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Abstract. Due to their construction, the devices used for
the measurement of electromagnetic fields (radiation moni-
tors) must be calibrated individually. The measurement data
obtained are documented in a calibration certificate and the
user must take them into account in the uncertainty budget he
has to draw up. In addition to the uncertainty contributions
of the field representation and of the transfer, other contribu-
tions occur which depend on the special constructive features
of these devices. When the uncertainty budget is drawn up,
it depends on the application and the information about the
field structure which contributions will have an effect and
which will not. The procedure will be explained by an exam-
ple.

1 Introduction

RF field strength meters (radiation monitors) are often used
for occupational safety measurements and for tests of elec-
tromagnetic compatibility. Their readout value is not only
determined by the external field strength, but also depends
on some other parameters, e.g. frequency, polarization and
modulation. To obtain the best possible results, these charac-
teristics have to be considered during measurements and for
the calibration procedure.

2 Construction of field strength measuring instruments

Field strength measuring instruments normally consist of a
broad-bandE or H -field sensor with a display unit device
and/or a data transmission unit which are interconnected by
a cable or a rigid handle. The sensors contain short dipoles or
loop antennas which are mostly equipped with diodes or ther-
mocouples as detectors. In practical applications, isotropic
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broad-band sensors, whose indication shall be independent
of the direction of incidence and polarization of the wave,
are in most cases used in view of their easy handling. As this
is possible only approximately, the most important contribu-
tions to the uncertainty of measurement result from:

– frequency response, anisotropy, non-linearity or limited
dynamic range of the sensor,

– temperature dependence of the complete device,

– stability of the amplifier, digitalization error,

– interference of the field by the connecting cable,
backscatter from the display unit, influence of auxiliary
devices (supports, transmission line for remote reading,
etc.).

3 Calibration procedure

“Calibration” generally refers to the detection of a deviation
between the value indicated by the measuring instrument and
the standard value of the physical quantity which must have
been derived (“traced back”) from the basic quantities of the
International System of Units (SI). For field strength mea-
suring instruments this means that a high-frequency field is
generated whose strength is well known with the highest pos-
sible accuracy and to which the measuring instrument is ex-
posed. The conditions prevailing during calibration must be
as close as possible to those of later practical applications so
that the above-mentioned contributions to the measurement
uncertainty are detected and can be taken into account. With
the calibration data the user can calculate from the value indi-
cated by his instrument the best estimate for the field strength
for his own measurements and to determine in addition the
overall uncertainty of his measurement result. Depending on
the case of application, a distinction is first to be made of
whether the complete instrument or (in special cases) only
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Figure 1: Frequency response in the “PE” and “PH” orientations 

 

Fig. 1. Frequency response in the “PE” and “PH ” orientations.

the sensor is exposed to the field. During measurements
for personal protection or in an EMC laboratory usually the
complete instrument is exposed. However, this also causes a
larger uncertainty, therefore only this unfavourable case will
be regarded further on.

During calibration, the complete instrument is placed into
the electromagnetic field in defined orthogonal orientations.
The mechanical centre of the sensor head is held in a fixed
position while the connection to the display unit is consec-
utively oriented parallel to the electrical (PE) field vector,
to the magnetic (PH ) field vector and to the poynting vector
(PS). Figures 1 and 2 show the impact of the different orien-
tations on the frequency response. The figures illustrate the
quotientk(f ) (“calibration factor”) which is determined dur-
ing calibration from the incident field strength and the value
indicated by the instrument:

k(f ) = EInc/ERead (1)

The extrema of these three measurement series yield the
anisotropy – in the case of this instrument, the calibration
factor varies as a function of the frequency by a factor up to
5.

Frequently, the term anisotropy is also used where rotation
asymmetry is meant, for example in the IEEE-1309 standard.
Such a measurement, in which the instrument is rotated only
about its fixed longitudinal axis shows the different sensitiv-
ities of the antenna elements and it is not more than a func-
tional test.

In a special orientation (PS), backscatter of the housing
also leads to a large anisotropy which can, however, be re-
duced by absorber material (Fig. 3).

The measured anisotropy data for diode detectors are valid
only in a limited dynamic range in which their characteristic
curve can be regarded as quadratic. In the case of larger field
strengths they become linear, and thus correct vectorial ad-
dition of the signals of the three single antennas is no longer
possible. This dynamic limitation must also be taken into
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Figure 2: Frequency response in the “PS” orientation Fig. 2. Frequency response in the “PS” orientation.

account by a correction factork(mod) for measurements in
amplitude-modulated fields, as is shown in Fig. 4. Up to ap-
prox. 50 V/m, the probe investigated works as an r.m.s. value
rectifier – i.e. in the quadratic part of the characteristic line.
Higher field strengths cause peak rectification in the linear
part of the characteristic curve, thus the correction factor de-
pendends on the modulation degree and field strength as well.

4 Measurement uncertainty

In practical applications it is often advisable to combine
the results of the calibration to one overall correction factor
which the user can apply directly to convert the display value
(ERead ) of his instrument into the best estimate (EMeas) for
the unknown field strength. The model equation for this pro-
cess is simply:

EMeas = k(f, I so, T , lin...)ERead (2)

If we assume furthermore that the indicated value of the
instrument (at least in case of a high-resolution digital dis-
play) does not show any relevant uncertainty in this applica-
tion, then the overall uncertainty for the field strengthEMeas

results from the uncertainty of the correction factor alone!
However, this simple approach presupposes that it will be

possible to combine the influences so far discussed and the
single correction factors resulting therefrom in a technically
suitable model equation to obtain an overall correction factor
k(f, I so., T , lin...) which is valid for the special instrument
under the current conditions of use. If the single correction
factors are assumed to be independent and uncorrelated, and
without additional informations, it is obvious that their prod-
uct is a good assumption for the overall correction factor.
This leads to the general expression:

k(f, I so., T , lin...) = k(f ) k(Iso)k(T ) k(lin)... (3)

In this case it is possible to determine the single correc-
tion factors by separate calibration measurements for the
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Figure 3: Reflection of the housing and its damping for “PS” orientation  Fig. 3. Reflection of the housing and its damping for “PS” orienta-
tion.

respective measuring instrument, and the respective uncer-
tainty contributions will be obtained. If this is not feasible
in the individual case, reliable well-founded empirical val-
ues, data from literature or manufacturer information must
alternatively be referred to.

In an uncertainty budget based on the above equation
which – if possible – should be generally valid, at first all
correction factors to be expected are provided so that in the
special case of application only the current numerical values
must be entered to calculate the overall uncertainty. If the
user considers single correction factors to be irrelevant, he
sets their numerical value to 1 and the uncertainty to 0, to
make it ineffective in the overall budget. The procedure can
best be explained by an example:

The measurement task is the following: a technician has
to control the personal protection limiting value during work
(LV) and must adjust the alarm threshold of his radiation
monitor accordingly. The specifications are:

Measurement on a D-network base station in the upper
band between approx. 935 MHz and 960 MHz, personal pro-
tection limiting valueLV=42 V/m.

The calibration certificate furnishes three frequency re-
sponses according to the three orientations measured during
calibration. These frequency responses contain the correc-
tion factors the technician can use to convert the readout of
his instrument – at an electrical field strength of 40 V/m –
into the best possible estimate for the field strength, if he
knows the frequency and the polarization of the field. For
the single frequency responses, an expanded relative uncer-
tainty of 1.2 dB (approx. 12%) is stated. These data furnish
the extremesk(f )MIN=0.79 andk(f )MAX=1.08 in the re-
quired frequency range. The interval of the correction factor
which considers both the anisotropy and the frequency re-
sponse of his radiation monitor is thus limited even if the
polarization of the field is completely unknown. Without ad-
ditional informations, he assumes a rectangular distribution
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Figure 4: Behaviour at amplitude modulation Fig. 4. Behaviour at amplitude modulation.

and regards the mean value (k(f )CAL=0.935) according to
Eq. (4) of this interval as the best estimate for the correction
factor valid for the whole D-network frequency range. Both
interval limits have the uncertainty stated in the calibration
certificate for the different frequency responses, which are
fully correlated. Introducingk(f )CAL with that stated un-
certainty therefore compensates the frequency response in
the best possible way, even when the polarization is com-
pletely unknown. In this case a readout ofDV=44.9 V/m on
the instrument corresponds to the limiting value from Eq. (5).
Dividing the interval limits byk(f )CAL normalizes the mean
value to 1, sok(f )ISO=1 is introduced as a fictive anisotropy
correction factor with no uncertainty coming from the fre-
quency response calibration, becausek(f )CAL already takes
that into account. Thereforek(f )ISO does not cause a nu-
merical change, and its associated uncertainty is caused by
the anisotropic sensitivity. The additional variance is calcu-
lated from the normalized interval limits, assuming a rect-
angular distribution as mentioned above. With this concept
the uncertainty contributions are well separated – the con-
tribution of the laboratory producing the calibration field is
in k(f )CAL, and the anisotropic instrument response is in
k(f )ISO .

As the temperature dependence of the radiation monitor
has not been investigated during the calibration, the techni-
cian introduces an additional correction factork(T ) for it,
with a numerical value of 1 as the best estimate and the rel-
ative uncertainty of 5% stated by the manufacturer over the
temperature range required here. For values from the litera-
ture without detailed specification, a rectangular distribution
for this parameter is appropriate. Now he has inserted all
available informations into the uncertainty budget, which fi-
nally takes the following form (e.g. calculated with a special
computer program, here “GUM Workbench”).
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Table 1. Uncertainty budget.

Quantity Value Standard uncertainty Degree of freedom Uncertainty contribution Index

k(f )MIN 0.7900 0.0474 50 −1.1 V/m 5.9%
k(f )MAX 1.0800 0.0650 50 −1.6 V/m 11.2%
k(f )CAL 0.9350 0.0402
k(f )ISO 1.0000 0.0895 ∞ −4.1 V/m 75.2%
k(T ) 1.0000 0.0289 ∞ −1.3 V/m 7.7%
LV 42.0 V/m
DV 44.9 V/m 5.04 V/m 1700

4.1 List of quantities and values

k(f )MIN : Calibration data (minimum) (type B standard
distribution)
value: 0.79 expanded uncertainty: 0.0948 cov-
erage factor: 2

k(f )MAX: Calibration data (maximum) (type B standard
distribution)
value: 1.08 expanded uncertainty: 0.13 cover-
age factor: 2

k(f )CAL: Correction factor = mean value of the interval
(intermediate result)

k(f )ISO : Correction factor for norm. anisotropy interval
(type B rectangular distribution)
value: 1 half width of the limits: 0.155

k(T ): Correction factor for temperature variation
(type B rectangular distribution)
value: 1 half width of the limits: 0.05

LV: Empty field strength, here: limiting value
specification acc. to 26. BImSchV (constant)
value: 42 V/m

DV: Display value of this instrument for field
strength limiting value (result)

4.1.1 Model equations

k(f )CAL=(k(f )MIN + k(f )MAX)/2 (4)

DV=LV/(k(f )CALk(f )ISOk(T )) (5)

Correlation coefficients:r(k(f )MIN , k(f )MAX)=1.
Table 1 shows the complete uncertainty budget and

furnishes as result:

quantity:DV =45 V/m expanded uncertainty:±10 V/m
coverage factor: 2.0 coverage: t-table 95.

In this example, the deviation of the corrected readout
from the limiting value is only relatively small. However,
if the technician would simply set the alarm threshold of his
instrument to 45 V/m, the personal protection limiting value
would already be exceeded with a probability of 50%! There-
fore, to remain with a probability of more than 95% below
the limiting value when the earliest warning signal is given,
he sets the threshold lower by the expanded uncertainty of
10 V/m. Setting the alarm threshold to a display value of
35 V/m should therefore meet his safety requirements even
under his unfavourable measurement conditions.

5 Conclusions

The result of this example clearly shows that the anisotropy
makes the dominating contribution to the overall uncertainty.
This fact retrospectively justifies the extensive work which
was necessary during calibration, but also the considerations
of the user himself. It also shows that already during calibra-
tion of such devices, the later field of application should be
taken into consideration. From the viewpoint of the user it
would be desirable if the manufacturers placed devices with
a considerably smaller anisotropy on the market.
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