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Abstract. The validation of geophysical data sets (e.g. de-data from different sources (e.j§lissaoui et al.2011; Liu
rived from models, exploration techniques or remote senset al, 2011), and when analyzing such measurements or
ing) presents a formidable challenge as all products are inmodels as to their accuracy and range of validity (8tgffe-
herently different and subject to errors. The collocation tech-len, 1998 Scipal et al.2008. The validation of such prod-
nique permits the retrieval of the error variances of differ- ucts is intrinsically difficult due to the lack of knowledge of
ent data sources without the need to specify one data set dke “truth”. the actual value of the parameter to be deter-
a reference. In addition calibration constants can be detemined is never known with absolute certainty, and spatial as
mined to account for biases and different dynamic rangeswell as temporal mismatch often exert a confounding influ-
The method is frequently applied to the study and compar-ence.
ison of remote sensing, in-situ and modelled data, particu- The collocation technique does not require the specifica-
larly in hydrology and oceanography. Previous studies havdion of a reference data set and is applicable when three or
almost exclusively focussed on the validation of three datamore data sources are available. It permits the estimation
sources; in this paper it is shown how the technique generalef the error variance of each sensor provided certain assump-
izes to an arbitrary number of data sets. It turns out that onlytions about the error structure are met. When applied to three
parts of the covariance structure can be resolved by the coldata sources, it is called triple collocation and its popularity
location technique, thus emphasizing the necessity of expetttas grown considerably over the last decade. Most frequently
knowledge for the correct validation of geophysical products.it has been applied to remote sensing products in order to
Furthermore the bias and error variance of the estimators arevaluate their error structure and compare them to models,
derived with particular emphasis on the assumptions necesn-situ and alternative remote sensing measurements.
sary for establishing those characteristics. Important proper- The method was introduced [Stoffelen(1999 in order
ties of the method, such as the structural deficiencies, deperie study the error characteristics of wind vector data de-
dence of the accuracy on the number of measurements amilyed from a model, buoy measurements and scatterometer
the impact of violated assumptions, are illustrated by appli-observations. Further oceanographic studies pertaining to
cation to simulated data. wind speed, wave height or sea surface temperature measure-
ments includeCaires and Ste(003; Janssen et a{2007);
O’Carroll et al.(2009; Winterfeldt et al.(2010. Regarding
land hydrological applications the comparison of soil mois-
1 Introduction ture estimates from models, in-situ data and remote sensing
products has become an active field of research Geipal
Adequate knowledge of the error characteristics of differentet al, 2008 Dorigo et al, 2011, Loew and Schlenz2011;
sensors, models, remote sensing products, etc. can be considarinussa et 312011). The technique has, for example,
ered a prerequisite for their meaningful application in prac-also been applied to the study of evapotranspiration data by
tice and scientific studies. It is, for example, necessary whemiralles et al.(2011).
assimilating satellite and in-situ observations with meteoro-
logical models (e.gMunro et al, 2004, when combining
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70 S. Zwieback et al.: Structural and statistical properties of the collocation technique

Apart from the estimation of the error structure, the de-2.1 Basic model
termination of calibration constants is of vital practical im-
portance as well in order to account for biases and differentl he basic model describes data sources that are mutually cal-
dynamic ranges of the products. This can be achieved withidbrated and only differ in an additive random error:
the collocation framework, as shown _Byoffelen(199a f';md Y =x"+e! 1)
Muraleedharan et a[2006. Alternative ways of estimat- ) )
ing these calibration constants have also been proposed, e.yherey;' is the measurement numbeby sensor, x" is the

the error-in-variables regression approach suggestegtby ~ Unknown variable and’ is the corresponding error.
pal et al.(2008. Note that in this papet” is treated as an unknown deter-

While the triple collocation technique has become a rou-Ministic parameter and not as a random variable. An alterna-

tine tool in calibration/validation studies of models and mea-five view considers to be random in principle: the analysis
sured data, its statistical properties and sensitivity with re-iS conducted by conditioning artf', thus fixing their values
spect to violated assumptions, e.g. the presence of correldS in the deterministic point of view. These different concep-
tions between different data sources, have not been analyzéiPns regardinge are equivalent and mirror the way the ex-

in detail. This is one objective of this paper. The other one,09enous variables can be treated in regression analysis. The
which will be treated before that, is the analysis of the tech-conclusions drawn from the collocation technique thus do not
nique for a general number of data sources: which propertie€ly on any additional assumptions about the “truttexcept

of measurement errors can be estimated and which cannot€ validity of the model defined in Edl)

These structural deficencies highlight the importance of ex-

pert knowledge and experience with the analyzed data set%‘2 Bias model

for validation studies. An extension of the basic model allows for the inclusion of
The notation and the error models related to the colloca-,

. . . . X ) an additive bias term (e.g.Parrens et al2011). As the col-
tion technique are defined in Segt. The triple collocation  |4cation technique makes no assumptions about the unknown

method, as applied in many previous studies, is introduced irbarametevc, the zero point of one of the data sets has to be
Sect.3. Subsequently — Seat.— the inherent mathematical taken as reference; w.l.0.g. this is the met: 1

structure for an arbitrary number of data sources is analyzed

and it is shown to what degree error covariances can be estiy =x" +a; +e] (2)

mated. The key statistical properties of the estimators for theyote thatey = 0 and form = 1 the bias model essentially

error characteristics and the calibration constants are derivegy|japses to the basic model.

and discussed in Se&. These results are compared and ap-

plied to simulated data in Se@&with particular emphasison 2.3 Affine model

the determination of the uncertainties and the dependence on

the number of samples. The affine model also accounts for a multiplicative bias or
scale facto (source). Following the reasoning for the bias
model, 81 =1 and thus the first data set determines the zero

2 Error models point and the units to which the remaining data sets will refer

. . . . . after calibration (i.e. estimation of the calibration constants
The collocation method relies on a stochastic model in Wthhand’B)

the noise is additive. More specifically this paper treats three
such models; the difference is due to the varying number ofy; = fix" +ai +e] ()
calibration constants included.

In general it is assumed that there &fesets of measure-

ments with each set contammg a m_easurement_of each of th‘I':'ihe assumptions regarding the statistical characteristics of
M data sources. In the classical triple collocation approacr}he error terms are crucial for the validity of the colloca-

M =3. In previous studies the different sampies:1... N tion technique. One important contribution of this paper is
referred to different epochs in time and we also adopt this que. P pap

view and terminology. The statistical properties and assum to show which assumptions are necessary for certain proper-
. . gy. A prop L Plies of the estimators to hold; the following will be referred
tions are not inherently related to this interpretation; the tech-__". )
) . to in the subsequent analyses:
nique can thus be applied to non-temporal data as well. An-

gle bracketg-) are adopted for expectation values. Assumption 1 (Zero expectation)the expected values of
the error terms vanish, i.de}') =0

2.4  Assumptions

Assumption 2 (Homoscedasticity)the error (co)variances
do not depend on time, i.&e!)?) = o4, (e} el) =0ij
Assumption 2b the time invariance also holds for the fourth
moments, i.e{(e")*) = y;

Nonlin. Processes Geophys., 19, 686; 2012 www.nonlin-processes-geophys.net/19/69/2012/



S. Zwieback et al.: Structural and statistical properties of the collocation technique 71

Assumption 3 (Zero crosscorrelation) the correlations be-  scatterometer-derived wind vectors, for instance, such cor-
tween different errors at the same epacare 0, i.e.(el’.‘e’})z relations can arise due to the spatial scale mismatch of
0,i#]j the sensors involvedvbgelzang et a).2011). If, for ex-

_ _ ' ample, the covarianceéejes) = 023, the expected value
A_ssumptl_on 4 (Zer_o au_tocqrreﬁlatlon) t/he Sorrelatlons at  of %ZQ/ 1(y11 —yé’) (yzlz —yg) becomesoy1 + 023 SO that
different times vanish, i.ée!' e!' ) =0,n' #n LN (o on) (o i i

—023+ % Y1 (V] — ¥3) (¥§ — ¥4) is an unbiased estimator
Note that these assumptions about the errors pertain to th ro11. The other formulae will have to changed in a similar

error model used for deriving and characterizing the estima- Thrllon b Cdi how th llocati
tors. Failure to meet one of them can in certain cases be '€ SUbSequen iscussions examine how this collocation

circumvented by choosing an appropriate error model. If, forteﬁhr;:que can be generalized tg more thandthree sltlenéorshand
example, one of the error terms had a bias) & 0), the cal- whether error covariances can be estimated as well. Further-

ibration constant; could account for this in the bias or the more the properties of this and rEIatEd _estlmators are ana-

affine model. lyzed. Note that the term “collocation” is very general in
nature; it can e.g. refer to a method for numerically solv-
ing differential equations or to the act of linking different

3 Basic triple collocation data sets. The phrase “collocation technique”, as used in this
paper, encompasses generalizations of the triple collocation

The vast majority of applications of the collocation technique method for estimating the error variance, which do not re-

to study error characteristics have focussed on three differemjuire specification of a reference data set.

data sources as this is the minimum number needed in order

to estimate the RMS error of each. An in-depth analysis is , )

provided in Sect5; in this brief introduction only the key 4 Structure of the collocation technique

properties are stressed. To this end it is sufficient to look atl_

. his section is concerned with the general structure of the
the basic model.

collocation technique; more specifically, the possible relax-
ation of assumption 3 (lack of cross-covariance) is studied
for a general number of data sources. In the following the

Applied to three sensors, the basic model postulates the folvalidity of the basic model and a general error covariance

3.1 Estimating the error variance

lowing error structure: matrix X will be assumed; e.g. fovf = 3:
V=" el 011 012 013
X = 021022023
vy = x"+ej
n n o oon 031 032 033
y3 =X +€3

) ) ) 4.1 Brackets
By forming a difference between two simultaneous measure-

ments, the parametef' vanishes such that for example As certain kinds of products are commonplace in the collo-

cation method, we introduce the bracket notation.
(v —¥3) (01 —v3)) =efe] —eles —efe +ejes) =om
[0,k 00" = O =D =y = (ef —e) (e —ef (1)

using assumptions 1, 2, and 3 and it thus seems natural to’

apply the following estimators Several properties of such brackets follow immediately from
the definition in Eq. 7):

611 = NZ(yi’—Y’z’)(Y’f—%) @) i jii, 1 = [, i, k1 4,3 kT 8)
[, jsi, k1" = [0, j;0,01" =i, j; k11" 9)

~ _ 1 n n n n

022 = N - (y —1) (2 -3) ®) 42 Sampling the error covariance matrix

N 1 n 6 The general bracket in Eq7) essentially samples the error

9B=5 5-3) ®)  matrix E" with el ;=el'e". As the expected value & is

the error covanance matrlx (given assumption 1), this is of
These estimators are unbiased given assumptions 1, 2, and §reat importance to the collocation technique. Due to the
as is shown in Sech.1, where also their variance is given.  distributivity of multiplication over addition we can, by av-

Analogously to Stoffelen (1999 it is also possible to eraging over multiple samples sample the error covariance
postulate a fixed covariance between two data sets ancthatrix, provided assumption 2 is met. We can thus focus our
modify these estimators accordingly. In the analysis ofdiscussion on the sampling of the error matrix.

www.nonlin-processes-geophys.net/19/69/2012/ Nonlin. Processes Geophys., 18052012



72 S. Zwieback et al.: Structural and statistical properties of the collocation technique

Let us introduce a vectorization of the problem at hand. Aso that Eq. 12) becomes
bracket from Eq.7), such ag1,2;1,3]" for M =3, can also M M-1 M M-1
be thought of as an inner product between the error matrix (Z Z u mpzym> (Z Z W G Y )
E" and a symmetric bracket matrik m=1I= I=1'=

M—1M-1
[1,2;1,37" _Tr(B[l 213]" En) (20) = Z Z piqr |:Z Z Ul m YmUl . m' Ym’ :|
=1 I'= m=1m'=1
where Tr is the Trace operator, which defines an inner prodwhere it turns out that the terms inside the square brackets
uct (Cantrell 2000. Note that this corresponds simply to are just brackets of the forfii+1,7;1'+1,1'], which shows
a sum over the products of each corresponding pair of elethat the most general product of E¢2) can be thought of as
ments. The bracket matrix is given by a linear combination of simple products as defined in Eg. (
The brackets are thus perfectly general for our purposes.

Buzia=| — 4.3 Resolvable structure of the error covariance matrix

O NN

1
2
0
1
2

NIFPNIR

The previously defined sampling of the error matrix in
g. (10) allows us to describe the quadratic estimators in
erms of linear algebra. The key question is whether the com-
plete error covariance matrix can be resolved by the brackets
of Eq. (7). The answer is simple: No. Suppose you have
5 independent sensors (with the basic model defined id Eq.
applicable) and none of them has any measurement noise.
All' 5 will give the same result. On the other hand, suppose
you have 5 sensors with equal error variance that are all per-
fectly correlated. Again, all 5 sensors will yield the same
result and there is no way to tell the difference between the
two cases without additional assumptions. It will now be
shown that there is more structure that cannot be resolved by
the collocation technique.
. In terms of linear algebra a bracket corresponds to an inner
A product of the form(y; —y;)(yx — i) can be generalized ,q,ct between the error matrix and the associated bracket

to one where on either side a linear combination of the Me3inatrix. The vector space and the important subspaces are
surements whose weights sum to O is allowed. This condiyanoted and defined as follows

tion is necessary and sufficient for cancelling the unknown )
parameter. Vector spaceCM the vector space of all symmetric

M x M matrices. Note that definiteness plays no role.
Its dimension i 1).

In general we require these matrices to be symmetrical an
that Egs. {) and (L0) match.

Itis clear from Eqs.&) and Q) that there are dependencies
between the brackets, i.e. that the correspon@imgatrices
are linearly dependent. This also follows due the fact there
are(M +1) degrees of freedom in® x M symmetric matrix.

The aim of Sect4.3 consists of identifying the structure
of the possible information that can be gained from Hg.
Before this we will show that the brackets are sufficient for
this task.

4.2.1 Sufficiency of brackets

All linear functionals fulfilling the above condition form
anM —1 dimensional subspace of which the vectoysm =

1...M —1, form a basis: they are defined by Vector space BM the vector space spanned by the
bracket matrices given there abe sensors. The previ-
Um0 = Om.1+1—Om.1 (11) ous discussion shows that (linear combinations of) the

brackets can represent all possible products, i.e. they are

wheres is the Kronecker delta. perfectly generalB is a subspace af"

Such a general product can be written as
Vector spaceK™ the orthogonal complement af

M M (Lang 1987, using the dot product of Eq1().
(Z Umym> < Z wm’ym’> (12) ; ;
m=1 m'=1

If BM were of dlmen3|or(M£“l), we could sample the er-
ror matrix completely, i.e. we could reconstruct it. We will
Consequenﬂy' the We|ght$n and w,, can be expressed in now show that its dimension is On(%l). We will first find
theu,, basis as two sets of independent vectors, one B3 and one fork ¥
and then argue on dimensional grounds that these actually
M-1 form a basis for their respective space.
Uy = Z Ulmpi
=1

lActually it is not necessary to introduce the formalism of inner

M—1 products, but rather to think of the brackets as a linear functional
Wy = Z Uy acting on the error matrix. The description adopted here, however,
=1 simplifies the analysis and notation cosiderably.

Nonlin. Processes Geophys., 19, 686; 2012 www.nonlin-processes-geophys.net/19/69/2012/
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4.3.1 VectorsinBM

73

Unfortunately it turns out there is af dimensional sub-
spaceK™ which is invisible to the collocation technique.

Let us turn to the matrices corresponding to brackets of therurthermore the elements of this space are not particularly

form [i, j;i,j] with i < j. There are clearly’y) of these

easy to interpret, the only exception beiqg,_; A, which

matricesBy;,j;;, j;. They are also independent because onlycorresponds to the case of perfectly correlated measurements

By, j;i,j1 has a non-vanishing coefficient at positiofis;)
and(j,i).

4.3.2 Vectorsink™

described in Sect.3. In practice it will be easier to postulate
that certain covariances vanish. The standard triple colloca-
tion technique asserts exactly that, i.e. the three assumptions
needed are exactly those that all correlations are 0.

These vectors are by definition orthogonal to the brackets

matricesBy; ;.x.;. The elementsi, j) of one set of such vec-
torsA,, are given by% (8i,m +6m, j), such that fold =3

1(211 010 001
Ar=-|100|A,=2|121]|A3==[001
100 010 112

These vectors are independent because Anlyas a non-
zero element at th@, i) position.
The orthogonality with respect t8¥, although straight-

5 Statistical analysis

In this section various estimators of elements of the error
covariance matrix as well as the calibration constants will
be analyzed; particular emphasis is placed on their expected
values and variances. Each of the three models is discussed
separately.

5.1 Basic model

forward to show, is a bit tedious to establish because of thePrevious studies (e.@toffelen 1998 Scipal et al, 2008

number of cases to consider. In the following the veétpr

Dorigo et al, 2011) predominantly applied the following es-

will be dotted with all possible bracket matrices. As the timator of the error variance (withs j # k):

brackets of the fornii,i;i,i] vanish, we only have to look
at those with 2, 3 or 4 distinct indices.

The first group of bracket matrices to consider consists o

thoseBy; ;.; j; with i # j. There are two cases. Firstly#
i #j. The dot product in Eq.10) is clearly zero because
By, j;i,j1 has only zero elements in row/column Secondly,

we haveu =i (theu = j case is analogous), in which case the

(i,i) element exactly cancels tlig j) and(j,i) elements.

The second group contains the matrices of the form
By, j.i) With i # j #k, j <k. There are three cases to con-

sider. Firstly, ifu =i the (i,i) cancels with thei, j), (j,i),
(i,k), and(k,i) elements. Secondly, if = j (u =k is analo-
gous), thei, j) and(j,i) elements cancel thg, k) and(k, j)
elements. Thirdly, when is distinct fromi, j, andk, the dot
product vanishes becauBg ;.; ) has only zero elements in
row/column.

The third group consists of matrices of the foBp ;.. ;.
Whenu is distinct fromi, j, k, andl, we have orthogonality
for the same reasons as above. When one of theny, say,
then the(j,k) and(k, j) elements cancel thg,!) and(l, j)
elements.

4.3.3 Resolution and consequences

We have foundy) independent vectomy; ;.; ;; in BY and

M vectorsA,, in KM, As orthogonality implies indepen-
dence, we have found a setmf+ (%) = (%) independent
vectors inCM . We have thus found a basis for this spacé

(Lang 1987 and consequently also a basis ®%, whose
dimension is thus established to 6%) Covariance struc-
ture corresponding to its orthogonal complemgit cannot

be resolved, as the inner product yields 0.

www.nonlin-processes-geophys.net/19/69/2012/
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1 N
= NZ[i,j;i,k]” (13)
n=1

1 N
n_n n_n n_n n_n
= N E (e[ e; +ejek—ei ek—ejei)
n=1

By recourse to assumptions 1, 2 and 3 it follows that the es-
timator given by Eq.13) is unbiased, i.e5;; = (0;;).
The variance of the estimator follows from its definition

(Gii—011)?)= =02 +(67)

2 1 L& n' n'y o n' n'
= —oft g 2 D~ —¢

n'=1n"=1

Var(&ii) =

" " " 4
(e —67 el —ep)

1 2

= N(Vi—a,-i-i-ﬂiiffkk-i-aiidjj +Ujj0kk) (14)
where the last line is obtained by expanding the expression
into sums of four error terms — the algebra mirrors the deriva-
tion of the variance of the classical variance estimator of
a sample (e.gkenney and Keepingl956. Most of these
terms cancel when assumptions 1, 2, 2b, 3 and 4 are invoked.
The first of these termg, for example, is:

N N , Y
n=y_ Y ("))

n'=1ln"=1
= N{())+ NN =D (e )*(e])?)
_\/_/
n/#n//

= Nyi+N(N —1)o?
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74 S. Zwieback et al.: Structural and statistical properties of the collocation technique

If the errore! follows a Gaussian distributiory; = 305 2, 3, and 4 is given by Vad; ) = (o;; +011)Z,’,V wy, 2 which,
and Eq. {4) simplifies to (202 + ;01 +0ii0j; +ojjon)  fora; from Eq. (L5), evaluates to
(Koopmans1995. In general the fourth-order moments will 1
neither be known in advance nor estimated from the dataVar(a;) = (oi; +011)— (16)
The Gaussian assumption thus provides simplified and ap-
proximate expressions for the error variances. This variance is the smallest value possible as
The derivation of the estimation variance leading to N
Eq. (14) relies on several assumptions —in particular assump/ar(e; ) — Var(é;) = (o;; +011) {(Zw ) — _]
tion 4 (no autocorrelation), which does not affect the ex-

pected value given by Eql8). Alternatively a more general 1\2
error model (including e.g. autocorrelation) could be used to = (oj; +011)Z (wn — —)
compute the error variance. In practical cases such informa- N
tion is, however, very difficult to obtain; this is whgaires >0

and Sterl(2003; Muraleedharan et a(2006 suggested the
bootstrap method for estimating the error variance from the where the second line follows from the unbiasedness condi-
data.

It is worthwhile to discuss the estimation of the RMSE

5.2.2 Error terms
(root mean square error), i.e. the square root of the error var|-

ance if assumption 1 holds. When taking the square root of ¢ 'kl = (" — & — ! " +6;)(yf —yi) and similarly for
6;; in Eq. (13) as an estimate of the RMSE;+ = \/&Ti— the  various other brlackets
result will have a negative bias as In order to derive an unbiased estimatoroqf, we first

look at ") 4([1,/;1,&'1"), where j # k. By recourse to
assumptions 1, 2, 3, and 4, this evaluate@\te- 1)o11. Note
This result (as well as the derivation) is exactly the samethat assumption 4 (no autocorrelation) is invoked to derive
as for the usual sample variance/standard deviai@mijey this result because of the correlation between the individual
and Keeping1956 and could also have been derived by re- error terms and the estimated calibration constant3hus

Var(7i;) = ((7i)?) = (Fi1)2 = 0= Joi1 > (Fir)

course to Jensen’s inequality. we have an unbiased estimator é#:
It is easy to determine whether the obtained covariance N
matrix is positive definite in case of a diagonal matrix: the 311: Z[l’j/; LET (17)

diagonal elements must be greater than 0. Note that the col-
location technique does not guarantee the retrieval of avahdl_he denominator isV — 1. as in the unbiased estimation of

(i-e. positive definite) covariance matrix. the population variance from the sample variance. The small

bias of the naive estimator with in the denominator is neg-

ligible for reasonably sized samples. Likewise, it can be

5.2.1 Calibration constants shown that the following estimators far;;, i # 1 are un-
biased § #k #1):

5.2 Bias model

In addition to the error structure, the bias termsi #1

have to be estimated when the bias model is assumed. The ZU 1K (18)
latter can also be obtained from the differences between two

measurementduraleedharan et al2006. The following

estimator seems obvious: The evaluation of the variance of these two estimators

turns out to be a veritable tour de force; it closely follows

R 1 Kenney and Keepin¢l956 and Eq. L4) but there are many
U=y Zyin —yi=aeit NZE? —e (15) " more terms. For both EqL7) and Eq. {8) it follows that
n=1 n=1

The unbiasedness follows immediately from the rightmostVar(,,) = —2[N2(yu —BUfu 4+ 0uuovy
part by assumption 1. N(N-1)

Given assumptions 1, 2, 3, and 4, the estimatoris + OuuOww +0vuww) +N(=6yy
the best linear (in the difference) unbiased estimator, as + 1lauzu 46,0y — 400w (29)
will now be shown. A general linear estimator is given by — 40yy00w) + 13y, — SUML,+1]ﬁuuavv

& =N qw, (3" — y}). From assumption 1 and the valid-
ity of the bias model it follows thaly;) = o; Z _q Wy such
that the weights must sum to one frto be unbiased. For whereu =1, v=j, andw =k for Eq. (17); andu = j,
such an unbiased estimator the variance under assumptionsi = 1, andw = k for Eq. (18). Remarkably the expressions in

+ 1oy, 0opw + 110vvaww)]

Nonlin. Processes Geophys., 19, 686; 2012 www.nonlin-processes-geophys.net/19/69/2012/
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Egs. (L7) and (L 8) for the variance are the same and also pos-which is actually unbiased if assumption 1 holds. If, how-
sess surprising permutational symmetries e.g. with respect tever, only an estimate ¢; is available, the complex depen-

1 andk in the second case, whereas the one betweand  dencies between this estimate and the error terms render a
k in the first case is obvious. Comparing the variance givenstraightforward analysis impossible.

by Eqg. (L9) with the corresponding one of the basic model It was noted in Sectl that different ways of obtaining
shown in Eq. 14), we see that the dominant terms (which estimates of the calibration constants have been proposed,
diminish with %) are almost identical; the only difference is e.g. an iterative scheme based on error-in-variables regres-

the coefficient oi-2 and it is due to the different denomina- sion Scipal et al. 2008 or the linear re-scaling biiralles

uu

tors. et al.(2010; Hain et al.(2011). Alternatively, the calibration
could also have been determined in a previous study or based
5.3 Affine model on a completely different method not connected to the collo-

cation technique. The advantage of using the simple estima-
The analysis of the affine model is vastly more difficult than (o for & in the bias model, which essentially just matches the
before. Itisimpossible to draw conclusions along the lines offj st moments, lies in the conceptual simplicity and the ease
the basic and the affine model because of the multiplicative;iin which analytical properties of the estimators can be de-
nature of thef term. _ rived. As the latter breaks down in the presence of the scale
First the determination of the scale facfbris analyzed.  factor g, the relative merits and drawbacks of the different
FollowingMuraleedharan et 202006, we firstintroduce the  agtimators of the calibration constants remain an open topic

differenced measurements of research.
1 : : .
y= - 5 Z Y=y = (i)e 5.4 Basic model with known correlations
=1

In this section the estimators are adapted so that known (or
postulated) correlations between different data sets can be
taken into account. An example was already given in Skct.
t\%/here one non-vanishing covariance was assumed. Follow-
ing the analysis in this section, it is immediately obvious that

the right most part of which defines the empirical average

in the affine model is given by

(y/lyl(>e =B (x/2>e+,8i (x'e))e + (xel)e + (efe])e the following estimators are unbiased:
ror\ 2 I ’ ! ’ 7 N
WG) = B Rt B et By () + efel) . 1
< e TR T e R e e Oii =Uij+0ik—0jk+ﬁz[ld;l,k]" (23)
The expected values of these two terms are given by (as- n=1

sumptions 1 and 3): The computation of the variance can be repeated

((yiy{)e)=ﬂi(X’2>e aloAl;ng th}(va Iine§ gf Eqg. 14); however, terms su.ch as
S U Y1 w=ale] ef e} ef ) are encountered. This one
((y,»yj)e> = BB )e yields(yjzk if n’ #n” by assumption 4 but additional assump-

where — as explained in Se@t1— the average is taken with tions about the higher order structure are required in order
respect to the error terms whereass treated as a deter- 0 evaluate it fom”=n". For simplicity's sake it will be as-
ministic parameter. This suggests the following estimatorSumed that the errors at timeare samples from a multivari-

(i # j # 1) (Caires and Ster2003: i\;eggormal distribution, for which we have th#oppmans
. i
= < ’/ l/>e (20) (Vivjvkv) = 0jjok +0ik0j1 +0i10 jik (24)
(ylyi )e

o ) ) wherev; ...v; are elements of a zero mean multivariate nor-
Due to it being a quotient of two dependent random variables o distribution ands;; denotes thei(j) element of its co-
the statistical properties cannot be derived in the same way,,iance matrix.

as those o in the bias model.
Assumingg; known for a moment, it follows from the def-
inition of the affine model that

After collecting the terms, the following expressions for
the variances are obtainéet j # k:

N 1
v —=Biy] =a; — Bie] e (21)  Var(sii) = N(Zdﬁ—%ﬁaz‘j—40ii0ik+0ii0jj
which suggests the following estimator + 2010 jk + 01 Ok +(,5, +60i0ix (25)
R 1 N - ZUijUjk_20i‘/(7kk+0—3<_2(7ik0'jj
b= v =Pt (22) >
] — 20ik0jk+ 00+ 0y )
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which relies on assumptions 1, 2, 2b, 3, 4 and the normalitycollocation technique td4 > 3 and the treatment of cross-
requirement for evaluating the 4th order moments. It is alsocorrelations, the estimation of calibration constants is for-

consistent with Eq.14) and possesses permutational sym-
metry with respect tg andk.

5.5 Basic model with one covariance estimated

The last constellation of error terms to be analyzed is the ba

gone and only the basic model of Ed) €onsidered.

At each epoch: the noise termg! are sampled from a
zero mean Gaussian distribution with specified covariance
matrix X, the numerical values of which will be given in the
relevant subsections. These noise terms at different epochs

are independent.

sic model when correlations are estimated. There are two The time series of the parametet is simulated as well

scenarios of interest: (i) all other covariances besides the on

estimated vanish and (ii) there are additional non-zero co
variances.

5.5.1 Correct covariance estimated

For the remainder of this part, assumption 3 will be gener-
alized: all error covariances apart frasy vanish. Among
the possible estimators of;, those of the following form are
particularly amenable to analysis# j # k #1):

23
Nn:l

N
1
n_n n_n
NZ(Q ej—eiel —e
n=1

where the unbiasedness follows directly from assumption 1
2, and 3 (modified).

In order to compute the variance of this estimator, we will
proceed as in the previous subsection Sget. the error is
assumed to follow a multivariate normal distribution and thus

Gij (26)

n_n

L tefe))

Even though the results of the collocation technigue are un-

affected due to the inherent differencing, e.g. B®)( It is
generated by independently drawing from a uniform distri-
bution (lower limit: O, upper limit: 10) at each epoghand
subsequently smoothing this result with a 5 element boxcar
filter.
A particularly important aspect of the simulation study is
the analysis of the results as the number of samjglgsows.
In this case the new samples are not merely appended to the
previous data but the entire sample is re-drawn.
Section6.1demonstrates the dependence of the results and
their accuracy on the number of samplésavailable. The
influence of cross-correlations on the collocation method is
studied in Sect6.2 Section6.3 deals with the possibility
of estimating cross-covariances in quadruple collocation, i.e.
whenM =4.

6.1 Triple collocation

In this first study we will look at three sensors, the (unitless)
error covariance matrix of which is taken to be

Eq. 24) applies. The usual expansion and collection of terms

yields
. 1/,

Var(6ij) = - (O[j +0ii0jj +0ii01+ 0Ok +Ukk011> (27)

where also assumption 4 is invoked.

5.5.2

Incorrect covariance estimated

We will now look at the consequences of additional cross-
covariances on the estimator of EQ6Y; i.e. when these cor-

100
020
003

Eaz

This is thus a standard triple collocation analysis where all
assumptions (1, 2, 2b, 3, and 4) are met. Figushows an
exemplary time series generated by the approach described
in the previous section.

The error variances can be estimated by recourse to
Eqg. 3), and more specifically Eqs4)-(6). The variance

relations are not properly accounted for. The estimator ofcan be computed using E4.4) —the simplification for Gaus-

Eq. (26) is generally biased in such cases:

N

n_n n
Z<ei e —e

i €
n=1
= 0ij —0i] — Okj + Okl

1

<&U>: ﬁ n n_n

n _n
l_ekej+ekel>

(28)

6 Simulation

sian noise applies. The results for two sensors as a function
of the number of sampleX¥ is displayed in Fig2; the lines
indicate thet2SE range, where the standard error SE is the
square root of the estimator variance, Eigl)(

The estimator variance given by E44j drops off asv—1,
which corresponds to a line with slopel in a log-log plot;
the different multiplicative factors get mapped to different
intercepts. This is illustrated for the same two sensors in
Fig. 3. The data values are empirically estimated variances:

In this section the previously gained insight is applied andfor eachN 50 time series are generated and the variance of
compared to simulated data; this allows us to study the im-the estimated;; plotted.

pact of violated assumptions on the retrieved results. As These results about the uncertainty in the estimates allow
the emphasis of this paper rests on the generalization of thas to address a question of great importance: the number
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Fig. 1. Exemplary time series witlv = 60, generated by the ap- Fig. 3. Convergence of the variance of the estimated variance as
proach described in Se&. the number of sample§ grows. The markers indicate the sample
variance obtained by running 50 simulations for eathThe solid
lines are the theoretical values given by Ef)(

4.0
3.5
3.0

et al, 2008 Dorigo et al, 2011) of needing at leasv =100
samples corresponds to=0.22; if we want a relative un-
certainty of 10 %, we need 500 samples, provided all the
previously mentioned assumptions hold. Note that positive
autocorrelation (which is the one most commonly encoun-
tered) generally increases the standard error and thus results
in overly optimistic estimates of the uncertainty, whereas the
simplification required to obtain Eq29) leads to conserva-

tive values of-.

2.5

2.0 B Sensor 1 |
Sensor 3

1.5
1.0

Estimated variance &;;

0.5

0.0
0 500 1000 1500 2000 2500 3000 3500 4000

Number of samples N

Fig. 2. Estimated variancé;; as function of the number of sam- 6.2 Triple collocation: crosscorrelation
plesN. The solid lines indicate th&2SE range (around the actual

value), as determined from Ed.4. In order to study the influence of a violation of assumption 3,

we now take the covariance matrix to be
of samplesN needed to achieve reliable results. The va-

lidity of the variance formula 8 depends on assumptions 1, 100
2, 2a, 3, and 4. The autocorrelation assumption is pary, — [ 031
ticularly problematic in time series studies. Nevertheless, 013

if these assumptions hold and the noise can be modelled

as a normal distribution, the variance was shown to be hich q lati 033 Wh
1 (262 + 6501 +0ii0;j +0;j01). If all error variances are  WNICh corresponds to a correlations = 0.33. en

similar in size this can be approximated by Eqgs. @)—(6) are adopted for estimat?ng the error v_ariances,
the expected value of each of them is 2, i.e. all estimates are

Var(&»-) ~ Eag g \/EG‘_ (29) wrong. This behaviour is illustrated using the simulated data
wee Nl N in Fig. 4. If, on the other hand, the applicable set of equa-
whereas otherwise, we can take senst be the one with tions Eq. @3) is adopted, the correct results are obtained, as
the largest error variance and interpret this formula as a conlS Mmade evident in Figs. Note that the covarianegs has to
servative bound. In Eq2) the simplified standard error P& known and that the normality assumption is invoked for
s is just the square root of the approximate variance. [nCOMputing the standard errors.

practice one is often not particularly interested in the abso-

lute standard errors§, but in the standard error relative to 6.3 Quadruple collocation

the quantity of interesto{;), which has the great advantage

of being a dimensionless quantity. In our case this relative-l-he possibility of estimating error covariances will be

errorr = UL :\/%. The frequently touted adviceés€ipal  demonstrated by applying the collocation technique to a
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Fig. 4. Estimated variance of the three sensors computed withFig. 6. Estimated variance%; 1, 622 and covariancé,, whenoq2
Eqgs. @)—(6) in the presence of correlations. The dashed lines in-is the only non-zero covariance. The solid lines indicatefRSE
dicate the correct values. range (around the actual value), as determined from E§.4nd

(27).
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Fig. 5. Estimated variance computed with the correct formula

Eq. 23, where the correct covarianegg is known. The solid  Fig 7. Estimated variance®ss and covariancé,s whenoy, is the

lines indicate the-2SE range around the actual value. only non-zero covariancel). The bias between the two estimators
for both the variance and the covariance is due to the covariance not

. . . . taken into account. The dashed lines indicate the correct values.
scenario consisting of four data sets with a covariance ma-

trix X
2100 — ub23= %Y 0 1[2.4;3,1]"
1300 N
Ye= 1 — poo3=+ YN 112,1;3,4]"
0050
00 Og where the left indicea andb denote two different estima-

Only one covariance is estimated as this facilitates theiﬁggr;heai%?ivgﬂ{jgzgz: ?:géﬁﬁg;di:ﬁgfesvs;?eo%es_
test of the positive-definiteness of the obtained covariancenon_zerg covariance terms ilhat were not,taken into account
matrix. Figure6 illustrates the results of the quadruple '

From a practical point of view this offers the possibility of

collocation technique in the presence of one non-zero co- . . o
d P detecting such covariances. However, in light of the results

variance ¢12) and when the estimators are chosen accord- . . . .
. ~ A obtained in Sect4.3, the collocation technique can only re-
ingly: 611=+ >N 1[1,3;1,41", 620= ~ N 1[2,3;2,41", S q y

. n=1 solve one part of the covariance matrix: the one in the vector
b12=+ SN [1,3;2,4]" M ) I
12= N Lin=1l59 52 o spaceB". The detection and estimation of the covariance
_ Figure7 shows the results of the appllcanon of the follow- gircture thus has to rely on additional assumptions (apart
ing estimators to the simulated data: from the validity of the additive error models and assump-
— 4000= %ZQ’:JZ’ 3,2, 4] tions 1 and 2) and these will likely be determined by expert

knowledge and experience with the respective data sources.
— po22=+ 3N 1[2,1;2,3]"
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(as derived in Sectl) exert an additional confounding influ-
ence as they imply that certain correlation structures are sim-
ply not resolvable by the method. Expert knowledge about
the sensors and models of interest thus remains a necessity
for the correct application of the collocation method.

Several simulation studies reveal the consequences of vi-
olated assumptions and also serve as empirical confirmation
of the results obtained in Se&. The dependence of the ac-
curacy on the number of samples is analyzed in detail and
with respect to all the different simulation scenarios.

Estimated variance &;;

oL ® ab22 A ab12|]

B p022 <4 012
-3 ] ] ] T T I I

0 500 1000 1500 2000 2500 3000 3500 4000 AcknowledgementsThe authors acknowledge the support of
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GMSM project and of the European Space Agency (ESA) through
Fig. 8. Estimated variance®z and covariancé,3 wheno s is the the Climate Change Initiative (CCI) Soil Moisture project. The
only non-zero covariancely). The bias between the two estima- authors would like to thank the reviewers for their comments and
tors for both the variance and the covariance is due to the covariancguggestions.
not taken into account. The dashed lines indicate the correct values.
Note that this example only differs from the one in Figin the Edited by: D. Maraun
noise: this illustrates the structural deficiencies of the collocationReviewed by: A. Stoffelen and another anonymous referee
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