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Abstract. Uncertainties in the estimation of tree biomass
carbon storage across large areas pose challenges for the
study of forest carbon cycling at regional and global scales.
In this study, we attempted to estimate the present above-
ground biomass (AGB) in Alberta, Canada, by taking advan-
tage of a spatially explicit data set derived from a combi-
nation of forest inventory data from 1968 plots and space-
borne light detection and ranging (lidar) canopy height data.
Ten climatic variables, together with elevation, were used
for model development and assessment. Four approaches, in-
cluding spatial interpolation, non-spatial and spatial regres-
sion models, and decision-tree-based modeling with random
forests algorithm (a machine-learning technique), were com-
pared to find the “best” estimates. We found that the random
forests approach provided the best accuracy for biomass es-
timates. Non-spatial and spatial regression models gave esti-
mates similar to random forests, while spatial interpolation
greatly overestimated the biomass storage. Using random
forests, the total AGB stock in Alberta forests was estimated
to be 2.26× 109 Mg (megagram), with an average AGB den-
sity of 56.30± 35.94 Mg ha−1. At the species level, three ma-
jor tree species, lodgepole pine, trembling aspen and white
spruce, stocked about 1.39× 109 Mg biomass, accounting
for nearly 62 % of total estimated AGB. Spatial distribu-
tion of biomass varied with natural regions, land cover types,
and species. Furthermore, the relative importance of predic-
tor variables on determining biomass distribution varied with

species. This study showed that the combination of ground-
based inventory data, spaceborne lidar data, land cover clas-
sification, and climatic and environmental variables was an
efficient way to estimate the quantity, distribution and varia-
tion of forest biomass carbon stocks across large regions.

1 Introduction

Forest ecosystems, accounting for over 80% of terrestrial
vegetation biomass, play a major role in balancing the re-
gional and global carbon (C) budget and analyzing the fate
of carbon dioxide produced by the burning of fossil fuels
and forest harvesting (Dixon et al., 1994; Brown et al., 1997;
Houghton et al., 2009). The accurate estimation of broad-
scale biomass C stocks has been a focus of regional and
global C cycle studies and has attracted the interest of re-
searchers, forest managers and policymakers over the past
half century. A proper assessment of actual and potential
roles of forest ecosystems in the global C cycle requires accu-
rate information about carbon storage and change over space
and time (Botkin and Simpson, 1990). However, such ac-
curate information has been lacking at regional and global
scales.

A number of approaches have been developed to esti-
mate the spatial distribution of biomass C stocks, ranging
from allometric regression equations or biomass expansion
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factors (e.g., Brown, 1997; Cairns et al., 1997; Schroeder et
al., 1997), local and regional scale forest inventories (Mon-
serud et al., 2006; Blackard et al., 2008), simulation mod-
eling (Tans et al., 1990; Ciais et al., 1995), to methods us-
ing only remote sensing or combined with inventory data
(Hall et al., 2011; Myneni et al., 2001; Wulder et al., 2008;
Yemshanov et al., 2012). However, the estimates obtained by
these different approaches are often inconsistent. For exam-
ple, Houghton et al. (2001) compared several biomass esti-
mates for the Brazilian Amazon forests and found very low
agreement across the estimates, with the values ranging from
39 to 93 gigatons (Gt) of carbon. Blackard et al. (2008) com-
pared several estimates of C pools in living forest biomass of
the continental U.S. forests and found that satellite-image-
based estimation was two times higher than estimates based
on inventory data.

Forest ground-based inventory laid out in a statistically
sound design is considered to be the optimum approach to
accurately and precisely measuring forest biomass C stocks
(Schroeder et al., 1997; Ketterings et al., 2001; Brown,
2002). However, sampling a sufficient number of trees to
represent the size and species distribution in a forest is ex-
tremely time-consuming and costly. The task becomes much
harder for accurate estimation of biomass C stocks over large
areas. For carbon estimation at the regional scale, most re-
searchers tend to measure biomass on a few small, generally
non-randomly selected plots, and use various prediction ap-
proaches (e.g., spatial interpolation techniques, and regres-
sion models), to estimate regional biomass C stocks based
on observed values of these small sampling plots. However,
inventories based on ground samplings are not free of prob-
lems. The first problem is related to the scarcity of ground-
based inventory plots (Botkin and Simpson, 1990; Wulder et
al., 2008; Pan et al., 2011). The lack of sufficient and high-
quality sample plots has been identified as a major barrier to
the development of robust biomass estimates and to the sub-
sequent validation of these estimates (Wulder et al., 2008).
For example, in a recent report about global carbon stor-
age, Pan et al. (2011) stated that estimates of C stocks are
only limited to the 230 million hectares (Mha) of managed
forest in Canada, leaving about 118 Mha of northern forests
unaccounted for because of data paucity. The second prob-
lem is related to the fact that forest inventories tend to be
conducted in forests that are considered to have commercial
value, in other words, closed forests, with little regard to the
open, drier forests, woodlands, or human-disturbed forests
(Botkin and Simpson, 1990; Brown, 1997). This biased sam-
pling design usually tends to overestimate biomass C stocks
over large areas.

Light detection and ranging (lidar) is perhaps the
most promising remote sensing technology for estimating
biomass, because it directly measures vertical forest struc-
ture, such as canopy height and crown dimensions (Simard
et al., 2011). Generally, lidar remote sensing has three plat-
forms, including spaceborne, airborne, and ground-based

platforms. While airborne or ground-based lidar methods
have been intensely used for biomass-related measurements
at the stand level or individual tree level, these methods are
only feasible at local or small-regional scales, rarely at larger
scales (Popescu et al., 2011). The main reason for this restric-
tion is because the costs of airborne or ground-based lidar on
data acquisition and analysis are still high to large extents
(Popescu et al., 2011; Saatchi et al., 2011). For biomass and
carbon estimation at the regional scale, spaceborne lidar with
relatively low costs has advantages.

The boreal forest, containing large amounts of carbon in
its biomass and soils, has been recognized as an important
global contributor to the net balance of carbon exchange be-
tween the atmosphere and the biosphere (Kurz and Apps,
1999; Fyles et al., 2002; Pan et al., 2011). According to the
Intergovernmental Panel on Climate Change (IPCC, 2007),
climate warming in northern latitudes is occurring almost
twice as rapidly as the global average. Climate warming in
the boreal may be leading to increased frequency of wildfires
(Harden et al., 2000), insect outbreaks (e.g., mountain pine
beetle, Kurz et al., 2008) and regional drought events (Allen
et al., 2010), thus influencing carbon stocks and dynamics
(Kurz et al., 2008; Monserud et al., 2006; Pan et al., 2011).
Since forest biomass is a key biophysical parameter in eval-
uating and modeling terrestrial carbon stocks and dynamics
(Houghton et al., 2009), an accurate estimation of regional
biomass is important for understanding boreal forests and
their responses to climate warming. However, most of the
previous studies for biomass estimation in the boreal were
limited to the regions with high productivity and little dis-
turbance (Botkin and Simpson, 1990). There is a lack of in-
formation about biomass in regions under other successional
stages and different disturbance extents. In addition, for re-
mote areas in northern boreal regions, few ground inventory
data are available.

In this study, we estimated aboveground biomass stocks in
the forest regions of Alberta, Canada, using recent forest in-
ventory data from different forest monitoring networks and
remote sensing data. Our inventory data had a large sample
size, covered a broad range, and included different distur-
bance types, stand age groups, and successional stages. Our
objectives were to (1) produce a spatially explicit data set of
Alberta forest aboveground biomass stocks; (2) quantify the
relative contributions of various predictor layers including
climate variables, elevation and canopy height to the biomass
stocks; and (3) assess the variability in estimation of biomass
stocks using different techniques.

2 Methods

2.1 Study area

The forests of the Canadian province of Alberta (49–60◦ N,
110–120◦ W) cover an area of about 45 million hectare
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(Mha), accounting for about 68 % of the total area of the
province. They encompass four natural regions: Boreal for-
est, Foothills, Rocky Mountains and Canadian Shield (Al-
berta Natural Regions Committee, 2006). These regions have
short summers and long and cold winters. Mean annual
temperature ranges from –2.6◦C in the Canadian Shield to
1.7◦C in the Foothills. Mean warmest month temperature
ranges from 11.0◦C in the Rocky Mountains to 16.6◦C in
the Canadian Shield, and mean coldest month temperature
ranges from –25.1◦C in the Canadian Shield to –11.7◦C
in the Rocky Mountains. Precipitation follows a summer-
high continental pattern. Mean annual precipitation ranges
from 380 mm in the Canadian Shield to about 800 mm in the
Rocky Mountains. Elevations range from about 150 m near
the Alberta–Northwest Territories border to over 3600 m in
the Rocky Mountains. There is also large variation in climatic
variables within the subregions of each natural region.

Variation in climate and topography in this area has pro-
duced a wide range of vegetation types across the province.
In the Boreal region, deciduous aspen (Populus tremu-
loides), balsam poplar (Populus balsamifera), coniferous
white spruce (Picea glauca), black spruce (Picea mariana)
and jack pine (Pinus banksiana) forests are the dominant
species. In the Foothills, mixed forests of aspen, lodgepole
pine (Pinus contorta), white spruce and balsam poplar with
variable understories are dominant on average sites at lower
elevations, while at higher elevations lodgepole pine forests
with less diverse understories are typical. In the Rocky
Mountains, closed coniferous forests are dominant at lower
elevations, and open coniferous stands and herbaceous alpine
meadows are the major vegetation types at higher elevations.
In the Canadian Shield, open jack pine, aspen and birch
stands occur where the soil is sufficiently deep for retaining
moisture and nutrients to sustain these species.

2.2 Data sources

We combined three different sources of ground-based in-
ventory data for our current study, including 342 permanent
sample plots (PSPs) from Alberta Environment and Sustain-
able Resource Development (ESRD), 635 PSPs from Wey-
erhaeuser Canada, 501 PSPs from West Fraser Mill Ltd.,
and 490 plots from Alberta Biodiversity Monitoring Institute
(ABMI). In total, 1968 plots measured in the period 2000–
2012 were selected to estimate current biomass carbon stock
in the Alberta forest region (Fig. 1). For the selected plots
with more than one census, only the latest inventory data was
selected for the current analysis.

2.2.1 Permanent sample plots (PSPs)

The Alberta PSP network has maintained more than 2000
PSPs established and re-censused by the government and
forest companies starting from the 1950s. Most PSPs were
selected in forest regions with high productivity, and these

Figure 1. Spatial distribution of 1968 inventory plots in Alberta
forests, Canada. Note that in western Alberta, some points represent
several plots.

plots were excluded from normal harvesting and other hu-
man disturbances. Plot sizes ranged from 400 m2 (0.04 ha)
to 8092 m2 (0.81 ha) (mean: 0.12 ha). Within each PSP of
ESRD, all living trees and standing dead trees (snags) with
a tree height≥ 1.3 m were tagged and recorded. Within each
PSP of Weyerhaeuser Canada, all living trees and snags with
DBH (diameter at breast height)≥ 5 cm were measured.
Within each PSP of West Fraser, all living trees and snags
with DBH ≥ 7 cm were measured. These 1478 PSPs con-
tained 206 213 living trees and 17 688 snags over the study
period.

2.2.2 ABMI sampling plots

ABMI conducts a regional-scale, long-term monitoring pro-
gram to track biodiversity status and trends in Alberta (http://
www.ABMI.ca). ABMI collects information on thousands of
terrestrial species and habitat structures at over one thousand
sites spaced systematically on a 20 km grid evenly across
the entire province. Terrestrial survey sites are established
on each grid, with a random distance and directional offset
of up to 5.5 km from this grid. Different from the PSP net-
work, ABMI sampling plots were more randomly distributed
and were thus more representative of the full range of forest
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stand ages and disturbance regimes at the landscape level.
The area of each ABMI plot is one hectare (100× 100 m). On
each site, all trees and snags with≥ 25 cm DBH in four se-
lected 25× 25 m plots, all trees and snags with≥ 7 cm DBH
in four 10× 10 m subplots, and all trees and snags in four
5× 5 m further subplots were measured regardless of size.
In total, 490 sampling plots with measurements for 36 059
living trees and 7046 snags were used in this study.

2.2.3 Canopy height data from spaceborne lidar

Spaceborne lidar top canopy height data for Alberta forest
regions (Supplement A) were obtained from a global wall-to-
wall canopy height map at 1 km spatial resolution (Simard et
al., 2011). This map was produced by using the data acquired
by the Geoscience Laser Altimeter System (GLAS), onboard
the Ice, Cloud, and land Elevation Satellite (ICESat), in com-
bination with seven global ancillary variables, which corre-
spond to climate and vegetation characteristics. These vari-
ables included annual mean precipitation, precipitation sea-
sonality, annual mean temperature, temperature seasonality,
elevation, tree cover, and protection status.

2.2.4 Climatic variables

Climate data for Alberta forests were derived from the pro-
gram CLIMATE WNA 4.70 (Wang et al., 2012). This program
uses baseline climate data derived from monthly precipita-
tion and temperature grids (Daly et al., 2008) based on in-
terpolated climate data from weather stations for the period
1961–1990. The program includes a lapse-rate-based down-
sampling to 1-km resolution and estimation of biologically
relevant climatic variables. Based on input values for longi-
tude and latitude of each inventory plot or each grid, we lo-
calized 10 climatic variables using the average values across
the last 10 years (2000–2009) to describe local climatic con-
ditions. The 10 climatic variables were as follows:

1. MAT: mean annual temperature (◦C)

2. MWMT: mean warmest month temperature (◦C)

3. MCMT: mean coldest month temperature (◦C)

4. MAP: mean annual
precipitation (mm)

5. MSP: mean summer (May to September)
precipitation (mm)

6. AHM: annual heat: moisture index
(MAT + 10)/(MAP/1000))

7. SHM: summer heat: moisture index
((MWMT)/(MSP/1000))

8. DD0: degree days below 0◦C,
chilling degree days

9. DD5: degree days above 5◦C,
growing degree days

10. DI: dryness index (DD5/MAP).

2.2.5 Alberta land cover map

The wall-to-wall land cover map of Alberta (AB-
MIw2wLCV2000v2.1) at 30 m spatial resolution was used
for identifying forest lands in the study area (Supplement B,
ABMI 2012). This map is a seamless GIS vector layer with
nearly a million polygons describing the spatial distribution
of land cover across Alberta, circa 2000, at the 1:125 000
scale. It consists of a mosaic of 977 556 non-overlapping
polygons of various sizes, from 0.5 ha to thousands of ha.
Each polygon represents a contiguous area relatively homo-
geneous in terms of land cover. The map is derived by apply-
ing a semantic and spatial generalization algorithm to com-
bine two pre-existing land-cover products: the Canadian For-
est Service’s Earth Observation for Sustainable Development
(EOSD) map of the forested region, and Agriculture Agri-
Food Canada’s map of the agricultural zone. This map con-
sists of 11 land cover classes, including waters, snow/ice,
rock/rubble, exposed land, developed, shrubland, grassland,
agriculture, coniferous forest, broadleaf forest, and mixed
forest. The overall accuracy of the map was estimated to
be 75 % with 11 land cover classes (ABMI Remote Sensing
Group, 2012).

2.2.6 Alberta natural region and subregion
classification

To compare how tree biomass carbon stock varies in differ-
ent forest regions, we used Alberta natural regions (NRs)
and natural subregions (NSRs) classification system (Al-
berta Natural Regions Committee, 2006) as the basis for our
comparisons. In Alberta, this system has informed provin-
cial natural resource management activities since the 1970s.
The current version of this system consists of 6 NRs and 21
NSRs. NRs, the largest mapped ecological units in this sys-
tem, are defined geographically on the basis of landscape pat-
terns, notably vegetation, soils and physiographic features.
NSRs, subdivisions of a NR, are generally characterized
by vegetation, climate, elevation, and latitudinal or physio-
graphic differences within a given NR.

2.3 Data analysis

2.3.1 Estimation of aboveground biomass (AGB)

AGB was estimated for each living individual tree in
all ground inventory plots using DBH- and height-based
biomass allometric equations and tree-species-specific pa-
rameters provided by Lambert et al. (2005) and Ung et
al. (2008). These equations were derived from thousands of
trees sampled across Canada and allow the calculation of tree
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biomass (foliage, branches, stem bark, and stem wood) based
on DBH measurements (for details see Lambert et al., 2005
and Ung et al., 2008). The form of the allometric equation is
as follows:

Y = β1D
β2H β3, (1)

whereY is the biomass component of interest, diameter (D)

is measured on each tree, height (H) is measured on a sub-
sample tree in each plot, andβ1, β2 andβ3 are parameters.
For trees with missing height measure, the heights are esti-
mated from local-species-specific height-diameter equations
developed by Huang et al. (2009).

Since the three sources of PSP data had different minimum
DBH cutoffs, we used the PSP data from ESRD to calcu-
late average percentages of AGB at different DBH cutoffs.
The percentages were used to calculate total AGB for Wey-
erhaeuser PSPs (0.4 % for trees with DBH < 5 cm) and West
Fraser PSPs (0.9 % for trees with DBH < 7 cm). Total AGB
of each PSP was summed up from all trees in each plot. To-
tal aboveground biomass of each ABMI site was summed up
from three parts: the biomass per hectare of trees≥ 25 cm
DBH in the 25× 25 m plots, the biomass per hectare of trees
7–25 cm DBH in 10× 10 m subplots, and the biomass per
hectare of trees < 7 cm DBH in 5× 5 m subplots.

2.3.2 Estimation of total biomass stock

Since total biomass stock has been a major concern of scien-
tists, police makers and the public, it is important to report
the estimation of total biomass stock. However, the detailed
data for belowground biomass and debris biomass are sparse
or not measured in our study region. Here, we used several
published equations on the relationships between AGB and
belowground biomass and debris biomass to estimate below-
ground and debris biomass.

We estimated belowground tree root biomass using pre-
viously developed regression equations developed for boreal
forests by Li et al. (2003):

BGBs = 0.222· AGBs (2)

BGBh = 1.576· AGB0.615
h , (3)

where BGB is the belowground biomass (coarse and fine
roots), and AGB is the aboveground biomass; subscripts s
and h are softwood and hardwood species groups, respec-
tively.

To estimate debris biomass, we calculated the ratios of de-
bris biomass (fine and coarse woody debris) to aboveground
biomass for 90 study sites across Canada’s forest regions
(Shaw et al., 2005). The average ratio of debris biomass to
aboveground biomass was 5 %, which was used to estimate
the debris biomass in the plots.

Estimates of belowground biomass, debris biomass and
standing dead tree biomass were added to AGB to produce

total biomass (including debris) estimates. The biomass car-
bon pool was calculated by multiplying a carbon biomass
conversion factor of 0.5 to the total biomass (Schlesinger
1997). Because of the strong correlation between AGB and
total biomass, we restricted our reporting to AGB in our main
text. Total biomass estimates are reported in the supporting
document (Supplement C and D).

2.3.3 AGB-environment correlations

We used simple Pearson correlations to explore covariation
among AGB and 11 environmental variables. Because the
presence of spatial autocorrelation in model residuals vio-
lates the assumption of data independence (Bini et al., 2009),
Pearson correlations among AGB and biotic and abiotic vari-
ables were calculated after accounting for spatial autocor-
relation using the R packageMODTTEST 1.4 (José Manuel
Blanco Moreno, Universitat de Barcelona, Spain, personal
communication, 2012).

2.3.4 Scaling up to the whole region

To get an accurate estimate of AGB distribution, four ap-
proaches were selected for our analysis, including spatial
interpolation of direct field measurements, non-spatial re-
gression model, spatial regression model, and decision-tree-
based modeling with random forests algorithm (RF).

Spatial interpolation methods:These methods have been
used for mapping forest variables (e.g. site index, standing
volume, AGB, productivity, etc.) based on forest inventory
data where these variables seemingly have spatial autocor-
relation (e.g., Dungan, 1998; Freeman and Moisen, 2007;
Viana et al., 2012). In this study, we compared several dif-
ferent approaches to find the “best” method for spatial in-
terpolation of tree biomass. These approaches included or-
dinary kriging, standardized ordinary cokriging (with eleva-
tion as the covariate), inverse distance weighting, thin-plate
smoothing splines, and partial thin-plate smoothing splines.
A cross-validation analysis was used to evaluate effective pa-
rameters for these interpolation methods. The results with
the highestR2 in cross-validation analyses were finally se-
lected. Kriging, cokriging and inverse distance weighting
were calculated using the geostatistics software GS+ (http:
//www.gammadesign.com), and thin-plate smoothing splines
were calculated using the R package “fields” (Fields Devel-
opment Team 2006). After producing the biomass map for
Alberta, we used the Alberta Natural Region GIS map to
crop grassland and parkland regions, and the Alberta land
cover map to crop the areas with the following land cover
classes: waters, snow/ice, rock/rubble, exposed land, shrub-
land, grassland, and agriculture.
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Non-spatial and spatial regression models:Two steps
were used to estimate biomass stocks using canopy height
data from spaceborne lidar. First, we used the data from the
1968 forest inventory plots to establish the relationships be-
tween total tree biomass and ground-measured top canopy
height, climatic variables, and elevation. Both non-spatial
multiple regression models (ordinary least squares, OLS) and
spatial linear models (here “spatial simultaneous autoregres-
sive error models (SARs)”, Kissling and Carl, 2008) were
used. The SARs models allow the inclusion of the resid-
ual spatial autocorrelation of the data. Among these predic-
tors, some of them were highly correlated. To reduce the
risk of multi-collinearity, we used VIF (Variance Inflation
Factors) for variable selection. The variables with VIF > 10,
which represent high collinearity, were removed. The “best”
model is selected based on lower AIC (Akaike information
criterion) and higherR2. Second, we applied this selected
model to estimate tree biomass density (Mg ha−1) using li-
dar canopy height and other environmental variables in each
1× 1 km grid in Alberta forest regions. All analyses were
done using R language (R Core Team, 2013), and SARs were
calculated using the R package “spdep” (version 0.5–33).

Decision-tree-based modeling with random forests algo-
rithm (RF): This method is an ensemble machine learning
technique, where many decision trees are constructed based
on random sub-sampling of the given data set (Breiman,
2001). As one of the tree-based models, RF performs re-
cursive partitioning of data sets, and makes no assumptions
regarding the distribution of the input data. RF can capture
non-linear relationships between the response variable (tree
biomass in our study) and predictor variables (canopy height,
climate, and other environmental variables in our study), and
can deal with correlated variables while producing a low
generalization error (Breiman, 2001). In addition, RF can
be used to rank the importance of variables in a regression
or classification problem in a natural way. In our study, this
method was used to detect the relative importance of climate,
topography and other environmental variables, and predict
the distributions of forest biomass. All analyses were imple-
mented in the R package “randomForest” (Liaw and Wiener,
2002).

2.3.5 Model accuracy assessment

Three well-known error statistics were calculated to mea-
sure the difference between the observed and predicted forest
biomass, including mean absolute error (MAE), root mean-
square error (RMSE), and the normalized root-mean-square
error (NRMSE). They are defined as

MAE =
1

N

N∑
i=1

|PREi − OBSi |

RMSE=

√√√√ 1

N

N∑
i=1

(PREi − OBSi)2

NRMSE= 100×
RMSE

OBSmax− OBSmin
,

where PREi and OBSi denote theith predicted and observed
values, respectively. NRMSE is the RMSE divided by the
range of observed values of a variable being predicted. The
value is often expressed as a percentage, where lower values
indicate less residual variance.

We randomly divided the 1968 ground inventory plots into
training data (60 %) and testing data (40 %). These four ap-
proaches of AGB estimation were fitted with training data
and evaluated with testing data. MAE, RMSE and NRMSE
were calculated to assess model accuracy. This procedure
was repeated 100 times, and the average values of these three
model accuracy indicators were reported.

3 Results

3.1 Biomass variations among forest inventory plots

Direct field measurements yielded an estimate of
128.24± 76.64 Mg ha−1 for the density of AGB for Alberta
forests, with a range from nearly zero to 450.64 Mg ha−1

in these inventory plots. For the PSP inventory plots only,
the average biomass density estimate was 148.08 Mg ha−1,
which is more than double the density of 67.09 Mg ha−1 for
the ABMI inventory plots (P < 0.0001, two-samplet test).

For forest inventory plots at the species level, the average
AGB density estimates for lodgepole pine, trembling aspen,
and white spruce were 75.79, 73.21, and 38.84 Mg ha−1, re-
spectively.

Based on our inventory data, we detected a large varia-
tion of AGB along forest stand ages (Fig. 2a, b). We clas-
sified these plots into four forest age groups (young, im-
mature, mature, and old-growth forests). Old-growth forests
(age > 120 years) and mature forests (80–120 years) had the
highest average tree AGB, 148.76 and 148.26 Mg ha−1, re-
spectively. The average AGB density in immature forests
(50–80 years) was 92.22 Mg ha−1, and the average in young
forests (< 50 years) was 48.28 Mg ha−1.
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Figure 2. Total tree aboveground biomass (AGB) versus canopy height and stand age of 1968 inventory plots.

Table 1.Pearson correlations of log-transformed tree aboveground biomass (AGB) with climatic variables, elevation, and observed canopy
height, after accounting for spatial autocorrelation.

ln(AGB) Elevation Canopy height MAT MWMT MCMT MAP MSP AHM SHM DD0 DD5

Elevation 0.290c

Canopy height 0.702c 0.045
MAT 0.327c 0.328a 0.297c

MWMT –0.280b –0.943c –0.043 –0.259
MCMT 0.378b 0.783c 0.219a 0.825c –0.740c

MAP 0.272b 0.848c 0.092 0.450b –0.820c 0.787c

MSP 0.264b 0.745c 0.140a 0.607c –0.673c 0.821c 0.831c

AHM –0.114a –0.762c 0.070 0.078 0.789c –0.413c –0.833c –0.604c

SHM –0.315b –0.867c –0.145 –0.614c 0.826c –0.895c –0.877c –0.949c 0.661c

DD0 –0.378c –0.685c –0.249b –0.909c 0.630c –0.981c –0.716c –0.793c 0.282b 0.856c

DD5 –0.171b –0.899c 0.072 0.054 0.935c –0.509c –0.711c –0.543c 0.854c 0.677c 0.366b

DI –0.279b –0.949c –0.060 –0.357a 0.950c –0.794c –0.924c –0.812c 0.859c 0.918c 0.699c 0.881c

a < 0.05;b < 0.01;c < 0.001. MAT: mean annual temperature (◦C); MWMT: mean warmest month temperature (◦C); MCMT: mean coldest month temperature (◦C); MAP: mean
annual precipitation (mm); MSP: mean summer precipitation (mm); AHM: annual heat: moisture index; SHM: summer heat: moisture index; DD0: degree days below 0◦C; DD5:
degree days above 5◦C; DI: dryness index.

3.2 AGB-environment correlations

The results of Pearson correlations after accounting for spa-
tial autocorrelation showed that total AGB of each ground
plot was strongly correlated with observed canopy height
(R2

= 0.702, P < 0.001, Table 1, Fig. 2c). Elevation also
showed significant correlations with total AGB. Among the
10 climatic variables, most variables were highly correlated
with others. MCMT (mean coldest month temperature) and
DD0 (degree days below 0◦C) had relatively stronger corre-
lations with total AGB.

3.3 AGB estimates from four different approaches

We compared the results of four approaches for AGB es-
timation (Table 2, Fig. 3). The RF approach provided
the best accuracy for AGB estimation (R2

= 0.62, MAE
= 35.97 Mg ha−1, RMSE = 47.03 Mg ha−1, NRMSE =
62.40 %) (Table 2). Non-spatial and spatial regression mod-
els performed nearly as well as the RF approach, while
spatial interpolation had the poorest estimate (R2

= 0.30,
MAE = 50.22 Mg ha−1, RMSE = 63.90 Mg ha−1, NRMSE
= 84.20 %). Total tree AGB estimation from spatial interpo-
lation was 4.68× 109 Mg, which was much larger than the
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Figure 3. The estimates of total AGB density (Mg ha−1) using spatial interpolation, spatial multiple regression model, and decision-tree-
based modeling with random forests algorithm (Projection: UTM zone = 11; spatial resolution: 1 km).

Table 2.Validation statistics for four different approaches for total tree AGB estimation.

Methods for biomass estimation R2 MAE (Mg ha−1) RMSE (Mg ha−1) NRMSE (%)

Spatial interpolation 0.30 50.22 63.90 84.20
Non-spatial regression model 0.59 37.30 49.70 63.60
Spatial regression model 0.60 37.30 49.70 63.70
Decision-tree modeling with random forests algorithm 0.62 35.97 47.03 62.40

Notes: MAE: mean absolute error; RMSE: root mean square error; NRMSE: the normalized root mean square error.

Figure 4. Histogram of forest AGB density based on the estimate
of decision-tree-based modeling.

estimates from the spatial regression model (2.13× 109 Mg)
and RF (2.26× 109 Mg) (Fig. 3).

Using the RF approach, the estimated total AGB for all
forest regions across Alberta was 2.26× 109 Mg (Table 3,

Fig. 3). The average AGB density in each 1× 1 km grid
was 56.30± 35.94 Mg ha−1. Around 23 % of total forest ar-
eas had AGB densities between 40–60 Mg ha−1, and around
14 % of total forest areas had AGB densities larger than
100 Mg ha−1 (Fig. 4).

Total tree AGB in the boreal region (RF approach)
was about 1.30× 109 Mg, accounting for 57.67 % of total
tree AGB in Alberta forests among the four main natu-
ral regions of Alberta (Table 3). The estimated AGB was
about 0.57× 109 Mg in the Foothills, 0.37× 109 Mg in the
Rocky Mountain, and 0.02× 109 Mg in the Canadian Shield.
Among the 14 natural subregions (Table 3), Central Mixed-
wood had the highest total tree AGB (0.66× 109 Mg), fol-
lowed by Lower Foothills, Subalpine and Lower Boreal
Highlands.

The average AGB density of inventory plots across all
regions was 128.24 Mg ha−1 (Table 3). The Foothills and
Rocky Mountain natural regions had higher AGB densities
of 143.35 and 141.75 Mg ha−1, respectively, than the oth-
ers. Average AGB densities showed even greater variations
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Table 3.Total tree AGB estimated by decision-tree-based modeling with random forests algorithm in different natural regions and subregions
in Alberta forests.

Summary based on 1 km pixels Summary based on forest inventory plots

Forest regions Area
(Mha)

Total
AGB
(109 Mg)

Percentage
(%)

Mean
AGB
density± SD
(Mg ha−1)

Number
of plots

Mean
(Mg ha−1)

Range
(Mg ha−1)

The whole study area 40.3 2.26 100 56.30± 35.94 1968 128.24 0.01–450.64

Natural Boreal 30.2 1.30 57.67 43.10± 22.67 571 93.62 0.01–450.64
regions Foothills 6.1 0.57 25.06 93.91± 31.19 1137 143.35 0.05–420.73

Rocky Mountain 3.1 0.37 16.27 120.45± 33.59 247 141.75 3.00–327.90
Canadian Shield 0.9 0.02 1.01 27.68± 8.40 13 39.10 0.02–90.18

Natural Central Mixedwood 14.5 0.66 29.11 45.31± 23.20 349 98.90 0.01–450.64
subregions Lower Foothills 4.1 0.35 15.52 87.39± 27.89 677 147.60 0.32–420.73

Subalpine 2.1 0.26 11.71 123.73± 31.88 216 143.07 3.00–327.90
Lower Boreal Highlands 5.2 0.24 10.80 47.49± 20.73 80 101.20 0.39–377.66
Dry Mixedwood 4.3 0.22 9.80 51.67± 23.45 82 94.29 4.16–262.18
Upper Foothills 2 0.22 9.54 106.86± 33.28 460 137.09 0.05–337.67
Northern Mixedwood 2.7 0.08 3.41 28.34± 9.59 20 67.92 0.08–206.41
Montane 0.7 0.08 3.59 118.73± 34.39 30 132.43 38.33–241.58
Upper Boreal Highlands 1.1 0.05 2.01 40.64± 22.77 9 36.59 1.41–117.98
Athabasca Plain 1.1 0.03 1.23 25.97± 12.00 25 28.66 2.16–67.23
Boreal Subarctic 1.1 0.02 0.91 18.80± 5.62 4 13.18 0.07–41.23
Alpine 0.3 0.02 0.98 92.24± 32.72 1 – –
Kazan Uplands 0.8 0.02 1.01 27.68± 8.40 13 39.10 0.02–90.18
Peace–Athabasca Delta 0.3 0.01 0.40 31.67± 13.38 2 83.64 74.96–92.32

among subregions, from 13.18 Mg ha−1 in Boreal Subarctic
to 147.60 Mg ha−1 in Lower Foothills.

Among three major land cover types in Alberta forests
(Supplement B), coniferous forests stored 1.14× 109 Mg
AGB, accounting for 50 % of total tree AGB in Alberta
forests, while broadleaf forests and mixed forests stored
0.62× 109 and 0.17× 109 Mg AGB, respectively.

3.4 AGB estimates of major tree species

Three major tree species, lodgepole pine, trembling aspen
and white spruce, stocked about 1.39× 109 Mg AGB in total,
accounting for 62 % of total AGB in Alberta forests (Fig. 5,
Table 4). Total AGB of lodgepole pine was 0.55× 109

Mg, and 85 % of which is distributed in the Foothills and
Rocky Mountain regions. For trembling aspen, total AGB
was 0.50× 109 Mg, of which 78 % is distributed in the Bo-
real region. For white spruce, total AGB was 0.35× 109 Mg,
of which 58 % is distributed in the Boreal region.

3.5 Variable importance on AGB distribution

Using the RF, we also assessed the importance of various pre-
dictor variables on AGB distribution (Fig. 6). Canopy height,
which was directly related to AGB, had a major influence
on AGB distribution at both stand and species levels. Eleva-
tion was also significantly correlated with AGB distribution

of lodgepole pine, but not for other two species. Each of the
10 climatic variables had relatively weak effects on AGB dis-
tribution at the stand level, although MSP had a relatively
stronger influence than other climatic variables. The three
major tree species showed differing relationships with cli-
matic variables. For lodgepole pine, MWMT, MCMT, DD0
and DD5 had stronger impacts on AGB than the other cli-
matic variables. For trembling aspen, DI and DD0 were a
little more important than the others. For white spruce, DD0
and MCMT had slightly stronger impacts on AGB than oth-
ers.

4 Discussion

We reported on a large-scale, spatially explicit data set for
presenting biomass storage in Alberta’s forest regions, de-
rived from a combination of forest inventory data from 1968
plots, spaceborne lidar data, land cover classification, climate
and other environmental variables. Using decision-tree-based
approach with random forests algorithm, total AGB stock in
the study region was estimated to be 2.26× 109 Mg, which
is very close to Bonnor’s (1985) estimate (2.31× 109 Mg)
based on volume inventory data, but is smaller than Penner
et al.’s (1997) estimate (3.14× 109 Mg) (Table 5). The aver-
age AGB density was 56.30 Mg ha−1, which is close to Bon-
nor’s (1985) estimate (57 Mg ha−1). This study showed that
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Figure 5. Total tree AGB density (Mg ha−1) of three major tree species based on decision-tree-based modeling (Projection: UTM zone =
11; spatial resolution: 1 km).

Table 4.Total tree biomass of three major tree species estimated by decision-tree-based approach.

Species Natural regions Summary based on Summary based on forest
1 km pixels inventory plots

Total Percentage Mean Range
(109 Mg) (%) (Mg ha−1) (Mg ha−1)

Lodgepole pine Boreal 0.08 14.64 39.77 0.10–175.50
Foothills 0.25 44.64 74.61 0.05–294.09
Rocky Mountain 0.22 40.67 88.40 0.25–321.65
Canadian Shield 0.00 0.05 – –
Total 0.55 100.00 75.79 0.05–321.65

Trembling aspen Boreal 0.39 77.92 70.64 0.00–358.05
Foothills 0.07 13.66 76.91 0.01–383.71
Rocky Mountain 0.03 6.55 47.72 0.31–169.62
Canadian Shield 0.01 1.88 26.37 0.02–88.98
Total 0.50 100.00 73.21 0.00–383.71

White spruce Boreal 0.20 57.79 40.09 0.01–306.94
Foothills 0.07 21.24 35.52 0.00–275.15
Rocky Mountain 0.07 19.00 52.91 0.00–264.76
Canadian Shield 0.01 1.97 31.79 10.13–85.55
Total 0.35 100.00 38.84 0.00–306.94

the combination of multisource data could be a cost-effective
way to estimate the amounts, distributions and variations of
biomass carbon stocks across large regions with reasonable
accuracy.

4.1 Comparison with previous biomass estimations

We summarized previous studies on boreal forest AGB
estimation at different spatial extents (Table 5). At the
global scale, estimates of total AGB for boreal forests

ranged from 81.85× 109 Mg (Cao and Woodward, 1998) to
129.41× 109 Mg (Dixon et al., 1994). For Canadian forests,
total biomass estimates varied from 15.53× 109 Mg (My-
neni et al., 2001) to 41.43× 109 Mg (Penner et al., 1997).
In Alberta forest regions, our estimate (2.26× 109 Mg) us-
ing a decision-tree approach was very similar to the estimate
of Bonnor (1985), but smaller than the estimate of Penner
et al. (1997) (Table 5). Compared with other studies, our es-
timate of mean AGB density in Alberta was similar to the
estimates reported by several studies at global and regional
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Figure 6. Relative importance of predictor variables for AGB estimation by decision-tree-based modeling with random forest algorithm.
Variable importance is measured in mean decrease in accuracy, which is the decrease in accuracy of a classification after the variable has
been randomly permuted. A higher mean decrease in accuracy means the variable contributes more to the accuracy of the classification.

Table 5.AGB and total biomass estimations in previous studies.

Reference Study area Area
(Mha)

Methodology or data source Total
tree AGB
(× 109 Mg)

Mean
AGB
density
(Mg ha−1)

Total tree
biomass
(× 109 Mg)

Mean
biomass
density
(Mg ha−1)

Dixon et al. (1994) Boreal forests (Global) 1372 Inventory data (1987–1990) 129.41b 94.12b 176 128
Cao and Woodward
(1998)

Boreal forests (Global) 1210 Predicted from a global carbon
model (1990s)

81.85b 67.65b 111.32 92

Jarvis et al. (2001) Boreal forests (Global) 1381 Inventory data (1990s) 84.55 61 114.99a 83a

Myneni et al. (2001) Northern forests (Global) 1419.9 Remote sensing (NDVI;
1995–1999)

89.29b 63.10b 121.44 85.82

Pan et al. (2011) and
Stinson et al. (2011)

Boreal forests (Global) 1135 Inventory data and statistical
or process models (2007)

102.94b 90.70b 140c 123.35c

Bonnor (1985) Canadian forests 440.7 Volume Inventory data (1981) 26.09 59 34.42a 85.68a

Dixon et al. (1994) Canadian forests 436 Inventory data (1987–1990) 17.65b 41.18b 24 56
Penner et al. (1997) Canadian forests 440.7 Volume Inventory data (1991) 41.43 94 56.34a 127.84a

Kurz and Apps (1999) Canadian forests 404.2 Inventory data (1990s) 21.33b 52.79b 29.02c 71.8c

Pan et al. (2011) and
Stinson et al. (2011)

Canadian forests 229.4 Inventory data and statistical or
process models (2007)

27.94b 122.06c 38c 165.65c

Myneni et al. (2001) Canadian forests 239.5 Remote sensing (NDVI;
1995–1999)

15.53b 64.84b 21.12 88.18

Liski and Kauppi (2000) Canadian forests 244.6 Inventory data (mid-1990s) 20.24 82.8 27.53a 112.61a

Beaudoin et al. (2014) Canadian forests 403 Remote sensing and photo plots
(2000s)

25.77 63.94 35.05a 86.96a

Penner et al. (1997) Alberta forests 40.3 Volume Inventory data (1991) 3.14 78 4.28a 106.08a

Bonnor (1985) Alberta forests 40.3 Volume Inventory data (1981) 2.31 57 3.14 77.52
This study Alberta forests 40.3 Inventory data (2000–2012) and

lidar canopy height
data (2006)

2.26 56.30 3.19 79.56

a For the studies with aboveground biomass data only, belowground biomass is assumed to be 0.36 of the aboveground biomass (Jarvis et al., 2001).
b For the studies with total biomass data only, aboveground biomass is assumed to be 0.74 (= 1/(1+0.36)) of the total biomass (Jarvis et al., 2001).
c For the studies with carbon storage only, biomass is assumed to be two times that of carbon storage (Schlesinger 1997).

scales, but was smaller than the estimates of some studies,
such as Dixon et al. (1994), Pan et al. (2011) and Penner et
al. (1997) (Table 5). Clearly, there is a huge disagreement
among different estimates, but it is hard to compare them be-
cause of differences among data sources, estimation method-
ologies, and time periods of data collection. Another source
of variation among studies is that there are major differ-

ences among the reported areas (Table 5) included under the
categories of boreal (northern) forests and Canadian forests
(some of which exclude more northerly, unmanaged forests)
(Brandt, 2009).

Compared with these previous studies, our current study
has at least two improvements and advantages: (1) mul-
tisource data: we combined the data from ground-based
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inventory, lidar, land cover, climate and other environmental
variables, and provided a cost-effective scheme of mapping
biomass stock for provincial- and national-scale assessments.
Many previous studies used only a single data source, and did
not consider the role of climate and other variables in their
analyses. (2) The inclusion of spatially representative forest
inventory plots: the lack of sufficient and unbiased sample
plots has been identified as a major barrier to accurate esti-
mation of biomass stocks in large areas (Botkin and Simp-
son, 1990; Brown, 1997; Wulder et al., 2008). In the present
study, the two different sources of plot data showed signifi-
cant differences in stand age structure and biomass distribu-
tion (Fig. 2). The PSP data were derived from undisturbed,
relatively productive stands and thus gave much greater av-
erage values of biomass density than the ABMI plots, which
include both disturbed and undisturbed sites. Further, the reg-
ular distribution of ABMI plots places some of them in peat-
lands, which generally were avoided in the PSP inventory.
Thus, the use of PSP data alone would lead to the overesti-
mation of biomass. In terms of the scope and sample sizes,
the data used in this study are more comprehensive and ex-
tensive than previous data sets.

4.2 Comparison of different methods for biomass
estimations

Selection of appropriate models plays a central role in esti-
mating biomass and carbon stocks (Fang et al., 1998; Saatchi
et al., 2011). Four different approaches, including spatial in-
terpolation, non-spatial and spatial regression models, and
decision-tree-based modeling with random forests algorithm
(RF), were used to yield estimates of total AGB in our study
area. We found that spatial interpolation greatly overesti-
mated total AGB, while regression models and RF provided
similar estimate with high accuracy. The overestimation by
spatial interpolation might be related to the characteristics of
the approach itself and the data we used.

First, the spatial interpolation approach assumes that spa-
tial distribution of the variable we try to predict is a spa-
tially continuous surface, and the near points generally re-
ceive higher weights than far away points. This approach is
appropriate for the interpolation of some climate and topog-
raphy variables, but for biomass and carbon, major errors
may arise from discontinuities in the spatial distribution of
biomass induced by disturbances and land uses such as agri-
culture (Supplement B).

Second, the spatial interpolation approach we used only
considered one additional variable, which seriously con-
stricts the ability to accurately predict. Although some tech-
niques have been developed to consider multiple variables
into spatial interpolation, they are still not available in most
widely used geostatistics software. Furthermore, for most of
the PSP plots placed on upland sites, these are intermixed
with a fine-scale mosaic of forested peatlands with much
lower biomass.

As a nonparametric approach, RF has shown some out-
standing advantages in our study. This is also supported by
previous studies for soil mapping (e.g., Grimm et al., 2008),
biomass mapping in forests (Baccini et al., 2004; Neumann et
al., 2011; Asner et al., 2013) and seafloor (Wei et al., 2010),
and bird distribution modeling (Kreakie et al., 2012). The ad-
vantages of random forests include the ability to model high
dimensional non-linear relationships, handling of categorical
and continuous predictors, resistance to overfitting, relative
robustness with respect to noise features, unbiased measure
of error rate, and measures of variable importance (Breiman,
2001; Grimm et al., 2008). Therefore, by combining differ-
ent predictor variables, this approach has a great potential for
improving the estimation of forest biomass at regional and
global scales.

4.3 Canopy height as an important determinant of
biomass distribution

It is well known that canopy height is a critical indicator
of forest site quality and growth potential (Kimmins, 2004;
Fang et al., 1998). Also, canopy height is highly related to
stand age and forest disturbance, both of which directly af-
fect forest biomass and productivity. Using a large sample of
forest inventory data, we detected a significant relationship
between biomass and canopy height (Table 1, Fig. 2). The
assessment of variable importance using the RF approach
also showed that canopy height was the most important
variable for determining biomass distribution in our study
area (Fig. 6). However, canopy height has rarely been used
in previous estimations of regional-scale biomass and car-
bon storage, because this information was not available over
large areas in the past. The development of remote sensing
techniques, especially lidar, has provided high- or medium-
resolution canopy height products at both regional and global
scales (Lefsky et al., 2010; Simard et al., 2011), and provides
an opportunity to obtain more accurate estimates of biomass
and carbon storage over large areas. For example, based on
1 km resolution spaceborne lidar canopy height data (Lefsky
et al., 2010) and ground inventory data, Saatchi et al. (2011)
mapped the total biomass carbon stocks in tropical regions
across three continents with a forest area of 2.5 billion ha.
Therefore, the integration of plot-based measurements of
biomass with remotely sensed observations of canopy height
can provide a cost-effective method for large-scale mapping.
In addition, the lidar canopy height data are closely related to
logging and fire history, allowing recently logged and burned
sites to be more accurately accounted for in biomass carbon
estimation.

The current study and that of Saatchi et al. (2011) in
tropical forests have demonstrated the benefits of using
spaceborne lidar canopy height data for biomass mapping.
However, the coarse spatial resolution of spaceborne lidar
data may pose problems for fine-scale biomass mapping.
Recently, Bolton et al. (2013) investigated the agreement
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between spaceborne lidar canopy height data (1 km resolu-
tion) and airborne lidar data (25 m resolution) in Canada’s
boreal forests, and found that airborne-lidar-derived canopy
heights were generally in good agreement with spaceborne
lidar canopy height data we used in the current study. In the
Boreal Plains ecozone, in which our study area is located, the
RMSE (root mean square error) between spaceborne and air-
borne heights was 4.39 m (Bolton et al., 2013). Nevertheless,
further improvements in accuracy of biomass estimation and
mapping may be expected from the use of higher-resolution
lidar data coupled with further advances in data processing
techniques.

4.4 Biomass–climate relationships

Understanding biomass–climate relationships is important
for biomass and carbon mapping under past and current
conditions as well as for making future projections under
a changing climate. Although climatic variables have been
used in biomass estimations, we know relatively little about
how climate influences variation in biomass stocks (Stegen et
al., 2011). In this study, we found that climate explained rel-
atively little of the observed, stand-level variation in Alberta
forest biomass (Table 1, Fig. 6), which is consistent with
Stegen et al.’s (2011) findings on biomass–climate relation-
ships in temperate and tropical forests. Disturbance regime
is likely a better predictor of biomass but these are often
difficult to map at regional scales. Because canopy height is
strongly influenced by the time since the last stand-replacing
disturbance (e.g., fire), high-resolution lidar data can play an
important role in estimating biomass and productivity at re-
gional and national scales.

Species-level analysis on biomass–climate relationships
showed that tree species respond differently to how climate
affects biomass distribution (Fig. 6). For lodgepole pine,
the mean warmest month temperature (MCMT), mean cold-
est month temperature (MWMT) and chilling degree days
(DD0) played a more important role than other climatic vari-
ables. This strong correlation with degree days is also sup-
ported by previous studies on lodgepole pine site index study
in Alberta forests (Monserud et al., 2006). For trembling
aspen, drought-related variable (dryness index, DI) were
slightly more important than other climatic variables, which
confirms previous studies about drought-related impacts on
aspen stand dynamics (e.g., Hogg et al., 2008; Michaelian et
al., 2011).

4.5 Total carbon stocks in Alberta forests

The present study reports on tree biomass in the forests of
Alberta. However, the estimation and mapping of total car-
bon (C) storage also requires high quality data on soil C.
Boreal forest ecosystems contain vast C stocks in soil, most
of which is found in peatlands and permafrost soils (Deluca
and Boisvenue, 2012). Soil C in boreal ecosystems has been

reported to account for about five times the total C in the
standing biomass or about 85 % of the total biome C (Malhi
et al., 1999). The large-scale estimation of soil C stocks poses
many challenges (Liu et al., 2013), and was thus not specifi-
cally included in the current study. However, based on the re-
cent data set of North American soil organic carbon content
at 0.25 degree resolution (Liu et al., 2013), total soil carbon
stocks in Alberta’s forests are approximately 11.8× 109 Mg,
with a high proportion in peatlands (Vitt et al., 2000). Thus,
our estimate of total tree biomass carbon (1.59× 109 Mg,
50% of total tree biomass, Supplement C) only accounted
for 12 % of estimated total carbon stocks (13.39× 109 Mg),
while soil carbon accounted for 88 %. Clearly, more efforts
are needed to better understand spatial and temporal variation
of biomass and soil carbon stocks in the boreal forest.

The Supplement related to this article is available online
at doi:10.5194/bg-11-2793-2014-supplement.
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