 MgHain Boreal Subarctic  of lodgepole pine, but not for other two species. Each of the
to 147.60 Mg ha? in Lower Foothills. 10 climatic variables had relatively weak effects on AGB dis-
Among three major land cover types in Alberta forests tribution at the stand level, although MSP had a relatively
(Supplement B), coniferous forests stored 1x140° Mg stronger influence than other climatic variables. The three
AGB, accounting for 50% of total tree AGB in Alberta major tree species showed differing relationships with cli-
forests, while broadleaf forests and mixed forests storedmatic variables. For lodgepole pine, MWMT, MCMT, DDO

0.62x 10° and 0.17x 10° Mg AGB, respectively. and DD5 had stronger impacts on AGB than the other cli-
matic variables. For trembling aspen, DI and DDO were a
3.4 AGB estimates of major tree species little more important than the others. For white spruce, DDO

and MCMT had slightly stronger impacts on AGB than oth-
Three major tree species, lodgepole pine, trembling asperrs.
and white spruce, stocked about 1:320° Mg AGB in total,
accounting for 62 % of total AGB in Alberta forests (Fig. 5,
Table 4). Total AGB of lodgepole pine was 0.830° 4 Discussion
Mg, and 85% of which is distributed in the Foothills and
Rocky Mountain regions. For trembling aspen, total AGB We reported on a large-scale, spatially explicit data set for
was 0.50x 10° Mg, of which 78 % is distributed in the Bo- presenting biomass storage in Alberta’s forest regions, de-

real region. For white spruce, total AGB was 05330° Mg, rived from a combination of forest inventory data from 1968

of which 58 % is distributed in the Boreal region. plots, spaceborne lidar data, land cover classification, climate
and other environmental variables. Using decision-tree-based

3.5 Variable importance on AGB distribution approach with random forests algorithm, total AGB stock in

the study region was estimated to be 2260° Mg, which
Using the RF, we also assessed the importance of various prés very close to Bonnor’'s (1985) estimate (2:310° Mg)
dictor variables on AGB distribution (Fig. 6). Canopy height, based on volume inventory data, but is smaller than Penner
which was directly related to AGB, had a major influence et al.’s (1997) estimate (3.2410° Mg) (Table 5). The aver-
on AGB distribution at both stand and species levels. Eleva-age AGB density was 56.30 Mg h4, which is close to Bon-
tion was also significantly correlated with AGB distribution nor’s (1985) estimate (57 Mg hd). This study showed that
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Lodgepole Pine Trembling Aspen White Spruce
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Figure 5. Total tree AGB density (Mg hat) of three major tree species based on decision-tree-based modeling (Projection: UTM zone =
11; spatial resolution: 1 km).

Table 4. Total tree biomass of three major tree species estimated by decision-tree-based approach.

Species Natural regions Summary based on Summary based on forest
1km pixels inventory plots
Total Percentage Mean Range
(10° Mg) (%)  (Mgha') (Mgha?)
Lodgepole pine  Boreal 0.08 14.64 39.77 0.10-175.50
Foothills 0.25 44.64 74.61 0.05-294.09
Rocky Mountain 0.22 40.67 88.40 0.25-321.65
Canadian Shield 0.00 0.05 - -
Total 0.55 100.00 75.79 0.05-321.65
Trembling aspen  Boreal 0.39 77.92 70.64 0.00-358.05
Foothills 0.07 13.66 76.91 0.01-383.71
Rocky Mountain 0.03 6.55 47.72 0.31-169.62
Canadian Shield 0.01 1.88 26.37 0.02-88.98
Total 0.50 100.00 73.21 0.00-383.71
White spruce Boreal 0.20 57.79 40.09 0.01-306.94
Foothills 0.07 21.24 35.52 0.00-275.15
Rocky Mountain 0.07 19.00 52.91 0.00-264.76
Canadian Shield 0.01 1.97 31.79 10.13-85.55
Total 0.35 100.00 38.84 0.00-306.94

the combination of multisource data could be a cost-effectiveranged from 81.8% 10° Mg (Cao and Woodward, 1998) to
way to estimate the amounts, distributions and variations 0f129.41x 10° Mg (Dixon et al., 1994). For Canadian forests,
biomass carbon stocks across large regions with reasonabtetal biomass estimates varied from 15:630° Mg (My-

accuracy. neni et al., 2001) to 41.48 10° Mg (Penner et al., 1997).
In Alberta forest regions, our estimate (2:280°Mg) us-
4.1 Comparison with previous biomass estimations ing a decision-tree approach was very similar to the estimate

of Bonnor (1985), but smaller than the estimate of Penner
We summarized previous studies on boreal forest AGBet al. (1997) (Table 5). Compared with other studies, our es-
estimation at different spatial extents (Table 5). At the timate of mean AGB density in Alberta was similar to the
global scale, estimates of total AGB for boreal forestsestimates reported by several studies at global and regional
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Figure 6. Relative importance of predictor variables for AGB estimation by decision-tree-based modeling with random forest algorithm.
Variable importance is measured in mean decrease in accuracy, which is the decrease in accuracy of a classification after the variable ha
been randomly permuted. A higher mean decrease in accuracy means the variable contributes more to the accuracy of the classification.

Table 5. AGB and total biomass estimations in previous studies.

Reference Study area Area  Methodology or data source Total Mean Total tree Mean
(Mha) tree AGB AGB biomass biomass
(x10°Mg)  density (x10°Mg)  density
(Mgha1) (Mghat)
Dixon et al. (1994) Boreal forests (Global) 1372 Inventory data (1987-1990) ®9.41 9412 176 128
Cao and Woodward Boreal forests (Global) 1210 Predicted from a global carbon 81.8% 67.6% 111.32 92
(1998) model (1990s)
Jarvis et al. (2001) Boreal forests (Global) 1381 Inventory data (1990s) 84.55 61 414.99 832
Myneni et al. (2001) Northern forests (Global) 1419.9 Remote sensing (NDVI, 89.29 63.10 121.44 85.82
1995-1999)
Pan et al. (2011) and Boreal forests (Global) 1135 Inventory data and statistical 102.92 90.70 140° 123.3%
Stinson et al. (2011) or process models (2007)
Bonnor (1985) Canadian forests 440.7 Volume Inventory data (1981) 26.09 59 234.42 85.68
Dixon et al. (1994) Canadian forests 436 Inventory data (1987—-1990) 765 4118 24 56
Penner et al. (1997) Canadian forests 440.7 Volume Inventory data (1991) 41.43 94 2 56.34 127.84
Kurz and Apps (1999) Canadian forests 404.2 Inventory data (1990s) 5133 5279 29.0% 7.8
Pan et al. (2011) and Canadian forests 229.4 Inventory data and statistical or 27.94 122.06 38 165.6%
Stinson et al. (2011) process models (2007)
Myneni et al. (2001) Canadian forests 239.5 Remote sensing (NDVI, 1553 64.84 21.12 88.18
1995-1999)
Liski and Kauppi (2000) Canadian forests 244.6 Inventory data (mid-1990s) 20.24 82.8 22753 112.68
Beaudoin et al. (2014) Canadian forests 403 Remote sensing and photo plot5.77 63.94 35.05 86.96
(2000s)
Penner et al. (1997) Alberta forests 40.3 Volume Inventory data (1991) 3.14 78 2 428 106.08
Bonnor (1985) Alberta forests 40.3 Volume Inventory data (1981) 231 57 3.14 77.52
This study Alberta forests 40.3 Inventory data (2000-2012) and 2.26 56.30 3.19 79.56

lidar canopy height
data (2006)

@ For the studies with aboveground biomass data only, belowground biomass is assumed to be 0.36 of the aboveground biomass (Jarvis et al., 2001).
b For the studies with total biomass data only, aboveground biomass is assumed to be D/(14-0.36)) of the total biomass (Jarvis et al., 2001).
C For the studies with carbon storage only, biomass is assumed to be two times that of carbon storage (Schlesinger 1997).

scales, but was smaller than the estimates of some studiesnces among the reported areas (Table 5) included under the
such as Dixon et al. (1994), Pan et al. (2011) and Penner etategories of boreal (northern) forests and Canadian forests
al. (1997) (Table 5). Clearly, there is a huge disagreemen{some of which exclude more northerly, unmanaged forests)

among different estimates, but it is hard to compare them be{Brandt, 2009).

cause of differences among data sources, estimation method- Compared with these previous studies, our current study

ologies, and time periods of data collection. Another sourcehas at least two improvements and advantag&s:nul-

of variation among studies is that there are major differ-tisource data: we combined the data from ground-based
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inventory, lidar, land cover, climate and other environmental As a nonparametric approach, RF has shown some out-
variables, and provided a cost-effective scheme of mappingtanding advantages in our study. This is also supported by
biomass stock for provincial- and national-scale assessmentgrevious studies for soil mapping (e.g., Grimm et al., 2008),
Many previous studies used only a single data source, and diliomass mapping in forests (Baccini et al., 2004; Neumann et
not consider the role of climate and other variables in theiral., 2011; Asner et al., 2013) and seafloor (Wei et al., 2010),
analyses.q) The inclusion of spatially representative forest and bird distribution modeling (Kreakie et al., 2012). The ad-
inventory plots: the lack of sufficient and unbiased samplevantages of random forests include the ability to model high
plots has been identified as a major barrier to accurate estdimensional non-linear relationships, handling of categorical
mation of biomass stocks in large areas (Botkin and Simp-and continuous predictors, resistance to overfitting, relative
son, 1990; Brown, 1997; Wulder et al., 2008). In the presentrobustness with respect to noise features, unbiased measure
study, the two different sources of plot data showed signifi-of error rate, and measures of variable importance (Breiman,
cant differences in stand age structure and biomass distribi2001; Grimm et al., 2008). Therefore, by combining differ-
tion (Fig. 2). The PSP data were derived from undisturbed,ent predictor variables, this approach has a great potential for
relatively productive stands and thus gave much greater avimproving the estimation of forest biomass at regional and
erage values of biomass density than the ABMI plots, whichglobal scales.

include both disturbed and undisturbed sites. Further, the reg-

ular distribution of ABMI plots places some of them in peat- 4.3 Canopy height as an important determinant of

lands, which generally were avoided in the PSP inventory. biomass distribution

Thus, the use of PSP data alone would lead to the overesti-

mation of biomass. In terms of the scope and sample sizedt is well known that canopy height is a critical indicator
the data used in this study are more comprehensive and exf forest site quality and growth potential (Kimmins, 2004;

tensive than previous data sets. Fang et al., 1998). Also, canopy height is highly related to
stand age and forest disturbance, both of which directly af-

4.2 Comparison of different methods for biomass fect forest biomass and productivity. Using a large sample of
estimations forest inventory data, we detected a significant relationship

between biomass and canopy height (Table 1, Fig. 2). The

Selection of appropriate models plays a central role in esti-assessment of variable importance using the RF approach
mating biomass and carbon stocks (Fang et al., 1998; Saatchiso showed that canopy height was the most important
et al., 2011). Four different approaches, including spatial in-variable for determining biomass distribution in our study
terpolation, non-spatial and spatial regression models, andrea (Fig. 6). However, canopy height has rarely been used
decision-tree-based modeling with random forests algorithnin previous estimations of regional-scale biomass and car-
(RF), were used to yield estimates of total AGB in our study bon storage, because this information was not available over
area. We found that spatial interpolation greatly overesti-large areas in the past. The development of remote sensing
mated total AGB, while regression models and RF providedtechniques, especially lidar, has provided high- or medium-
similar estimate with high accuracy. The overestimation byresolution canopy height products at both regional and global
spatial interpolation might be related to the characteristics ofscales (Lefsky et al., 2010; Simard et al., 2011), and provides
the approach itself and the data we used. an opportunity to obtain more accurate estimates of biomass

First, the spatial interpolation approach assumes that spaand carbon storage over large areas. For example, based on
tial distribution of the variable we try to predict is a spa- 1km resolution spaceborne lidar canopy height data (Lefsky
tially continuous surface, and the near points generally re-et al., 2010) and ground inventory data, Saatchi et al. (2011)
ceive higher weights than far away points. This approach ismapped the total biomass carbon stocks in tropical regions
appropriate for the interpolation of some climate and topog-across three continents with a forest area of 2.5 billion ha.
raphy variables, but for biomass and carbon, major errorsTherefore, the integration of plot-based measurements of
may arise from discontinuities in the spatial distribution of biomass with remotely sensed observations of canopy height
biomass induced by disturbances and land uses such as agdan provide a cost-effective method for large-scale mapping.
culture (Supplement B). In addition, the lidar canopy height data are closely related to

Second, the spatial interpolation approach we used onljogging and fire history, allowing recently logged and burned
considered one additional variable, which seriously con-sites to be more accurately accounted for in biomass carbon
stricts the ability to accurately predict. Although some tech-estimation.
niques have been developed to consider multiple variables The current study and that of Saatchi et al. (2011) in
into spatial interpolation, they are still not available in most tropical forests have demonstrated the benefits of using
widely used geostatistics software. Furthermore, for most ofspaceborne lidar canopy height data for biomass mapping.
the PSP plots placed on upland sites, these are intermixeHowever, the coarse spatial resolution of spaceborne lidar
with a fine-scale mosaic of forested peatlands with muchdata may pose problems for fine-scale biomass mapping.
lower biomass. Recently, Bolton et al. (2013) investigated the agreement
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between spaceborne lidar canopy height data (1 km resolueported to account for about five times the total C in the
tion) and airborne lidar data (25 m resolution) in Canada’sstanding biomass or about 85 % of the total biome C (Malhi
boreal forests, and found that airborne-lidar-derived canopyet al., 1999). The large-scale estimation of soil C stocks poses
heights were generally in good agreement with spacebornenany challenges (Liu et al., 2013), and was thus not specifi-
lidar canopy height data we used in the current study. In thecally included in the current study. However, based on the re-
Boreal Plains ecozone, in which our study area is located, theent data set of North American soil organic carbon content
RMSE (root mean square error) between spaceborne and aiat 0.25 degree resolution (Liu et al., 2013), total soil carbon
borne heights was 4.39 m (Bolton et al., 2013). Neverthelessstocks in Alberta’s forests are approximately 1s%.80° Mg,
further improvements in accuracy of biomass estimation andvith a high proportion in peatlands (Vitt et al., 2000). Thus,
mapping may be expected from the use of higher-resolutiorour estimate of total tree biomass carbon (1x580° Mg,
lidar data coupled with further advances in data processingp0% of total tree biomass, Supplement C) only accounted

techniques. for 12 % of estimated total carbon stocks (13:320° Mg),
while soil carbon accounted for 88 %. Clearly, more efforts
4.4 Biomass—climate relationships are needed to better understand spatial and temporal variation

of biomass and soil carbon stocks in the boreal forest.

Understanding biomass—climate relationships is important
for biomass and carbon mapping under past and current ) o ) )
conditions as well as for making future projections under The Supplement related to this article is available online
a changing climate. Although climatic variables have been@t d0i:10.5194/bg-11-2793-2014-supplement
used in biomass estimations, we know relatively little about
how climate influences variation in biomass stocks (Stegen et
al., 2011). In this study, we found that climate explained rel-
atively little of the observed, stand-level variation in Alberta Acknowledgementsive thank Alberta Ministry of Environment
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the mean warmest month temperature (MCMT), mean cold-
est month temperature (MWMT) and chilling degree days
(DDO) played a more important role than other climatic vari-
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