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This study details the artificial neural network modelling of a diesel engine to pre-
dict the torque, power, brake-specific fuel consumption, and pollutant emissions,
including carbon dioxide, carbon monoxide, nitrogen oxides, total hydrocarbons,
and filter smoke number. To collect data for training and testing the neural net-
work, experiments were performed on a four cylinder, four stroke compression ig-
nition engine. A total of 108 test points were run on a dynamometer. For the first
part of this work, a parameter packet was used as the inputs for the neural network,
and satisfactory regression was found with the outputs (over ~95%), excluding total
hydrocarbons. The second stage of this work addressed developing new networks
with additional inputs for predicting the total hydrocarbons, and the regression
was raised from 75% to 90%. This study shows that the artificial neural network
approach can be used for accurately predicting characteristic values of an internal
combustion engine and that the neural network performance can be increased us-
ing additional related input data.
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Introduction

The use of diesel engines, invented by Rudolf Diesel in 1892, on the world market is

increasing annually because of its efficiency and inherent fuel economy characteristics [1, 2].

However, the combustion of diesel fuel in the engine results in production of pollutant emis-

sions. The main pollutants emitted are nitrogen oxides (NOx), carbon monoxide (CO), and par-

ticulate matter (PM), which is composed of soot. The stringent pollutant emission law limits of

the European Union for manufacturers are getting narrower at each new euro emission stage.

The European Automobile Manufacturers Association (ACEA) agreement with the European

Union foresees the carbon dioxide (CO2) limit of 120 g/km by the year 2012, which was pro-

posed to be 140 g/km in 2008 (EC, 2008). The new Euro 6 regulation proposes a 55% reduction

in NOx emission (0.180 g/km to 0.080 g/km) without any change in the PM emissions and a 26%

reduction in NOx + hydrocarbon (HC) emissions (0.230 g/km to –0.170 g/km) for compression

ignition (CI) diesel engine (EC, 2008). These stringent emission regulations compel the manu-

facturers to use research and development methodologies such as combustion modelling [3-5],

artificial neural networks (ANN) [6, 7] to predict the cylinder pollutant emissions, which is an

advantage during the research and development process.

The ANN approach is an evolutionary and fast calculation methodology that does not

require complex mathematical equations to explain a non-linear and multidimensional system.

Ozener, O., et al.: Artificial Neural Network Approach to Predicting Engine-Out ...
THERMAL SCIENCE: Year 2013, Vol. 17, No. 1, pp. 153-166 153

* Corresponding author; e-mail: oozener@yildiz.edu.tr

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/25794128?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ANN are capable of acceptable prediction of the output values for the researched system. Over

the last decade, more attention has been paid to ANN techniques, particularly in the automotive

industry, which has widely accepted ANN as technology offering an alternative solution for en-

gineering problems [7, 8]. “Artificial neuron” is used in the ANN terminology to show the simi-

larities between the developed mathematical system and the human brain including the transfer

of signals through synapses in the human body [9, 10].

The predictability of an ANN is a result of training with experimental data and valida-

tion with an independent set of data. The ANN has the ability to learn and improve its perfor-

mance if new data are available [11]. If there are enough experimental data, a well-trained ANN

can be used as a predictive model for specific applications, such as internal combustion engines,

in research and development. In several research papers, the researchers have used the ANN

modelling technique on the internal combustion engine for related issues such as predicting en-

gine exhaust emission, cylinder pressure reconstruction and engine fault diagnosis.

He and Rutland [7] studied multilayer preceptors (MLP)-structured ANN to predict

cylinder pressure (Pcyl), cylinder temperature (Tcyl), cylinder wall heat transfer (HT), NOx emis-

sion, and soot emission (soot). They used seven diesel engine control parameters as the standard

input package (SIP) for the MLP: engine speed (rpm), engine load (Mf), start of injection (SOI),

injection pressure (Pinj), mass of the first injection pulse of a split injection (M1), boost pressure

(Pbst) and exhaust gas re-circulation (EGR). The data they used for training and testing the ANN

was obtained from the computational fluid dynamics (CFD) calculations of a known diesel en-

gine using a KIVA code. They used the mean squared errors (MSE) algorithm and absolute er-

rors for evaluating the MLP performances, which they found to be acceptable. For all five out-

puts, the ANN achieved good predictive capability. They also studied the effect of prior

knowledge on ANN methodology. They added cylinder pressure and cylinder temperature

traces as inputs that were predicted with another simulation technique, which had lower fidelity

than the KIVA code [12, 13], to the SIP of the ANN. For predictive capability, they restructured

and optimised the MLP regarding the neuron numbers and the number of hidden layers. Then,

they trained and tested the newly designed networks with prior knowledge. They discovered

that with prior knowledge, the general performance of the ANN was improved compared to the

networks that were designed without prior knowledge.

Uzun [14] used the ANN method to perform parametric studies to investigate the ef-

fect of engine speed, injection advance (IA), and engine load variation on brake specific fuel

consumption (BSFC) in an engine equipped with or without a turbocharger. They choose

MLP-type ANN with a sigmoid activation function for their analyses. They first experimented

on the engine test bench and collected the data. Then, they divided the data into two sets for

training and testing the developed ANN. They identified the ANN geometry using a trial and er-

ror method, and they used sum of squares error (SSE) to control the convergence of the network

to the real outputs. The correlations obtained with the real output and the simulated output of the

ANN were found to be reliable. After they completed the development of the reliable ANN

model, they used this model for completing their comprehensive parametric analysis.

Yuanwang et. al. [15] presented a neural network model that predicts the exhaust emissions

from an engine using the total cetane number, base cetane number and cetane improver, total

cetane number and total nitrogen content in the diesel fuel as neural network inputs. The ANN

prediction accuracy obtained was in an acceptable range. Additionally, Ganapathy [6], Oguz et.

al. [11], Lucas et al. [16], Canakci et al. [17], Parlak et. al. [18], and Yuanwang et. al. [15] have

used MLP architecture with ANN for predicting engine performance parameters.
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In this study, the use of MLP structured ANN was proposed to determine the engine

brake power, brake torque, BSFC, and the emissions of CO, CO2, NOx, soot, and total hydrocar-

bons (THC) using a group of characteristic engine operating parameters as the ANN inputs.

Experimental works

Experimental set-up and measurement system

In this study, experiments were per-

formed on a Ford 1.8 L, CI diesel engine

using conventional diesel fuel. The test

engine specifications are given in tab. 1.

The instrumentation specifications

used on the test bench are shown in tab.

2. The schematic picture of the test

set-up is shown in fig. 1.

The experiments were run at maxi-

mum engine torque speeds (2000 rpm,

2500 rpm) and maximum engine power

speed (3750 rpm). The intake manifold

pressure was kept constant during the

tests using variable geometry turbo con-

trol. Before starting the main experi-

ments, the pre-experiments were per-

formed to identify the engine’s behav-

iour. The injected fuel mass was con-

trolled by the engine control unit

(ECU). The mass of fuel injected for

each cycle is defined by considering the mechanical limits of the engine, such as the maximum

cylinder pressure and the turbo compressor outlet temperature. For each test point, three differ-

ent injection pressures were tested.

Table 2. Test bench instrumentation

Instrumentation Type Sensitivity

Dynamometer AVL APA 204/8 ±0.3%

Fuel flow AVL 735C ±0.12%

Fuel temperature control AVL 735S ±1 °C

Air flow ABB sensy flow-P ±0.9%

Emissions

CO, HC, CO2, NOx Horiba mexa 7100 DEGR ±1.0%

Soot AVL 415S ±0.1%

Test automation system AVL Puma open 1.4 ISAC400 –

ECU Siemens l200 –

ECU control, [19] ATI vision 3.5 software [3] –
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Table 1. Test engine specifications

Manufacturer Ford

Model 1.8 L Lynx diesel engine

Combustion Direct injection

Number of cylinders 4

Aspiration VGT turbo charged

Type Common rail injection

Bore 82.5 mm

Stroke 82 mm

Displacement 1753 cm³

Compression ratio 17/1

Rated speed 3750 rpm

Max. power 81 kW at 3750 rpm

Max. torque 250 Nm at 1750-2500 rpm



Test procedure and

test points

In this study, engine

speeds of 2000, 2500, and

3750 rpm were investigated.

For each engine speed, three

different fuel masses were

injected. Only one injection

strategy was pursued. No pi-

lot or post injection was uti-

lised. During the tests, the

SOI and rail pressure were

varied and the intake mani-

fold pressure was kept con-

stant within the predefined

range, which was identified

with two pre-tests.

EGR was not employed.

In total, 108 experiments

were performed on the test

bench. The tested points are
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Figure 1. Experimental set-up

Table 3. Test points

Test
point
[rpm]

Mass of
injection
per cycle
[mg per
stroke]

Intake
manifold
pressure

[hPa]

Rail pressure
variation

[MPa]

SOI
variation

[°CA]
(aTDC*)

2000

25 2000 120, 130, 140

–15, –10, –5,0

38 2200 130, 140, 150

43 2300 130, 140, 150

2500

28 2000 130, 140, 150

37 2200 130, 140, 150

45 2300 130, 140, 150

3750

25 2000 120, 130, 140

38 2200 130, 140, 150

40 2300 130, 140, 150

* aTDC – after top dead centre



listed in tab. 3. To make a steady-state analysis, the engine was warmed up to 90 °C before the

experiments. Then, the engine speed and load were set to the desired values. Each measurement

point had a stabilising time of 2 minutes and a recording time of 140 seconds.

Artificial neural network design

Haykin [10] stated, “ANN is a massively parallel-distributed processor, made up of

inter-connected simple processing units, which has a natural propensity to store experiential in-

formation and to make it available for use. It resembles the brain in two respects: (1) Knowledge

is acquired by the network from its environment through a learning process; (2) Interneuron

strengths, known as synaptic weights, are used to store the knowledge.”

The ANN methodology has different network types that researchers use for solving

various problems. The MLP network is a feed-forward ANN that can map a set of input data to a

set of appropriate outputs. MLP are particularly developed for the solution of non-linear behav-

ioural problems. The MLP structure is mainly formed from three layers as shown in fig. 2. These

layers are: (a) input layer – consisting of the input parameters, and these parameters are consid-

ered as they affect the outputs of the network, (b) hidden layer – the inputs are processed within

the weights and biases with the predefined non-linear activation functions, and (c) output layer –

consisting of the output parameters. The MLP working process includes three consecutive

steps: (1) creating and configuring the network – the inputs, number of hidden layers, number of

neurons at the hidden layer, activation function and the topology of the network is identified at

this step, (2) training the network – initialise the weights and biases, and error minimisation with

respect to targeting the data, and (3) usage of the network. At the beginning of the MLP process,

each input is multiplied with an appropriate weight w; generally this w is identified arbitrarily at

the initialisation step. We can call this result of multiplication the weighted inputs (wi), and the

weights at this input layer are called input weights (iw):

wi iw ip
n

n

n n� �
�

( )min.
1

(1)

where m is the number of inputs and n – the number of neurons at the hidden layer. Then, these

weighted inputs are summed with biases b, where b is the threshold value. The result is called

the “net input – nip”.

nip wi bn n n� � (2)

Then, the net input is passed through a transfer function, which has to be differentiable

(generally sigmoid) and produces the output (o):

o
nipn

n
e

�
� �

1

1
(3)

After the output is calculated, the outputs are multiplied with the layer weights (LW)

and summed with biases. The result is called net output (nout):

n LW o bj nj n
n

n

out � �
�
� ( )1

1

(4)

This step is called the feed forward calculation. After the output of the network is ob-

tained, the desired jth output is compared with the desired jth target value (t) and the error (e) is

calculated:

e t nj j j� � out (5)
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In the following step, to minimise the error, the error value is distributed to the weights

with a predefined algorithm where the performance of the ANN is evaluated with the MSE algo-

rithm:

MSE
j

e j
j

� �
�

�
�

�

	



1 2
(6)

These two steps have to be repeated until the desired predefined error level is reached.

These two consecutive steps can be generalised as the “training step” of an MLP-type ANN [9,

20, 21]. For training, any standard numerical optimisation algorithm can be used to optimise the

performance function. Beale et al. stated [21], “there are a few key ones that have shown excel-

lent performance for neural network training in which these optimisation methods use either the

gradient of the network performance with respect to the network weights or the Jacobian of the

network errors with respect to the weights. The gradient and the Jacobian are calculated using a

technique called the back propagation algorithm, which involves performing computations

backward through the network.” When the error reaches a previously determined tolerance

value, the training process is stopped [11]. According to Oztemel [20] “the information that is

produced during this process is measured and stored within these adjusted weights and it is hard

to reveal and interpret this information. “During these processes, the ANN learns the underlying

function/physics of the system, while the results of the ANN learning are adjusted weights that

could be used to accurately approximate the underlying function/physics of the system [7]. After

the learning step, the network is tested with a different data set than that which was actualised

before, and the performance of the network is analysed [20]. The structure of ANN is shown in

fig. 2.
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Application of neural networks

The goal of using ANN for this work is estimating the desired engine output parameter

by using some engine operating parameters as inputs for the designed neural network. The net-

work groups studied in this work were divided into two main groups. The first network group

(NG1) used 10 engine operating parameters as inputs at the input layer of the network. These in-

puts are listed in tab. 4. All NG1 inputs are indicated in fig. 1 with respect to their numbers (Nr).

Each network is trained for estimating only one individual engine output parameter. This input

group will be called the standard input package (SIP) after this point. The outputs are brake

power [kW], BSFC , [gkW–1h–1]brake torque [Nm] and brake-specific engine out emissions,

which are CO2 [gkW–1h–1], CO [gkW–1h–1], THC [gkW–1h–1], NOx [gkW–1h–1], and filter smoke

number (FSN). This first group of networks has only one hidden layer, and during the training

sessions, the neuron number of the hidden layer was increased from 1 to 20 to investigate the re-

action of the network output to the hidden layer neuron number.

Table 4. Standard input package inputs

Nr. NG1 input type Unit Physical explanation of the variable

1 Engine speed rpm The number of engine crankshaft rotations per minute

2 Start of main injection °CA The main injection timing with respect to engines TDC

3 Mass of injection mg/stroke The injected fuel mass into the cylinder per cycle

4 Rail pressure MPa The fuel injection pressure during the injection process

5 Manifold pressure hPa The engine intake air pressure

6 Manifold temperature °C The temperature of intake air

7 Inlet air mass flow kg/h The mass flow of intake air

8 Exhaust temperature °C The temperature at the exit of the turbocharger turbine

9
Cooling water inlet
temperature

°C
The temperature of the water that enters the engine block
for cooling

10
Cooling water outlet
temperature

°C
The temperature of the water that exits the engine after
re-circulating in the engine water jackets

After the design, training and analyses of the NG1 network, the THC estimation re-

sults were found to be unsatisfactory, and a new group (NG2) of networks were created to pre-

dict the THC. While designing the new individual networks for THC formation, the characteris-

tics of this pollutant were considered. HC are the consequence of incomplete combustion, and

HC emissions are sensitive to the oil and coolant temperature and increase from fuel absorbed in

deposits and oil layers [22, 23. Therefore, in the newly designed networks, the parameters that

were related to enhancing the phenomenon of HC oxidation and HC absorption at the oil layers

were considered. All of the new parameters are listed in tab. 5.
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Table 5. Additional NG2 inputs and physical explanations

Nr. NG1 input type Unit Physical explanation of the variable

11
Maximum in-cylinder
pressure

bar
The maximum pressure reached in the cylinder during
the combustion process

12 Engine temperature °CA The temperature measured directly at the engine head

13 Turbine inlet temperature mg/stroke
Temperature measured before the turbocharger turbine
inlet

14 Oil temperature MPa Temperature measured at the oil sump

15 Oil pressure hPa Pressure measured at the pressurised oil transfer line

The first group of new parameters that can be correlated with HC oxidation consisted of

the maximum in-cylinder pressure, engine temperature, and turbine inlet temperature. The tur-

bine inlet temperature is measured directly from the plenum of the exhaust manifold (before the

turbocharger turbine section inlet). These data reflect more precise information about the com-

bustion process and the combustion temperature than the exhaust temperature that was taken

from the exhaust line (after the exit of turbocharger turbine) and more directly affect the HC oxi-

dation. The second group of new parameters consisted of the oil temperature and oil pressure,

which can be correlated with oil absorption at the deposits and oil layers. Each NG2 input is in-

dicated in fig. 1 relative to their numbers. The NG2, which has three subgroups, uses the afore-

mentioned operating parameters in addition to the SIP to estimate the THC. The first subgroup

of NG2 (NG21) has three parameters, and the second subgroup of NG2 (NG22) has two extra in-

put parameters in addition to the SIP. The third subgroup of NG2 (NG23) uses these extra five

parameters, which were used in NG21 and NG21, in addition to the SIP. The NG2 input parame-

ters groups are listed in tab. 6. The main aim of creating new networks is develop a satisfactory

THC estimation. During this process, the reaction of the network to the increased number of in-

put parameters and to the input type was also investigated.

Table 6. NG2 networks inputs

Network
name

Input parameters Output

NG21 SIP + Pmax* + Engine temperature + Turbine inlet temperature

THC
NG22 SIP + Oil temperature + Oil pressure

NG23
SIP + Pmax + Engine temperature + Turbine inlet temperature + Oil temperature +
+ Oil pressure

* Pmax – maximum in-cylinder pressure

The data group obtained in the experiments was composed of 108 data sets, and these

data sets were divided into three subsets. The first subset was the training set, which was used to

compute the gradient and update the network weights and biases. This first subset included 50%

of the experimental data. The second subset was the validation set, which included 20% of the
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experimental data. The error in the validation set was monitored during the training process. The

validation error was expected to decrease during the initial phase of training, as did the training

set error. However, when the network began to over-fit the data, the error on the validation set

began to rise. Training continued until the validation error failed to decrease for six iterations.

Then, the weights and biases at the minimum validation error were recorded and used. The third

subset was the test set through which the network performance can be checked separately. The

test set consisted of 30% of the experimental data set. The Matlab Programme ANN toolbox was

used for developing and analysing the networks. A two-layer feed forward network with a tan-

gent sigmoid (tansig) transfer function at the hidden layer and a linear transfer function at the

output layer was formed for output estimation. In this study, the Levenberg-Marquardt algo-

rithm was used for training, validation and testing that used the Jacobian of the network errors.

The algorithm used is shown below:

H = JTJ (7)

g = JTe (8)

xk+1 = xk – [JTJ + mI]–1JTe (9)

where, H is the Hessian matrix approximation, J – the Jacobian matrix that contains first deriva-

tives of the network errors, m – the Levenberg damping factor, k – the iteration number or the

time step, x – the value of the weights, and e – the vector of network errors. This algorithm is the

fastest method for training moderate-sized feed forward neural networks up to several hundred

weights [21]. Extensive information about the Levenberg-Marquardt algorithm can be found in

the literature [24]. The correlation coefficients (R) for the learning, validation, and testing stages

were calculated to evaluate the ANN prediction capabilities. Additionally, the MSE obtained

were provided for these stages [8, 21, 25]:

R

t t nout nout

t t nout nout

j j
j

j

j
j

j

j

�

� ��

�� �

�

�

( ) ( )

( ) ( )

1

2

1

2

j

j

�
�

1

(10)

where tj is the target (real) value of jth test point output, the noutj – the output of the network esti-

mated value (Est.), and t and nout are the mean values of the target and output values group, re-

spectively.

Results and discussion

NG1 networks

The NG1 network overall regression (R)

with an increasing neuron number at the hidden

layer is given in fig. 3 for the CO, CO2, NOx,

and FSN brake emissions, brake torque, brake

power, and BSFC. The regression values pre-

sented in the figures are the values of the entire

process (the combined training, validation, and

testing phases). As seen from the figures and

trend lines, the regression/performance of the

networks increased with increasing neuron
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number, and the average regression is over ~95%, which is a satisfactory result for this research.

The neuron number of NG1 networks that show estimation performance superior to the others

are: 13 neurons for CO2 estimation, 5 neurons for CO estimation, 14 neurons for NOx estimation,

a 16 neurons for FSN estimation, 14 neurons for torque, 7 neurons for power estimation, and 11

neurons for BSFC estimation. The R and MSE values are shown in tab. 7. The performance

graphs for the networks with the best regression are shown in fig. 4 (a-g). The THC estimation

results for the NG1 networks and the best estimator network for the THC from NG1 group (13

neuron network, R-0.84945 and 0.24 MSE) and its performance graph are shown in fig. 5. As

shown in the figure, the average estimation performance for THC is ~75, which is not satisfac-

tory. Then, the new network group, which will be called the NG2 networks, were designed for

THC estimation.

Table 7. Best NG1 networks R and MSE values

Output

Training Validation Testing ALL

NN*

R MSE R MSE R MSE R MSE

CO2 0.9999 1.6E–17 0.9959 2.3E–1 0.99836 9.6E–1 0.9979 6.0E–1 13

CO2 0.9992 3.8E–3 0.9938 3.3E–2 0.99442 1.2E–2 0.9969 1.2E–2 5

NOx 0.9999 1.0E–2 0.9898 5.6E–2 0.99896 5.9E–2 0.9994 8.5E–2 14

FSN 0.9999 4.4E–6 0.9668 4.7E–3 0.96424 4.9E–3 0.9982 2.0E–3 16

THC 0.9463 1.6E–1 0.7307 3.4E–1 0.73600 3.2E–1 0.8494 2.4E–1 13

Torque 0.9999 4.1E–2 0.9996 1.2E–2 0.99957 1.9E–2 0.9998 8.4E–1 14

Power 0.9999 4.5E–3 0.9999 2.4E–2 0.99984 6.7E–2 0.9993 2.7E–2 7

BSFC 0.9999 1.9E–5 0.9990 1.3E–2 0.99757 3.6E–2 0.9992 1.3E–1 11

* NN – number of neutrons at hidden layer

NG2 networks

The NG2 networks were solely designed for THC estimation. The main aim is a better

estimation of THC with an increased number of inputs and also increased prior knowledge. The

three new network group performances and the reference NG1 network performances with the

increasing neuron numbers are given in fig. 6. As shown in the indicated trend lines for the data

sets, the estimation performance increased with an increasing number of inputs for the THC

emissions. Whereas the NG1 reference performance, with the SIP input packet, remained at ap-

proximately 75%, the NG21 performance with its input packet of engine temperature, turbo tur-

bine inlet temperature and the current SIP packet was approximately 80%. The NG22 perfor-

mance with its input packet of oil temperature, oil pressure and the standard SIP packet was

~85%, and the NG23 performance with its input packet of engine temperature, turbine inlet tem-

perature, oil temperature, oil pressure, and the standard SIP packet was ~90%. It is obvious that

the NG22 network estimation performance (~85%) is higher than NG21 (~80%). Therefore, the
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networks for this experiment are more sensitive to the oil temperature and oil pressure data char-

acteristics for THC estimation. The neuron numbers for the NG2 networks with superior esti-

mation performance are: 11 neurons for the NG21 network, 10 neurons for the NG22 network,

and 11 neurons for NG23. The R and MSE values are given in tab. 8. The performance graphs for

these networks are given in fig. 7(a-c).
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Figure 4. NG1 Network regression analysis
(a) CO2 – (12 neurons); (b) CO – (5 neurons);
(c) NOx – (14 neurons); (d) FSN – (16 neurons);
(e) Torque – (14 neurons); (f) Power – (14 neurons);
(g) BSFC–NG1 (11 neurons)



Table 8. Best NG2 networks R and MSE values

NG2

Network

Training Validation Testing All
NN

R MSE R MSE R MSE R MSE

NG21 0.9867 2.0E–2 0.7011 4.2E–1 0.8383 2.7E–1 0.8819 1.7E–1 11

NG22 0.9956 7.8E–2 0.8301 2.9E–1 0.9265 2.3E–1 0.9292 1.3E–1 10

NG23 0.9975 4.4E–3 0.775 3.2E–1 0.8839 2.4E–2 0.9155 1.3E–1 11

Ozener, O., et al.: Artificial Neural Network Approach to Predicting Engine-Out ...
164 THERMAL SCIENCE: Year 2013, Vol. 17, No. 1, pp. 153-166

Figure 5. ( a) NG1 network regressions for THC; (b) Regression analysis of THC– NG1(11 neurons)

Figure 6. NG2 network regressions for THC



Conclusions

In this study, the performance of the neural network calculation method was investi-

gated to estimate two engine-out parameters. A regression analysis between the network re-

sponse and the corresponding targets was performed. The results indicate the following.

� The estimation performance of neural networks increased with an increasing neuron number

at the hidden layer in all cases.

� The NOx, CO, CO2, power, torque, and specific fuel consumption estimations are

satisfactory (over 95%) using the SIP as the input layer of the neural network.

� An increased number of inputs at the input layer results in increased estimation performance

(75% to 90%) for the THC estimations.

� For the same number of inputs, NG22 networks are more sensitive than the NG21 networks

for THC estimation, which use only oil pressure and oil temperature at the input layer instead

of engine temperature and turbo turbine inlet temperature.

� The overall performance of neural networks is satisfactory, and it is obvious that with the

proper input layer and hidden layer characterisation, this method can be utilised to estimate

the engine out parameters with high levels of confidence.
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