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We experimentally validate a relatively recent electrokinetic formulation of the streaming potential (SP) coefficient as developed
by Pride (1994). The start of our investigation focuses on the streaming potential coefficient, which gives rise to the coupling of
mechanical and electromagnetic fields. It is found that the theoretical amplitude values of this dynamic SP coefficient are in good
agreement with the normalized experimental results over a wide frequency range, assuming no frequency dependence of the
bulk conductivity. By adopting the full set of electrokinetic equations, a full-waveform wave propagation model is formulated. We
compare the model predictions, neglecting the interface response and modeling only the coseismic fields, with laboratory measure-
ments of a seismic wave of frequency 500 kHz that generates electromagnetic signals. Agreement is observed between measurement
and electrokinetic theory regarding the coseismic electric field. The governing equations are subsequently adopted to study the
applicability of seismoelectric interferometry. It is shown that seismic sources at a single boundary location are sufficient to retrieve
the 1D seismoelectric responses, both for the coseismic and interface components, in a layered model.

1. Introduction

The first observation of coupling between electromagnetic
and mechanical effects (also known as electroosmosis, which
is one of the electrokinetic effects) dates back to the begin-
ning of the 19th century. In 1809, Reuss [1] was the first to
report on an experiment where a direct current was applied
to a clay-sand-water mixture. The experiment was performed
with a U-tube, filled with quartz at the bottom. Application
of an electric current caused the water to rise in the leg con-
taining the negative electrode [2].

The electrokinetic effect works as follows. In a fully
fluid-saturated porous medium, a charged nanolayer at the
solid-liquid interface is present (see Figure 1). The origin of
this charged nanolayer lies in the presence of an aqueous

solution, typically a negatively charged silane grain surface.
The resulting interface potential is called the zeta-potential,
which is typically negative and on the order of a few tens
of millivolts [9]. The counterions in the fluid reorganize in
a layer that is bound to the surface by electrostatic forces
(Stern layer) and a diffuse layer that is free to flow. In the
diffuse layer two types of physical phenomena are competing,
the electrostatic forces between the ions and the Brown-
ian motion of the particles. This effectively results in an
exponentially decreasing potential away from the solid-liquid
interface towards the bulk of the pore (see Figure 1). The
characteristic length over which the EDL exponentially
decays, known as the Debye length, is of the order of a few
tens of nanometers for typical reservoir rocks. The Stern layer
and the diffuse layer together are usually called the electric
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Figure 1: Electric double-layer according to the Stern model. The inner and outer Helmholtz planes are indicated as IH and OH, respectively.
The slipping plane is denoted by S and its charge is characterized by the ζ-potential (modified from [2–8]).

double-layer (EDL), see Figure 1. The Debye length is consid-
erably thinner than any viscous boundary layer that normally
develops in pore fluid transport phenomena [3]. Quincke
[10] performed electroosmosis experiments on glass cap-
illaries. The simple geometry used, allowed for controlled
experimental conditions. Linearity between the electroos-
motic volume and the applied electric field was observed.
Another electrokinetic effect, the physical phenomenon of
electrophoretic mobility, where particles are mobilized by
electrical fields, was described by Quincke [10] together with
Reuss [1]. A mathematical description of both phenomena
(electroosmotic and electrophoretic mobility) was later
derived by Helmhlotz [11]. However he did not consider
the electric permittivity. Von Smoluchowski [12] derived the
well-known Helmholtz-Smoluchowski equation, in which
the electric permittivity is incorporated. Smoluchowski also
recognized reciprocity between electroosmotic flow and
streaming potential phenomena (mechanical to electromag-
netic effect), later described by Onsager [13, 14].

Gouy [16] and Chapman [17] improved the theoretical
model by including the diffuse layer of counterions in the
model, thereby relating the thickness of the diffuse layer to
the ionic strength of the solution [3]. To overcome limita-
tions with highly charged electric double layers, Stern [18]
added another layer to the model, see Figure 1. This theorem
was some years later perfected by Derjaguin and Landau [19],
and also by Verwey and Overbeek [4] in the “DLVO” theory,
which describes in even more detail the forces between
charged surfaces interacting through an electrolyte.

In 1936, Thompson [20] suggested that the electrokinetic
effect could be used for geophysical prospecting. The Russian

physicist Yacov Il’ich Frenkel [21] developed a theory for
wave propagation of electrokinetic phenomena in fluid-
saturated porous media, in which he predicted the slow
compressional wave and the seismoelectric effect (thereby
he made a marginal error in the development of the Biot-
Gassmann constants, he also only considered the electric
effect and not the full Maxwell equations [22]). In 1959,
Martner and Sparks [23] were the first to report that an elec-
tric potential difference generated in the subsurface by the
passage of seismic waves could be detected by electrode pairs.
Somewhat later, an experimental programme was under-
taken to evaluate the electroseismic effect as a possible means
for detecting underground nuclear tests. The goal was to
develop long range systems for detection of nuclear blasts,
see for example, Broding et al. [24] and Long and Rivers [25].
Due to insensitive technical equipment, lack of computing
power, and the success of conventional seismic and electro-
magnetic methods, electrokinetics never gained much atten-
tion in geophysical exploration, at least until the 1990s.
Moreover, the majority of field tests up to that time were
concerned with the seismoelectric effect while the reciprocal
electroseismic effect was underexposed. Extended field tests
were only performed recently [26].

Regarding wave modeling, Neev and Yeatts [28] were
the first in recent history (since Frenkel) to postulate a set
of equations, which attempted to model the interaction
between mechanical waves and electric fields due to elec-
trokinetics. Their model did not include the Maxwell equa-
tions and frequency-dependence of the transport laws. A
possible way to include all effects is by volume averaging the
continuum equations for solid grains and electrolyte fluids.
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Figure 2: Schematic of a “standard” geometry for a seismoelectric survey (modified from Haines [5], Kroeger [6, 15]). One fluid-saturated
porous layer (layer 1) overlies a porous half-space (layer 2), with contrasting medium parameters (panels (a) and (c)). The seismic source gen-
erates longitudinal wave (labelled 1) that is recorded by surface geophones (left part of panel (b)). This wave also creates a coseismic electric
field that is registered by the surface electrodes (right part of panel (b)). When the longitudinal wave arrives at the interface between the
porous layers, the interface field is generated (labelled 2), that is also recorded by the surface electrodes (right part of panel (d)).

Using this approach, Pride [29] obtained the governing equa-
tions for coupled electromagnetics and elastodynamics of
porous media.

The governing equations of Pride describe coupled
seismic and electromagnetic wave propagation effects. A
schematic description of the coseismic and interface response
effects is given in Figure 2. Figures 2(a) and 2(c) show a cross-
section of the subsurface, with corresponding seismogram
and seismoelectrograms in Figures 2(b) and 2(d), respec-
tively. The subsurface consists of two layers. Geophones and
electrodes are positioned at the surface. In Figure 2(a), a
local pressure disturbance is initiated at t = 0. Due to the
mechanical pressure source, a longitudinal wave is created
(labelled 1 in Figures 2(a)–2(d)). The seismic wave creates

a fluid pressure gradient within the pulse that induces pore
fluid flow. Excess electrical charge in the double layer is
transported by this flow. The net flow of charge relative to
the grains is known as the streaming electric current. The
induced conduction current leads to the electric field known
as the “coseismic field” [5, 6, 30]. The coseismic field travels
along with the seismic wave, giving it the same velocity
as the compressional wave (compare the slope of event 1
in the left and right part of Figure 2(b)). When the pressure
wave encounters the interface (with changing medium
parameters) between porous layers 1 and 2, this results
in a local asymmetry in the charge distribution. This will
induce an oscillating electric dipole (Figure 2(c)). The asso-
ciated independent electromagnetic field will travel almost
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immediately to the receiver electrodes (Figure 2(d), right
part). This seismoelectric effect is known as the “interface
response field”. The coseismic and interface response fields
were measured in the laboratory (e.g., [7, 31–34]) and in the
field (e.g., [25, 35–40]). Zhu and Toksöz [41] and Bordes
et al. [34, 42] reported on coseismic magnetic field mea-
surements associated with a Stoneley wave and a shear
wave, respectively. The dynamic SP coefficient, that links the
mechanical and electromagnetic fields in Pride’s set of
equations, was measured by Reppert et al. [8] and another
validation is presented in this paper. Also, full-waveform seis-
moelectric models that adopt Pride’s theory were compared
with measurements. Mikhailov et al. [36] and Haines et al.
[39] compare seismoelectric synthetic sections with field
measurements and find qualitative agreement. Zhu et al.
[32] found kinematic agreement between full-waveform seis-
moelectric predictions and laboratory measurements. Block
and Harris [7] compared amplitudes of coseismic wave fields
in sands with numerically predicted amplitudes and fitted
their measurements to Pride’s theory by incorporating an
additional surface conductivity term. Charara et al. [43]
found agreement between modeled and measured seismo-
electric waveforms and amplitudes at a fluid/porous-med-
ium interface in a laboratory setup. Schakel et al. [44, 45]
found agreement between laboratory measurements of the
coseismic and interface response fields and full-waveform
and spatial seismoelectric predictions in terms of traveltime,
waveform, and spatial amplitude pattern. Seismic waves can
image to great depths but at the cost of resolution. Electro-
magnetic waves are sensitive to additional material properties
and can therefore provide us with information about the
pore fluid content. Seismoelectric conversion methods in
field studies can combine seismic resolution and electromag-
netic hydrocarbon sensitivity [39].

However, in seismoelectric surveys, the interface res-
ponse is known to be very weak, that is, the response
suffers from a very low signal-to-noise ratio. Therefore, the
sources in classical seismoelectric surveys need to be strong.
This is not always possible and therefore it is beneficial to be
able to replace those strong sources by receivers: the principle
of interferometry. In addition, by doing interferometry,
stacking inherently takes place with a possible improvement
of the signal-to-noise ratio as a result [46]. From an imag-
ing point of view, the principle of interferometry has already
been proven useful for a wide class of phenomena, for exam-
ple in seismic and electromagnetic systems (e.g., Wapenaar
et al. [47], Slob et al. [48]). Seismic interferometry is a seis-
mological technique which makes use of the cross-correla-
tion of responses at different receivers in order to obtain the
Green’s function between these receivers [49]. It can include
both passive and active sources. Due to the fact that the
cross-correlation generates new data from measured data, it
may allow for improved imaging compared to the situations
where imaging algorithms are applied to the measured data
only.

The foundations of the principle of interferometry were
lain in 1968 by Claerbout who showed that by using the
autocorrelation of the 1D transmission response of a hor-
izontally layered medium (bounded by a free surface), the

reflection response of this medium can be obtained [50, 51].
Later, Claerbout conjectured that this relation could also
be extended for 3D inhomogeneous situations, which was
proven by Wapenaar [52]. By cross-correlating the recorded
noise at two locations on the surface, it is possible to
construct the wavefield that would be recorded at one of
the locations as if there was a source at the other [53]. For
a detailed overview of the theory of interferometry (e.g.,
stationary phase arguments, controlled-sources, interfero-
metric imaging), the reader is referred to Wapenaar et al.
[49, 54, 55] and Schuster [56]. Wapenaar et al. [57] showed
the link between the principle of reciprocity and seismic
interferometry. Using the reciprocity theorem of the corre-
lation type, they generalized Claerbout’s relation between
transmission and reflection responses to 3D inhomogeneous
acoustic and elastic media. This theory was confirmed with
numerically modeled seismic data in laterally varying media
[58]. Wapenaar et al. [47] have shown that using cross-
correlation to retrieve the Green’s function response between
two stations is in principle not limited to seismic systems
but holds for a wide class of phenomena, including seis-
moelectromagnetic wave propagation. We take the principle
to the next level by numerically simulating seismoelectric
interferometry by cross-correlation. de Ridder et al. [46]
have already shown, with three numerical examples, that it is
indeed possible (under certain conditions) to obtain accurate
Green’s functions from boundary sources only. Here, we will
increase the complexity of the numerical configuration by
adding an extra layer to the system, to investigate the Green’s
function retrieval for a 1D, three-layered system bounded by
a free-surface.

Although the individual constituents of Pride’s model
(i.e., Biot’s theory and Maxwell’s theory) have been exper-
imentally validated, the dynamic SP coefficient that links
these theories has been rarely studied (for a review see Jouni-
aux and Bordes, this issue). Also, despite the experimental
verification of the coseismic and interface response fields,
direct comparisons between electrokinetic wave propagation
theory and measurements are scarce. In this paper we (1)
validate electrokinetic theory by measurements and (2)
investigate the applicability of correlation imaging with cou-
pled seismic and electromagnetic wave propagation. First we
present Pride’s electrokinetic governing equations. Second,
the theoretical dynamic SP coefficient is compared against
normalized measurements. Third, a seismoelectric wave
model is formulated and model predictions are compared
against seismoelectric wave propagation measurements.

It is shown that measurements of both the dynamic
SP coefficient and the coseismic wave field are adequately
described by the electrokinetic theory. This theory is subse-
quently adopted, when we numerically investigate the appli-
cability of correlation imaging with seismoelectromagnetic
waves.

2. Governing Equations

The governing equations for seismoelectric and electroseis-
mic wave propagation in a fluid-saturated porous medium
are derived from the compilation of Biot’s theory [60, 61]
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together with Maxwell’s theory. The Biot equations describe
the acoustic side of electrokinetic phenomena. They are
a combination of momentum equations and the stress strain
relationships for an isotropic material, together with the
continuity equations [62–64].

Expressing the expanded Biot equations, for the solid as
well as the fluid and adopting an eiωt time dependence, yields
the following linearized set of governing equations

G∇2ûs + (A +G)∇(∇ · ûs) +Q∇
(

∇ · û f

)

= −ω2
[

ρ11(ω)ûs + ρ12(ω)û f

]

+
ηφL(ω)
k(ω)

̂E,
(1)

Q∇(∇ · ûs) + R∇
(

∇ · û f

)

= −ω2
[

ρ12(ω)ûs + ρ22(ω)û f

]

− ηφL(ω)
k(ω)

̂E,
(2)

where A, Q, R are the Biot Gassmann constants [62], G the
shear modulus, ρ f is the fluid density, ρs is the solid density,
α∞ is the tortuosity, η is the fluid viscosity, k0 is the (static)
permeability, ̂E is the electric field, and L(ω) is the dynamic
electrokinetic coupling [29]

L(ω)
L0

=
⎡

⎣1 + i
ω

ωc

2
m

(

1− 2
d

Λ

)2
(

1 + d

√

√

√
iωρ f
η

)2⎤

⎦

−1/2

,

(3)

where Λ is a characteristic pore size parameter and m is
the shape factor. Please note that (3) is written in a slightly
different form than in [29], because we used Johnson’s defini-
tion of the shape factor [65]: m = 8α∞k0/(φΛ2). The char-
acteristic (or rollover) frequency ωc is defined as ωc = ηφ/
(α∞k0ρ f ) [59]. The Debye length is denoted by d (see, e.g.,
[29]) and L0 represents the static electrokinetic coupling for
a porous medium

L0 = − φ

α∞

ε0εr f ζ
η

(

1− 2
d

Λ

)

, (4)

where ε0 is the vacuum permittivity, εr f is the pore fluid
relative permittivity, and ζ is the zeta-potential. We note that
Pride [29] uses an additional relaxation mechanism when the
complex viscous skin depth

√

η/(ωρf ) becomes smaller than
the Debye length. However, due to the fact that the Debye
length d for most salinity cases [22] is much smaller than Λ,
Pride’s relaxation mechanism can often be neglected. The
dynamic permeability is closely related to the viscous cor-
rection factor

k(ω)
k0

=
(

F(ω) +
iω

ωc

)−1

, (5)

the viscous correction factor is defined by Johnson et al. [59]
as

F(ω) =
√

1 +m
iω

2ωc
. (6)

The coefficients ρ11(ω), ρ12(ω), and ρ22(ω) are the so-called
generalized effective density functions [65]

ρ11(ω) = (

1− φ)ρs − ρ12(ω),

ρ12(ω) = φρ f

[

1 + i
ηφ

ωρ f k(ω)

]

,

ρ22(ω) = φρ f − ρ12(ω).

(7)

Considering the definitions for ρ12(ω) and ρ22(ω), (2) can be
written as

iωŵ = k(ω)
η

(

−∇ p̂ + ω2ρ f ûs
)

+ L(ω)̂E, (8)

where ŵ = φ(û f − ûs) is the relative displacement. Pride [29]
developed the following equation coupling the streaming
and the conduction currents

̂J = L(ω)
(

−∇ p̂ + ω2ρ f ûs
)

+ σ(ω)̂E, (9)

where ̂J is the electric current density and σ(ω) the dynamic
bulk conductivity. We recognize that the electrokinetic cou-
pling is present in the mechanical and the electromagnetic
equations (8) and (9) (see [29, 66]). The dynamic bulk con-
ductivity σ(ω) for a porous medium of arbitrary pore struc-
ture is assumed to be independent of the frequency [22, 29]
so that

σ(ω) ≈ φ

α∞
σ f , (10)

or

σ0 = φ

α∞
σ f , (11)

where σ0 represents the bulk electric conductivity and σ f the
pore-fluid conductivity. Closely related to the dynamic elec-
trokinetic coupling (3) is the dynamic SP coefficient, defined
as L(ω) = C(ω)σ(ω) [8]. Using this mutual relationship
together with the hypothesis of frequency independence of
the dynamic bulk conductivity (11), the measured dynamic
SP coefficient and dynamic coupling are mutually related in
their normalized form by

C(ω)
C0

= L(ω)
L0

. (12)

Eliminating (−∇ p̂ + ω2ρ f ûs) from (8) and (9), we obtain

iωŵ = L(ω)̂E +
k(ω)
ηL(ω)

(

J− σ(ω)̂E
)

. (13)

The Maxwell relation for the magnetic field is given by
Ampère’s Circuit Law

̂J = ∇× ̂H− iωε̂E, (14)

with ̂H the magnetic field and ε the electric permittivity for a
fluid-saturated porous medium

ε =
[

φ

α∞

(

εr f − εrs
)

+ εrs
]

ε0, (15)
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Figure 3: Schematic of the dynamic Darcy cell with borosilicate sample and Monel disks (modified from [27]).

where εrs is the solid relative permittivity. Faraday’s induc-
tion law states that

iωμ ̂H = −∇× ̂E, (16)

with μ the magnetic permeability. Substitution of (14) in
(13) results in

iωŵ = L(ω)̂E +
k(ω)
ηL(ω)

(

∇×H− [iωε + σ(ω)]̂E
)

. (17)

Substituting the cross-product of Faraday’s law (16) [29, 67]
into (17) yields

με(ω)ω2
̂E + ω2 ημ

k(ω)
L(ω)ŵ = ∇

(

∇ · ̂E
)

−∇2
̂E, (18)

where ε(ω) is the effective electric permittivity [67] of the
porous continuum

ε(ω) = ε − i σ(ω)
ω

+ i
ηL2(ω)
ωk(ω)

. (19)

Here −iσ(ω)/ω is a term accounting for the energy losses.
The electrokinetic effect manifests itself in ε(ω) as an energy
gain that is quadratic in L(ω) (third term in the right-hand
side of (19)). Equations (1), (2), and (18) form a closed
set of equations necessary to describe electrokinetic phenom-
ena, for the displacements ûs, û f (mechanical part of the

equations), and electric fields ̂E (the electromagnetic part).

3. Experimental Validation of
the Dynamic Coupling Coefficients

We experimentally validate k(ω)/k0 and C(ω)/C0. The exper-
iments are performed with the dynamic Darcy cell (DDC) as
shown in Figure 3, within a steel cylinder (see [27]). At the
bottom of the DDC an oscillating pressure is applied (gener-
ated by HP Agilent 33120A waveform Generator). A power

Table 1: Sample properties.

Property Symbol Value Unit

Permeabilitya k0 2.1 · 10−10 [m2]

Shape factorb m 1.75 [—]

Porosityc φ 0.093 [—]

Tortuosityd α∞ 1.8 [—]

Debye lengthe d 2.9 · 10−8 [m]

Weighted pore
volume-to-surface ratiof Λ 1.3 · 10−4 [m]

a
The permeability is measured directly. b,dThe shape factor and the tor-

tuosity are derived from an independent dynamic head experiment [27, 69],
by means of curve fitting. cThe porosity is computed from [70, 71]. e,f The
Debye length and the characteristic pore size are computed from theory (see
[29, 59], respectively).

amplified (Gearing and Watson) vibrating exciter (GW V20)
drives a rubber membrane which induces an oscillating
pressure. Vibrations are induced in a frequency band
ranging from 5 Hz up to 150 Hz. Two identical piezoelectric
transducers (PCB 116 Druck) are used to measure the
pressure drop across the sample, one at the bottom inside
the cylinder and the other mounted just above the sample
in the center of the cylinder. On the top and bottom of
the porous medium, electrodes are placed from which the
streaming potential gradient is measured. These electrodes
are sintered plates of Monel (an alloy primarily composed of
Nickel and Copper). The signals from the two piezoelectric
transducers are modified by means of amplifiers (Kistler
5011), and the signals of the electrodes amplified (Tektronix
AM 502). The porous sample (parameters given in Table 1)
consists of tubes of glass (borosilicate), which are glued
together with an epoxy resin (Figure 4) and oriented in the
flow direction. The combination of sintered plates together
with a large surface area of the glass capillary tubes makes
it possible to measure a relative strong signal. The sample is
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carefully saturated with degassed, demineralised water with
a small amount of sodium chloride (with a density of ρ f =
1 · 103 kg/m3, a viscosity of η = 0.9 · 10−3 Pa s obtained
from [68], and a measured pore fluid conductivity of σ f =
1.3 · 10−3 S/m), whereafter the setup is left until equilibrium
of the salt solution is reached.

The 50 Hz electromagnetic frequency radiating from the
equipment is suppressed by shielding the setup and its wires
(therefore use has been made of shielded twisted cable pairs).
To reduce uncorrelated noise the data are averaged multiple
times.

In Figures 5 and 6, normalized amplitude and phase
values of the dynamic permeability are plotted for the the-
oretical solution (5) together with the laboratory measure-
ments. At low pulsation frequencies (viscosity dominated),
the normalized dynamic permeability necessarily tends to its

0
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Figure 6: Phase value of the dynamic permeability. Theory of John-
son et al. [59] versus measurements, using the parameters as shown
in Table 1. Experiments 1–4 denote repeated experiments at differ-
ent times.

steady-state value, whereas above the characteristic pulsation
frequency (the area where viscous dominated flow switches
to inertia dominated flow [65]) a strong decline can be
observed. The theory correlates well with the measurement.
The offsets in the lower frequency range are caused by limi-
tations of the equipment, while in the high frequency area
this difference is mainly caused by resonance of the setup.

The measurements of the normalized dynamic SP coef-
ficient (normalized to the measured value at 11 Hz, where
C0 = 1.7 · 10−5 V/Pa) shown in Figures 7 and 8 (using the
parameters shown in Table 1), are performed by measuring
the potential difference and the pressure difference across
the sample between the Monel disks (see Figure 4). The
rigid glass capillary tubes make it possible to assume no
solid displacement us = 0. Using (9) for a conservative
(irrotational) electric field E = −∇U (with U the streaming
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repeated experiments at different times.

potential difference) in a setup where the electric current
density is equal to J = 0, we obtain

C(ω) = −∇U(ω)
∇p(ω)

, (20)

with C(ω) being the dynamic SP coefficient. The dynamic SP
coefficient theory agrees well with the measurement regard-
ing the normalized amplitudes. The phase values show a large
offset for the low as well as the high-frequency range. The
offsets in the lower frequency range are caused by limitations
of the equipment, while in the high frequency area this
difference mainly is caused by resonance of the setup. This
could be counteracted by applying notch filters at these
higher frequencies. Due to the layering of the sample, the the-
ory agrees well with the measurements. It is seen in measure-
ments from [69, 72–74], that with a single capillary [8] it is
possible to obtain remarkably consistent results between
theory and measurement. However, the experimental setup
(a set of capillaries combined with Monel disks) gives a more
accurate representation of capillary networks in natural
environments than a single capillary tube.

The difference between measurement and theory in the
high-frequency range can be caused by the possibility of the
system to function as a capacitor [8]. To prevent the capacitor
effect, using insulating plates and electrodes perforated in
them may be a solution. The impedance of the system can be
determined using a two or four electrode method. The
amplitude and phase of the impedance of the system can be
determined and be used for data correction [8]. This can
uplift particularly the phase values in the higher frequency
range [8]. Also some offsets can be caused by the relative low
permeability of the applied sample structure, especially the
two Monel plates disturb the flow for high frequencies
(which can also be observed in Figure 6). This limits the pos-
sibility of measuring samples with even lower permeability,
in the current setup.
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Figure 8: Phase values of the dynamic SP coefficient. Theory of
Pride [29] versus measurements, using the parameters as shown in
Table 1 and assuming σ(ω) = σ0. Experiments 1–4 denote repeated
experiments at different times.

4. Seismoelectric Wave Propagation

4.1. Seismoelectric Wave Propagation Theory. Electrokinetic
theory in isotropic, homogeneous, and fluid-saturated poro-
elastic media predicts the existence of a fast and a slow
P-wave, a shear wave, and an electromagnetic wave. In this
section, we derive wave speeds and attenuations (the disper-
sion relations) from the momentum equations (1), (2), and
(18), for each of these waves. This derivation also yields the
so-called fluid-to-solid and electric-to-solid field ratios. The
fluid-to-solid ratio describes the fluid-to-solid displacement
amplitude ratio, while the electric-to-solid field ratio des-
cribes the strength of the electric field with respect to the
solid displacement field. These ratios and the dispersion
relations are subsequently used to solve a boundary value
problem and to formulate a full-waveform seismoelectric
model.

Using (2) to eliminate the electric field ̂E from (1) and
(18), we obtain two modified momentum equations for the
fields ûs and û f

G∇2ûs + (A +G +Q)∇(∇ · ûs) + (Q + R)∇
(

∇ · û f

)

= −ω2
[

(

ρ11(ω) + ρ12(ω)
)

ûs +
(

ρ12(ω) + ρ22(ω)
)

û f

]

,

Q∇∇ · ûs + R∇∇ · û f

= −ω2
(

ρ12(ω)ûs + ρ22(ω)û f

)

+
ρ12(ω)
με(ω)

(∇(∇ · ûs)−∇2ûs
)

+
ρ22(ω)
με(ω)

(

∇
(

∇ · û f

)

−∇2û f

)

,

(21)
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where complex effective densities ρ11(ω), ρ12(ω), and ρ22(ω),
containing the electrokinetic coupling factor EK (ω), are
defined as follows

ρ11(ω) = ρ11(ω)− EK (ω),

ρ12(ω) = ρ12(ω) + EK (ω),

ρ22(ω) = ρ22(ω)− EK (ω),

EK (ω) = η2φ2L2(ω)
ω2k2(ω)ε(ω)

.

(22)

Employing Helmholtz decomposition for the fields ûs and û f

leads to

ûs = ∇ϕ̂s +∇× ̂Ψ
s
,

û f = ∇ϕ̂ f +∇× ̂Ψ
f
.

(23)

Substituting expressions (23) into (21) yields

∇
[

(

(P +Q)∇2 +ω2(1−φ)ρs
)

ϕ̂s +
(

(Q+R)∇2 +ω2φρ f
)

ϕ̂ f
]

+∇×
[

(

G∇2 + ω2(1− φ)ρs
)

̂Ψ
s

+ ω2φρ f ̂Ψ
f
]

= 0,

∇
[(

Q∇2 + ω2ρ12(ω)
)

ϕ̂s +
(

R∇2 + ω2ρ22(ω)
)

ϕ̂ f
]

+∇×
[(

ω2ρ12(ω) +
ρ12(ω)
με(ω)

∇2

)

̂Ψ
s

+

(

ω2ρ22(ω) +
ρ22(ω)
με(ω)

∇2

)

̂Ψ
f
]

= 0,

(24)

where P = A + 2G. For the longitudinal waves, associated
with potentials ϕ̂s and ϕ̂ f , the first terms in square brackets
of (24) are set equal to zero from which we obtain

(

P Q

Q R

)

∇2

(

ϕ̂s

ϕ̂ f

)

= −ω2

⎛

⎜

⎝

ρ11(ω) ρ12(ω)

ρ12(ω) ρ22(ω)

⎞

⎟

⎠

⎛

⎜

⎝

ϕ̂s

ϕ̂ f

⎞

⎟

⎠, (25)

where we used that (1 − φ)ρs − ρ12(ω) = ρ11(ω), and φρ f −
ρ12(ω) = ρ22(ω). Applying a spatial Fourier transformation
and recasting (25) into an eigenvalue problem lead to

1
PR−Q2

⎛

⎝

ρ11(ω)R− ρ12(ω)Q ρ12(ω)R− ρ22(ω)Q

ρ12(ω)P − ρ11(ω)Q ρ22(ω)P− ρ12(ω)Q

⎞

⎠

⎛

⎝

ϕ̃s

ϕ̃ f

⎞

⎠ = k · k
ω2

⎛

⎝

ϕ̃s

ϕ̃ f

⎞

⎠, (26)

where k is the wavenumber vector and tildes over a potential
indicate frequency-wavenumber domain quantities. The
complex eigenvalues correspond with the slownesses squared
of the fast (P f ) and slow (Ps) longitudinal waves s2k(ω),
k = P f ,Ps,

s2k(ω) = −d1(ω)
2d2

∓ d1(ω)
2d2

√

1− 4
d0(ω)d2

d2
1(ω)

, (27)

where

d0(ω) = ρ11(ω)ρ22(ω)−
[

ρ12(ω)
]2

,

d1(ω) = −
[

ρ22(ω)P + ρ11(ω)R− 2ρ12(ω)Q
]

,

d2 = PR−Q2.

(28)

The slowness yields the wave mode speed and intrinsic
attenuation (see, e.g., [67]). For the transversal waves, asso-

ciated with potentials ˜Ψ
s

and ˜Ψ
f
, the second term in square

brackets of (24) are set equal to the zero vector which gives

⎛

⎜

⎜

⎜

⎜

⎝

[

−Gk · k
ω2

+
(

1− φ)ρs
]

I= φρ f I=
[

−ρ12(ω)
με(ω)

k · k
ω2

+ ρ12(ω)

]

I=

[

−ρ22(ω)
με(ω)

k · k
ω2

+ ρ22(ω)

]

I=

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎝

˜Ψ
s

˜Ψ
f

⎞

⎠ =
(

0
0

)

, (29)
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where a spatial Fourier transformation is applied. Nontriv-
ial solutions for k · k/ω2 are obtained by requiring the
determinant of the matrix in (29) to be equal to zero. The
solutions correspond with squared complex slownesses of
the electromagnetic (EM) and seismic shear (S) waves. The
dispersion relations are given in (27) for k = EM, S where

d0(ω) = με(ω)
ρ11(ω)ρ22(ω)−

[

ρ12(ω)
]2

G
,

d1(ω) = −με(ω)ρ22(ω)− ρ11(ω)ρ22(ω)− [

ρ12(ω)
]2

G
,

d2(ω) = ρ22(ω),

(30)

and where we used that (1 − φ)ρsρ22(ω) − φρ f ρ12(ω) =
ρ11(ω)ρ22(ω)− [ρ12(ω)]2 and (1−φ)ρsρ22(ω)−φρ f ρ12(ω) =
ρ11(ω)ρ22(ω) − [ρ12(ω)]2. Note that d2 in (27) is now
frequency-dependent. Dispersion relations given by (27),
(28), and (30) are equal to the expressions given by Pride and
Haartsen [67].

The longitudinal fluid-solid ratio, which describes the
fluid-to-solid displacement amplitude ratio, is derived from
the first row in (25). By applying a spatial Fourier transfor-
mation we obtain for the longitudinal fluid-solid ratios

βm(ω) = ϕ̃
f
m

ϕ̃sm
= ρ11(ω)− Ps2m(ω)

Qs2m(ω)− ρ12(ω)
, (31)

for m = P f ,Ps. By writing the vector potentials as ˜Ψ
s

n =

(0, ψ̃sn, 0)T and ˜Ψ
f

n = (0, ψ̃
f
n , 0)T , for n = EM, S, in (29) we

obtain for the transversal fluid-solid ratios

βn(ω) = ψ̃
f
n

ψ̃sn
= Gs2n(ω)− (

1− φ)ρs
φρ f

. (32)

The electric solid ratios, which describe the strength of the
electric field with respect to the solid displacement field, are
derived by applying Helmholtz decomposition (see (23)) to
the fields in (18). This yields

∇
[

ω2με(ω)ϕ̂E + ω2 ηφμL(ω)
k(ω)

(

ϕ̂ f − ϕ̂s
)

]

+∇×
[

(

ω2με(ω) +∇2)
̂Ψ
E

+ω2 ηφμL(ω)
k(ω)

(

̂Ψ
f − ̂Ψ

s
)

]

= 0,

(33)

where we note that the Helmholtz decomposition of the elec-

tric field is ̂E = ∇ϕ̂E +∇× ̂Ψ
E
, and ̂Ψ

E

n = (0, ψ̃E
n , 0)

T
. Again,

the scalar potentials are associated with longitudinal wave
behavior and the vector potentials with transversal wave
behavior. By applying a spatial Fourier transformation to
(33) we obtain

αm(ω) = ϕ̃Em
ϕ̃sm

= ηφL(ω)
k(ω)ε(ω)

[

1− βm(ω)
]

, (34)

αn(ω) = ψ̃E
n

ψ̃sn
= ηφμL(ω)
k(ω)

[

με(ω)− s2n(ω)
]

[

1− βn(ω)
]

. (35)
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Figure 9: (Modified from [44].) Geometry of seismoelectric
model and experiment. An acoustic wavefield emitted from (rs, zs)
transmits into the poroelastic medium at z = 0, where it generates
coseismic electric potentials. Fluid/poroelastic-medium interfaces
are at z = 0 and z = 3.21 cm. The electric receiver is at 1 cm from the
front interface, while the dominant wavelength of the fast P-wave
is roughly 4 mm. The electric potential recordings of the electric
receiver are with respect to ground level.

We now model coseismic electric potentials generated
within a porous medium due to a fast P-wave, using its
electric-solid ratio αP f (ω), for the geometry of Figure 9. The
interface field responses are not modelled, which simplifies
the expressions. In the forthcoming, it will be shown that this
simplified model describes the measured coseismic electric
potentials adequately. An acoustic wavefield from a source
in a compressible fluid impinges on an interface between
the fluid and an isotropic, homogeneous, and fluid-saturated
poroelastic medium. It transmits as a fast P-wave in the
poroelastic medium, where it generates coseismic electric
potentials. We model a transducer (piezoelectric) source, as it
is used in the experiment described in the following section.
The acoustic pressure due to the transducer is modeled as
(see [44, 75])

p̂ f l(ω,Rs, θ) = A(ω)D(θ)
Rs

e−ik
f lRs , (36)

where Rs =
√

(r − rs)2 + (z − zs)
2 is the distance to the

source, θ is the angle of incidence, A(ω) is the amplitude
spectrum, and k f l = ωsP is the acoustic fluid wavenumber,
where the fluid P-wave slowness is given by sP =

√

ρ f /K f .

The directivity function D(θ), which characterizes the radia-
tion pattern of the source, is given by

D(θ) =
J1
(

k f la sin θ
)

k f la sin θ
. (37)
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Table 2: (Modified from [44].) Parameters of the poroelastic medium and fluid layer. The temperature is 293.15 K.

Property Symbol Value Unit

Bulk modulus skeleton grainsa Kf r 50 · 109 [Pa]

Bulk modulus (pore) fluidb Kf 2.2 · 109 [Pa]

Bulk modulus framework of grainsc Ks 0.93 · 109 [Pa]

Shear modulus framework of grainsc G 0.88 · 109 [Pa]

Pore fluid viscosityb η 1 · 10−3 [kg/(m s)]

Pore fluid densityb ρ f 1000 [kg/m3]

Solid densityc ρs 2570 [kg/m3]

Weighted pore volume-to-surface ratiod Λ 9.4 · 10−6 [m]

Porosity of the porous mediumc φ 0.52 [—]

Permeabilityc k0 3.4 · 10−12 [m2]

Tortuosityc α∞ 1.7 [—]

Sample widthe ws 3.21 · 10−2 [m]

Relative permittivity of the (pore) fluidb εr f 80.1 [—]

Relative permittivity of the solidb εrs 4 [—]

Fluid magnetic permeability (=μ0) μ f 4π · 10−7 [H/m]

(Pore) fluid conductivitye σ f 4.8 · 10−2 [S/m]

Zeta-potentialf ζ −4.0 · 10−2 [V]
a
[78], b[68]. We take the value of Pyrex 7070 glass for the solid permittivity. csee N5B in [79], d[29, 59, 80, 81], emeasured values, and f see [22]. We assume

that conductivity is due to a NaCl salt solution and pH = 6.

Here, J1 is the Bessel function of the first kind and first order
and a is the radius of the transducer. Schakel et al. [44] show
that seismoelectric effects can be modelled by expanding the
source pressure wavefield into conical waves, which leads to
the so-called Sommerfeld integral, and by relating acoustic
potentials to electric signals with reflection/transmission
coefficients as well as electric-solid ratios. While Schakel et al.
[44] model both coseismic and interface field responses, we
only model the coseismic fields. We arrive at the following
Sommerfeld integral for the coseismic electric potential
ϕ̂(ω, rr , zr) at receiver position (rr , zr) for rs = 0, zs < 0,
zr > 0,

ϕ̂(ω, rr , zr)

= −iA(ω)
ω2ρ f

∫∞

0

kr

k
f l
z

D(kr)J0(krrr)eik
fl
z zsαP f (ω)TP f (kr)

(

e−ik
P f
z zr + RP f (kr)e−ik

P f
z (2ws−zr )

)

dkr ,

(38)

where kr = k f l sin θ and k
f l
z = k f l cos θ are the radial and

vertical components of k f l, respectively, and k
P f
z is the ver-

tical component of the fast P-wave wavenumber. The fast P-
wave wavenumber is kP f = ωsP f (ω), where the fast P-wave
slowness is given by the dispersion relations (27)-(28). Note
that the factor ω2ρ f in the denominator of (38) is absent in
Schakel et al. [44], because their reflection and transmission
(conversion) coefficients are pressure normalized, whereas
here they are displacement potential normalized. The trans-
mission coefficient TP f (kr) relates the incident acoustic
wavefield to the transmitted fast P-wave signal. The transmit-
ted signal generates a coseismic potential at (r, z) = (rr , zr).

It also reflects [RP f (kr)] at z = ws, and travels back to the
receiver position, where it generates a second coseismic
potential. The transmission coefficient TP f (kr) is derived
from substituting plane wave expressions into the following
(open-pore) boundary conditions [76]

ûs,z + ŵz = û
f l
z ,

p̂ = p̂ f l,

σ̂13 = σ̂33 = 0,

(39)

with subscript z denoting the z-component of the vectors
and where û f l denotes the fluid displacement. By only solv-
ing the mechanical (Biot) boundary value problem (no elec-
trokinetic coupling is present in (39)), the interface field
responses are neglected. Pride and Garambois [77] discussed
the influence of the Biot slow wave in the generation of
interface response seismoelectric amplitudes and numeri-
cally showed that when the Biot slow wave is neglected, the
amplitudes can easily be off by as much as an order of mag-
nitude. In our approach, that aims to model coseismic fields
rather than interface responses, the Biot slow wave is taken
into account in the solution of the boundary value problem
(39). Its coseismic field is not modeled. For the parameters
of Table 2, the slow wave skin depth is approximately 5 mm
at 500 kHz and is unlikely to cause any appreciable coseismic
signal for larger distances. We substitute the following plane
wave expressions into (39)

ϕ̂
f l
l = ϕ̃

f l
l e

−i(kr rr±k f lz z),

ϕ̂sm = ϕ̃sme
−i(kr rr+kmz z),

̂Ψ
s

SV =
(

0, ψ̃sSV e
−i(kr rr+kSVz z), 0

)T
,

(40)
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for l = I ,R. Hence we consider an incident (I) acoustic wave
that reflects (R) and transmits as P f -, Ps-, and vertical shear
(SV)-waves. Displacement fields are obtained from these
expressions as follows

û
f l
l = ∇ϕ̂ f l

l ,

ûm = ∇ϕ̂sm,

ûSV = ∇× ̂Ψ
s

SV .

(41)

Fluid pressure is related to fluid displacement by p̂ f l =
−Kf∇·û f l, with û f l = û

f l
I +û

f l
R . For the poroelastic medium,

solid displacement and pore-fluid displacement are obtained
as follows

ûs = ûs,P f + ûs,Ps + ûs,SV ,

û f = βP f ûs,P f + βPsûs,Ps + βSûs,SV .
(42)

Following the basic equations described in [60–64], the pore-
fluid pressure and intergranular stresses are obtained. We
define the reflection and transmission coefficients as

RP = ϕ̃
f l
R

ϕ̃
f l
I

, TP f =
ϕ̃sP f

ϕ̃
f l
I

, TPs = ϕ̃sPs

ϕ̃
f l
I

,

TSV = ψ̃sSV

ϕ̃
f l
I

,

(43)

so that we arrive at the following linear system of equations

A ·
(

RP ,TP f ,TPs,TSV
)T =

(

k
f l
z ,φρ f , 0, 0

)T
, (44)

where the elements of matrix A are given in the appendix. By
solving (44) and (A.3) we obtain TP f and RP f , respectively
(see appendix).

For the geometry of Figure 9, where a source is located
at (rs, zs) = (0,−15) cm, and where the receiver is located at
(rr , zr) = (0, 1) cm, we numerically evaluate the integral of
(38). An experimentally recorded 500 kHz single sine pres-
sure waveform is used for the amplitude spectrumA(ω). The
incident pressure is related to the mechanical displacement
potential ψ̃sP f in the denominator of αP f (ω) (see (34)) by the

factor ω2ρ f , which arises from the relation p̂ f l = −Kf∇·û f l.
The parameters of Table 2 are used and a 144–896 kHz
numerical band-pass filter is applied. Figure 10(a) shows the
resulting coseismic electric potentials caused by the fast P-
wave. The first (CSP1) arrives at around 0.106 ms. This is
the travel time of the acoustic wave from the source to the
interface (approximately 0.101 ms) plus the travel time of
the fast P-wave from the interface to the receiver location
(approximately 0.005 ms). The predicted amplitude of the
coseismic electric potential is approximately 0.5 mV, for an
incident pressure amplitude of approximately 50 kPa. The
second coseismic potential CSP2 arrives at around 0.130 ms
and has an amplitude of approximately 0.15 mV. We con-
clude that coseismic electric potentials can be straightfor-
wardly modelled in layered geometries by electric-solid ratios
and solutions to mechanical boundary value problems.
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Figure 10: (Modified from [44].) Model of coseismic responses
(a) and seismoelectric wave propagation measurements (b). Pulse
abbreviations are: interface response (from the) front 1 (IRF1),
coseismic response 1 (CS1), interface response (from the) back
(IRB), coseismic response 2 (CS2), and interface response (from
the) front 2 (IRF2).

4.2. Seismoelectric Wave Propagation Experiment. Schakel et al.
[44] report on a seismoelectric wave propagation experiment
in which coseismic electric and interface field responses are
measured. The results are reproduced in Figure 10(b). The
geometry of the experiment is that of Figure 9. A 500 kHz
single sine pulse generated by a waveform generator (Agilent
Technologies 33220A) was used as input to the source. The
second interface corresponds with the back of a porous
sample. The receiver located at (rr , zr) = (0, 1) cm recorded
several pulses. The first (IRF1) is the interface response
generated at the front (z = 0) of the sample (see also Figure
2(c)). It arrives at around 0.100 ms, which corresponds with
the acoustic wave travel time from the source to the interface.
The travel time of the fast P-wave from the interface to
the receiver location is approximately 0.005 ms. Therefore,
the next pulse, labelled CS1, is the coseismic (electrical)
response caused by the fast P-wave (see also Figure 2(a)).
This wave also generates an interface response when it arrives
at the back of the sample (IRB). It also reflects as a fast
P-wave. When the reflected fast P-wave passes the receiver
location for the second time, it generates another coseismic
response (CS2). The last significant pulse, labelled (IRF2),
is the interface response caused by the reflected fast P-wave
when it arrives at the front of the sample. These experimental
data were obtained using a 3.21 cm thick sample and a
500 kHz single sine pulse. It takes about 20 μs for the fast
wave to arrive at the second interface, while the (measured)
pulse period does not exceed 5 μs. Thus the pulses are clearly
separated in time and do not cause amplitude and waveform
changes.
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Figure 11: Model of filtered coseismic responses in time (a) and frequency domain (c) and coseismic measurements in time (b) and
frequency domain (d). Pulse abbreviations are: coseismic response 1 (CS1) and coseismic response 2 (CS2).

By comparing the model for the first coseismic response
(CS1 in Figure 10(a)) with the measurement (CS1 in
Figure 10(b)) we observe agreement in travel time, waveform
and amplitude. Small differences in waveform, such as the
onset of the modelled waveform which is absent in the
recording, are probably related to geometric misalignment
and/or inaccuracies in the model/parameters (Table 2).
The scale of Figure 10(a) is different from that of Figure
10(b). This amplitude difference is probably also related to
geometric misalignment and/or inaccuracies in the model/
parameters. For example, the model predictions are sensitive
to the zeta-potential. This parameter was not directly meas-
ured but is obtained from an empirical relationship (see
Table 2). For general field geometries the seismoelectric
amplitudes of radiation generated at interfaces is significantly
smaller than the coseismic amplitudes. For field geometries,
electric receivers are typically positioned at several seismic
wavelengths from the interfaces that generate seismoelectric
conversion. In our experiment, the electric receiver is at 1 cm
from the front interface, while the fast P-wave wavelength is
roughly 4 mm. For this configuration, the measurements are
as shown in Figure 10(b).

The model for the second coseismic response (CS2 in
Figure 10(a)) shows less agreement with its corresponding
measurement (CS2 in Figure 10(b)). We investigate the
reason for this observation by matching the theory to the
measurement for CS1. A frequency filter is constructed from
the selected theoretical and measured CS1 pulses. This filter
is subsequently applied to the selected theoretical CS2. The
results are shown in Figure 11. The filtered theoretical CS1
fits the measurements exactly because it is forced to coincide
with the measured CS1. The filtered theoretical CS2 now
shows better agreement in terms of waveform and amplitude
(Figures 11(a) and 11(b)). However there also remains to be

mismatch, particularly the measured CS2 has its energy dis-
tributed over smaller frequencies than the filtered theoretical
CS2. The latter fact is illustrated in Figures 11(c) and 11(d).
The filtered theoretical CS2 differs from the filtered theo-
retical CS1 by the term RP f (kr)e−2ik

P f
z (ws−zr ) (see (38)). Thus

this observation indicates that the theory underpredicts the
amount of seismic attenuation. It is well known that Biot’s
theory can underestimate seismic attenuation [82]. However,
the observation of Figure 11 could also be related to geo-
metric misalignment in the experimental setup. We note
that the possibility of underestimation by the electrokinetic
coupling ratio α(ω) is excluded as it is effectively removed
by the filter. In this paper we focus only on comparing theo-
retical and measured coseismic amplitudes rather than the
seismoelectric responses at interfaces. The receiver is located
at a constant distance from the interface, so that we do not
compare the amplitudes to those generated by a (vertical)
dipole located at the interface. A thorough comparison of
seismoelectric amplitudes radiated from interfaces as a func-
tion of distance towards the interface with the pattern due to
a dipole is given by [45].

It is possible to model all interface responses and coseis-
mic effects of Figure 10(b) by adopting full electrokinetic
theory for the poroelastic medium in the boundary value
problem [44]. This results in complicated expressions for
the so-called seismoelectric reflection and conversion coef-
ficients, which describe the interface responses, and also for
the transmission coefficient TP f and RP f . Therefore, in the
above, we only adopted Biot’s poroelastic theory to solve for
TP f and used the electric-solid ratio αP f (ω) to describe the
coseismic electric potential of Figure 10(a). The disadvantage
of the approach is that interface response effects cannot be
modelled. On the other hand, it results in simpler expressions
for the coseismic fields.
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5. Seismoelectric Interferometry

Considering the combined character of seismo-electromag-
netic waves it can be very beneficial to use them for a wide
range of applications. (The application for oil-field explo-
ration has already been shown by Thompson et al. [83].)
From an imaging point of view, the principle of interfer-
ometry has already been proven useful for a wide class of
phenomena, for example in seismic systems or electromag-
netic systems (e.g., [47, 48]). Hence, we are taking this prin-
ciple to the next level: correlation imaging with seismo-
electromagnetic waves. Before showing some examples, the
principle of interferometry will be explained first.

5.1. Theory. Interferometry makes use of the cross-correla-
tion of responses at different receivers in order to obtain the
Green’s function of the field response between these stations.
In other words, it is the deterministic response from one
station to the other.

Figure 12 shows a possible seismoelectric interferometry
setting. The cross-correlation of electric (Ex) and acoustic
signals (vz) from sources located at the surface (Figure 12(a))
or in the bulk (Figure 12(c)) results in the direct electric
response of an acoustic source ( fz) generating a seismoelec-
tric wave (Figure 12(b)). The known challenging problems in
using seismo-electromagnetics as a geophysical exploration
tool can potentially be addressed by applying interfero-
metric Green’s function retrieval techniques to seismo-elec-
tromagnetic phenomena [46]. First of all, sources in “clas-
sical” seismoelectric surveys need to be strong. This is not
always possible and therefore it is beneficial to be able to
replace those strong sources by receivers.

A second well-known problem in these conventional seis-
moelectric surveys is the very low signal-to-noise ratio. By
doing interferometry, stacking inherently takes place with a
possible improvement of the signal-to-noise ratio as a result.

After deriving the system of equations for coupled seis-
mic and electromagnetic waves in saturated porous media
[29], the convolution-type reciprocity theorem and a power
balance for seismoelectric waves was derived by Pride and
Haartsen [67]. In 2003, this result was extended to a reci-
procity theorem of the correlation-type for seismoelectric
waves [84].

Following Wapenaar and Fokkema [85], de Ridder et al.
[46] showed that the 1D seismoelectric system for the SH-TE
propagation mode can be captured in the following matrix-
vector equation

iω̂Aû + Dxû = ŝ, (45)

where matrix ̂A contains the space-dependent material
parameters, û represents the field vector (in the space-
frequency domain), matrix Dx contains the spatial differen-
tial operator ∂/∂x, ŝ denotes the source vector, and where iω
arises due to Fourier transformation of the temporal deriva-
tive of a field. It is important to capture the 1D seismoelectric
system in such a general diffusion, flow and wave equation, in
order to employ the derived expressions for unified Green’s
function retrieval by cross-correlation [47] and to finally
end up with interferometric seismoelectric Green’s function
representations.

Next, considering the Fourier transform of an impulsive
source acting at time t = 0 s and at location x = xs, ŝ in (45)
is replaced by Iδ(x − xs). As a consequence, the field vector
û can be replaced by a Green’s matrix ̂G(x, xs,ω). In this way,
(45) is changed to

iω̂ÂG(x, xs,ω) + Dx ̂G(x, xs,ω) = Iδ(x − xs), (46)

where the Green’s matrix ̂G(x, xs,ω) is given by

̂G(x, xs,ω) =

⎛

⎜

⎜

⎜

⎜

⎝

̂GE,Je(x, xs,ω) ̂GE,Jm(x, xs,ω) ̂GE, f (x, xs,ω) ̂GE,hb(x, xs,ω)
̂GH ,Je(x, xs,ω) ̂GH ,Jm(x, xs,ω) ̂GH , f (x, xs,ω) ̂GH ,hb(x, xs,ω)
̂Gvs,Je(x, xs,ω) ̂Gvs,Jm(x, xs,ω) ̂Gvs , f (x, xs,ω) ̂Gvs,hb(x, xs,ω)
̂Gτb ,Je(x, xs,ω) ̂Gτb ,Jm(x, xs,ω) ̂Gτb , f (x, xs,ω) ̂Gτb ,hb(x, xs,ω)

⎞

⎟

⎟

⎟

⎟

⎠

. (47)

The first superscript (vs) in ̂Gvs ,Je(x, xs,ω) denotes the type
of response measured at location x, resulting from the type
of impulsive source located at xs, which is denoted by the
second superscript (Je).

Starting from the general interferometric Green’s func-
tion representation (48) as derived by Wapenaar et al. [47]

̂G(xB, xA,ω) + ̂G†(xA, xB,ω)

= −
{

̂G(xB, x,ω)Nx ̂G†(xA, x,ω)
}∣

∣

∣

x2

x1

+
∫

D

{

̂G(xB, x,ω)
[

iω
(

̂A− ̂A†
)]

̂G†(xA, x,ω)
}

dx,

(48)

where it is assumed that the two reciprocity states have the
same medium parameters and where Nx represents the
normal vector matrix containing the components of a nor-
mal vector n, arranged in the same way as the partial spatial
derivative ∂/∂x in the matrix Dx

Nx =

⎛

⎜

⎜

⎜

⎝

0 −1 0 0
−1 0 0 0
0 0 0 1
0 0 1 0

⎞

⎟

⎟

⎟

⎠

, (49)

de Ridder et al. [46] derived the following interferometric
integral representation for one element of the seismoelectric
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Figure 12: Schematic seismoelectric interferometry setting. Cross-correlation of electric (Ex) and acoustic signals (vz) from sources located
at the surface (a) or in the bulk (c) results in the direct electric response of an acoustic source ( fz) generating a seismoelectric wave (b).

SH-TE Green’s matrix in 1D (50), using seismoelectric
reciprocity theorems

{

̂GE, f (xB, xA,ω) + ̂Gvs ,Je∗(xA, xB,ω)
}

̂S

=
{

̂GE,Je(xB, x,ω) ̂Gvs ,Jm∗(xA, x,ω)

+ ̂GE,Jm(xB, x,ω) ̂Gvs,Je∗(xA, x,ω)

− ̂GE, f (xB, x,ω) ̂Gvs ,h∗(xA, x,ω)

− ̂GE,h(xB, x,ω) ̂Gvs, f∗(xA, x,ω)
}∣

∣

∣

x2

x1

̂S

+ 2iω
∫

D

{

̂GE,Je(xB, x,ω)i�{ε̂} ̂Gvs,Je∗(xA, x,ω)

+ ̂GE, f (xB, x,ω)�
{

ρ f ̂L0

}

̂Gvs ,Je∗(xA, x,ω)

− ̂GE,Je(xB, x,ω)�
{

ρ f ̂L0

}

̂Gvs , f∗(xA, x,ω)

+ ̂GE, f (xB, x,ω)i�{ρ̂c} ̂Gvs , f∗(xA, x,ω)
}

dx̂S.

(50)

To arrive at this form, they have chosen the {1, 3} element
of the 1D SH-TE seismoelectric Green’s matrix (47) and
expanded (48) using this element. Here, ̂S denotes the power
spectrum of the emitted source signal and ρ̂c = ρb −
iωk0(ρ f )

2/η.
We can distinguish two terms in this integral representa-

tion. The first term on the right-hand side represents corre-
lations of recorded responses of sources on the boundary of
the domain of reciprocity, whereas the second term on the
righthand-side represents correlations of recorded responses
of sources throughout the reciprocity domain.

As shown by de Ridder et al. [46], the following source-
receiver reciprocity holds

̂Gvs,Je(xA, xB,ω) = − ̂GE, f (xB, xA,ω). (51)

Hence, the left-hand side of (50) can be rewritten as
2i�{ ̂GE, f (xB, xA,ω)}̂S. This signal will be antisymmetric
around t = 0 s in the time-domain.

Looking at expression (50) in more detail it can be seen
that the left-hand side, the electric field response registered
at xB generated by an elastic force source located at xA, is
obtained by cross-correlating the registered electric fields at
xB with the registered particle velocities at xA, which are the

FS IF1 IF2

 V
ac

u
u

m

M
ed

iu
m

 A

M
ed

iu
m

 A

M
ed

iu
m

 B

d

1

2

1g

dg

2g

x1 xA xB x2

x
=

0
m

.

x
=

10
0

m
.

x
=

27
5

m
.

x
=

40
0

m
.

x
=

50
0

m
.

x
=

65
0

m
.

x
=
−1

50
m

.

Figure 13: The geometry of the 1D numerical experiment. Posi-
tions xA and xB represent the receiver positions, denoted by the
top-down triangles. The upper boundary is called x1 and the lower
boundary x2, located at x = −150 m and x = 650 m, respectively.
The positions of the interfaces are visualized by the red bars. FS
denotes the free-surface, whereas IF1 and IF2 correspond to the
first and second subsurface interfaces, respectively. Furthermore,
schematic ray paths of events in the seismoelectric Green’s function
GE, f (xB , xA, t) are shown. The black arrows represent shear wave ray
paths, whereas the green arrows depict electromagnetic ray paths.
The labels correspond to the labelled events in Figures 14 and
15, where d denotes the direct event and dg its source-side ghost,
which are both coseismic field responses, 1 represents the interface
response of the most shallow interface and 1g its source-side ghost,
2 corresponds to the interface response of the second, deeper inter-
face and event 2g represents again its source-side ghost.

result of four different types of boundary sources and two
types of domain sources. The two types of domain sources,
an electric current source and an elastic force source, are both
weighted with two different medium parameters.
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Table 3: Overview of the relevant medium parameters for the 1D seismoelectric interferometry model.

Property Unit Value medium A Value medium B Dimension

Porosity φ 0.4 0.2 [—]

Pore fluid density ρ f 1.0 · 103 1.0 · 103 [kg/m3]

Solid density ρs 2.7 · 103 2.7 · 103 [kg/m3]

Shear modulus framework of grains G 9.0 · 109 9.0 · 109 [Pa]

Pore fluid viscosity η 1.0 · 10−3 1.0 · 10−3 [kg/(m s)]

Static permeability k0 1.3 · 10−12 1.6 · 10−12 [m2]

Static electrokinetic coupling L0 1.0 · 10−8 1.0 · 10−9 [m2/(s V)]

Tortuosity α∞ 3.0 3.0 [—]

Relative perm. of the (pore) fluid εr f 80 80 [—]

Relative perm. of the solid εrs 4 4 [—]

Bulk electric conductivity σ0 1.0 · 10−1 1.0 · 10−1 [S/m]

Volume
Boundary

B2 B1
d 1 1g 2g

Time (s)

0 0.1 0.2 0.3 0.4 0.5−0.5 −0.4 −0.3 −0.2 −0.1

0

2

4

−4

−2

×10−15

dg2

G
E

, f
(x
B

, x
A

,t
)

+
G
vs

,J
e
(x

A
,x

B
,−

t)
 (

1/
m

)

Figure 14: Separated contributions of the domain integral and
the boundary points to the retrieved Green’s functions. In other
words, it shows the relative contributions of the two right-hand side
terms in (50) to the retrieved Green’s functions, for a three-layered
medium bounded by a vacuum.

Due to the fact that wave energy is dissipated during wave
propagation, the domain sources are necessary to account for
these losses. However, these sources are not likely to exist in
reality or cannot be rewritten for practical applications and
therefore we would like to be able to ignore their contribu-
tions.

As is already shown in three examples by de Ridder
et al. [46], it is indeed possible (under certain conditions)
to obtain accurate Green’s functions from boundary sources
only. The most complex situation considered by de Ridder
et al. [46] was a medium consisting of two layers bounded by
a vacuum. For this situation it was shown that the domain
integral contribution could be neglected as long as the
domain of reciprocity was chosen in such a way, that it
included the heterogeneities (i.e., the interface between the

two layers). Then, spurious events would only occur on one
side of the symmetrized, retrieved Green’s function.

In the following section, we will increase the complexity
of the numerical configuration by adding an extra layer to
the system, to investigate the Green’s function retrieval for a
1D, three-layered system bounded by a free-surface. In other
words, we will look at the applicability of the interferometric
seismoelectric Green’s function representation (50) when
there are two interfaces located in the subsurface. We will
consider a configuration where a medium B is sandwiched
between two identical layers (medium A) with different med-
ium parameters, as given in Table 3. We have chosen the
medium parameters in such a way, that there is a very small
seismic contrast between the layers; the porosity is the only
contrasting seismic parameter between the layers. In this way,
we are minimizing the dominant coseismic field response
from the two subsurface interfaces and are able to focus
mainly on the retrieval of the interface response field. The
free-surface on the other hand, acts as a reflector for the
seismic waves and therefore the coseismic fields related to this
interface are still preserved. In this way, we are able to inves-
tigate separately the retrieval of both the coseismic field
responses and the interface response fields. For field geome-
tries, the amplitudes of the coseismic field responses related
to the subsurface interfaces are often much higher than the
interface response field amplitudes.

5.2. Results. We consider a three-layered 1D medium bound-
ed by a vacuum half-space. The top and bottom layer consist
of medium parameters belonging to medium A and the sand-
wiched layer has the properties of medium B (see Table 3).
The bottom layer is in fact a half-space. The whole three-
layered system is bounded by a vacuum half-space in which
only electromagnetic waves can propagate. The interface
separating the subsurface from the vacuum is called the free-
surface. According to Wapenaar and Fokkema [86], the free-
surface acts as a mirror to both shear waves and electromag-
netic waves (the latter due to the fact that a 1D geometry
is considered here). Therefore, the sources on the domain
boundary at the free surface can be neglected and also the
contributions of the vacuum above the free-surface can be
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Figure 15: The obtained correlation gather of the domain integral for a three-layered medium bounded by a vacuum. The scale is taken
as the logarithm of the absolute value of the amplitude. Summing this correlation gather panel yields the total contribution of the domain
integral as shown in Figure 14 by the blue volume line. Several events can be recognized.

disregarded. The range of the domain integral contribution
is from 0 to 650 m (see Figure 13 for an overview of the geo-
metry). The receivers at xA and xB are located at x = 100 m
and x = 275 m, respectively. The upper boundary is called
x1 and the lower boundary x2, located at x = −150 m and
x = 650 m, respectively.

Figure 14 shows the time-domain equivalent of the sepa-
rated contributions of the domain integral and the boundary
points to the retrieved Green’s functions. In other words, it
shows the relative contributions of the two right-hand side
terms in (50) to the retrieved Green’s functions. The positive
time corresponds to the Green’s function GE, f (xB, xA, t), the
electric field response registered at xB due to an impulsive
seismic source located at xA. As is visible, the dominant
contribution in the positive time window comes from just
the boundary term. Therefore, it is shown that this Green’s
function can be mainly reconstructed by using the boundary
contribution only. In contrast, the negative time window
contains strong domain integral contributions as well.
The negative times correspond to the Green’s function
Gvs,Je(xA, xB,−t), the particle velocity response measured at
xA due to an impulsive electrical current source at xB. These
strong volume source contributions correct the polarity of
the single boundary term contribution.

Several events can be recognized in Figure 14. The purely
diffusive electromagnetic field is the first event to arrive, with
its maximum at approximately t = 0.58 ms (t = −0.58 ms
for the time-reversed causal signal). The second arrival, at
approximately t = 83 ms corresponds to a direct coseismic

shear wave event (labelled d). Its time-reversed causal equi-
valent arrives around t = −83 ms. The source-side ghost of
this direct coseismic shear wave event (labelled dg) arrives
at approximately t = 0.18 s. The overlapping causal and
time-reversed causal electromagnetic events at t = 0 s are
constructed completely by the sources in the domain inte-
gral. In contrast, the shear wave event is retrieved by mainly
boundary source contributions. This makes sense, consider-
ing the sources of wave energy loss. As mentioned already, the
electromagnetic event is, in the considered seismic frequency
range, primarily a diffusive field. Therefore, volume sources
are required to compensate for the wave energy loss. For
the shear wave event, the amount of wave energy loss is
relatively small. Hence, the need for volume source energy
compensation is negligible. Considering this in terms of the
interferometric seismoelectric integral representation (50),

{

̂GE, f (xB, xA,ω) + ̂Gvs,Je∗(xA, xB,ω)
}

̂S

=
{

̂GE,Je(xB, x,ω) ̂Gvs,Jm∗(xA, x,ω)

+ ̂GE,Jm(xB, x,ω) ̂Gvs ,Je∗(xA, x,ω)

− ̂GE, f (xB, x,ω) ̂Gvs,h∗(xA, x,ω)

− ̂GE,h(xB, x,ω) ̂Gvs , f∗(xA, x,ω)
}∣

∣

∣

x2

x1

̂S

+ 2iω
∫

D

{

̂GE,Je(xB, x,ω)i�{ε̂} ̂Gvs ,Je∗(xA, x,ω)
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+ ̂GE, f (xB, x,ω)�
{

ρ f ̂L0

}

̂Gvs,Je∗(xA, x,ω)

− ̂GE,Je(xB, x,ω)�
{

ρ f ̂L0

}

̂Gvs, f∗(xA, x,ω)

+ ̂GE, f (xB, x,ω)i�{ρ̂c} ̂Gvs , f∗(xA, x,ω)
}

dx̂S,

(52)

we can omit the volume source contributions

2iω
∫

D

{

̂GE,Je(xB, x,ω)i�{ε̂} ̂Gvs,Je∗(xA, x,ω)

+ ̂GE, f (xB, x,ω)�
{

ρ f ̂L0

}

̂Gvs,Je∗(xA, x,ω)

− ̂GE,Je(xB, x,ω)�
{

ρ f ̂L0

}

̂Gvs , f∗(xA, x,ω)

+ ̂GE, f (xB, x,ω)i�{ρ̂c} ̂Gvs, f∗(xA, x,ω)
}

dx̂S ≈ 0.

(53)

The free-surface acts as a mirror to both shear waves and
electromagnetic waves and therefore the sources on the
domain boundary at the free-surface can be neglected and
also the contributions of the vacuum medium above the free-
surface can be disregarded. For (52), this effectively means
that the contributions of the boundary sources at x1 can be
omitted. The first two terms on the right-hand side of (52)
represent the correlation products of the two fields generated
by either electrical or magnetic current sources. The con-
tribution of these two correlation products to the positive
time window is very small, due to the fact that the causal
fields registered at xB are electric fields which, without any
wavetype conversion, only contribute significantly at t = 0
(they arrive instantaneously). The contributions of the elec-
tric signals with positive seismic traveltimes are negligible,
because these signals have encountered at least two wavetype
conversions; this implies significant energy losses. Therefore,
we can additionally neglect the contributions of the elec-
tromagnetic boundary sources (Je and Jm), ending up with
the following reduced interferometric seismoelectric integral
representation

{

̂GE, f (xB, xA,ω) + ̂Gvs ,Je∗(xA, xB,ω)
}

̂S

=
{

− ̂GE, f (xB, x2,ω) ̂Gvs,h∗(xA, x2,ω)

− ̂GE,h(xB, x2,ω) ̂Gvs , f∗(xA, x2,ω)
}

̂S.

(54)

Figure 16 shows the result of using this reduced interfer-
ometric seismoelectric integral representation. The figure
displays a comparison between the exact Green’s function
in the positive time window GE, f (xB, xA, t) and the Green’s
function retrieved by using (54), that is, by considering only
seismic boundary source contributions ( f and h) at x2. As is
visible, the amplitude errors between the exact and retrieved
Green’s functions are still very small in this situation (about
10% or less), showing that neglecting these types of sources
is allowed. When comparing these losses with Figure 14, it is
visible that these amplitude losses are probably related to the
fact that the volume source contributions (blue solid line in
Figure 14) are neglected in Figure 16. In addition, Figure 17
shows the differences between the exact Green’s function and

Figure 16: Comparison between the exact Green’s function
GE, f (xB , xA, t) and the Green’s function retrieved by considering
only seismic boundary source contributions in the right-hand side
of (52). In other words, the contributions of the domain sources
and electromagnetic boundary sources are neglected. As can be
seen, the amplitude errors between the exact and retrieved Green’s
functions are acceptable (about 10% or less). Because only the
Green’s function corresponding to the positive time window is con-
sidered here, no spurious events (which reside in the negative time
window) are visible.

the Green’s function retrieved by considering only electro-
magnetic boundary source contributions (Je and Jm). As
is visible, the electromagnetic boundary sources have a
negligible contribution to the retrieved Green’s function
in the positive time window GE, f (xB, xA, t). Hence, the
amplitude losses visible in Figure 16 are indeed caused by
ignoring the volume source contributions. However, the
electromagnetic boundary sources do contribute to the
Green’s function retrieval in the negative time window, that
is,Gvs,Je(xA, xB,−t). The two red-dashed peaks at roughly t =
−0.28 s and t = −0.38 s correspond to the spurious events
B1 and B2, respectively. These spurious events result from
the boundary and volume sources that are related to the
edges of the modeling domain. They will remain present
when considering only boundary sources or domain sources
and will vanish when considering both. It is visible that the
spurious events are not present in the exact case. Figure 17
clearly illustrates the contribution of the electromagnetic
boundary sources in cancelling out the spurious events in the
negative time window. As visible in Figure 15, the spurious
events B1 and B2 are never stationary. Due to the bounded
modeling domain, a contribution exists of sources at the edge
of the modeling domain and that contribution needs to be
compensated for by a source at that boundary surface.

Looking at Figure 14, several other events are present
as well. For seismoelectric exploration purposes, the events
arriving at roughly t = 0.14 s and t = 0.23 s are of major
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Figure 17: Comparison between the exact Green’s function
GE, f (xB , xA, t) +Gvs ,Je (xA, xB ,−t) and the Green’s function retrieved
by considering only electromagnetic boundary source contribu-
tions (Je and Jm) in the right-hand side of (52). In other words, the
contributions of the domain sources and seismic boundary sources
are neglected. As is visible, the electromagnetic boundary sources
have a negligible contribution to the retrieved Green’s function
in the positive time window GE, f (xB , xA, t). However, the electro-
magnetic boundary sources do contribute to the Green’s function
retrieval in the negative time window, that is, Gvs ,Je (xA, xB ,−t). The
two red-dashed peaks at roughly t = −0.28 s and t = −0.38 s
correspond to the spurious events B1 and B2, respectively. It is
visible that the spurious events are not present in the exact case. The
contribution of the electromagnetic boundary sources in cancelling
out the spurious events in the negative time window is clearly
illustrated.

interest. These represent the interface response (labelled 1)
of the most shallow interface and its source-side ghost
(labelled 1g). Similarly, the other two strong arrivals in the
positive time window correspond to the interface response of
the second, deeper interface (labelled 2) and its source-side
ghost (labelled 2g). The schematic ray paths of these events
are displayed in Figure 13. Especially worth noticing are two
additional nonphysical events that reside in the negative
time-window, labelled B1 and B2. As can be seen in Figure 14,
the spurious event B1 generated by the boundary sources is
equal but opposite in sign to the spurious event B1 from
the volume sources. The same holds for spurious event
B2. So, when retrieving the Green’s functions by using the
complete right hand side of (52) these spurious events will
vanish. However, when considering either boundary sources
or domain sources, B1 and B2 will remain. The spurious
events exist due to a correlation between a seismic and an
electromagnetic wave event. Because the correlation implic-
itly subtracts the traveltime of the seismic event, which is
relatively long compared with the traveltime of the electro-
magnetic wave (which arrives almost immediately), from the

traveltime of the electromagnetic wave, the resulting spuri-
ous event resides in the negative time window.

This is visible in Figure 15. This figure represents the
obtained correlation gather of the domain integral for a
three-layered medium bounded by a vacuum. In other
words, it represents the cross-correlation results for different
source positions in the domain integral. The scale is taken
as the logarithm of the amplitude. This, in order to be able
to present the different events despite their large amplitude
differences. Summing this correlation gather panel yields
the total contribution of the domain integral as shown in
Figure 14 by the blue volume line.

As is visible, the correlation gather of this relatively sim-
ple 1D example already shows a great complexity of events.
It contains lots of multiple arrivals and free-surface ghosts.
Therefore, distinguishing all the different events is quite a
task. Looking at the different events, some contributions are
so-called non-stationary. That means that this contribution
of a certain source position to a certain event shifts in time as
a function of the source position [46]. For example, looking
at the area in between the receiver positions xA and xB, all the
non-horizontal events are non-stationary. However, outside
the range enclosed by the two receivers, the contributions
of the sources in the domain integral of the interferometric
Green’s function representation are stationary. This com-
bined with the slight amplitude losses visible in Figure 16
(about 10% or less), partly confirms both the analyses of
Snieder [87] and Slob et al. [48]. They show that, for res-
pectively the seismic interferometry and the electromag-
netic interferometry, no spurious events will be created by
neglecting the contribution of the domain integral in weakly
dissipative media. Only the amplitudes of the retrieved events
will be affected. Furthermore, the spurious events that are
created in our modeling indeed only reside in the negative
time window, as should be the case. Because Figure 16 only
considers the Green’s function corresponding to the positive
time window, no spurious events are visible.

The numerical 1D SH-TE example presented here has
shown that the presence of seismic sources only is sufficient
to retrieve an accurate seismoelectric response. This means
effectively that both seismic and electromagnetic signals are
registered at different receivers (without the need of explicit
electromagnetic sources) and that by cross-correlating these
registered signals, the accurate seismoelectric Green’s func-
tion (less than 10% amplitude difference) is retrieved. In
addition, it has been shown that the electromagnetic bound-
ary source contribution to the Green’s function retrieval in
the positive time window is negligible. However, the num-
erical example presented here is of course far from resem-
bling a real Earth setting. Nevertheless, recent seismic inter-
ferometry studies performed on real data have shown that,
for example, by using seismic noise sources (e.g. from micro-
seisms), P-wave reflection responses can be correctly
retrieved [88]. Here it is shown that for the seismoelectric
case, the use of seismic sources only is sufficient to correctly
retrieve the seismoelectric Green’s function response (for the
coseismic field responses as well as the interface response
fields). This seems promising for real applications of seis-
moelectric interferometry. We are currently investigating
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seismoelectric interferometry for both propagation modes
(SH-TE and P-SV-TM) for 3D configurations.

6. Conclusion and Prospects

It was shown that the computed amplitude and phase for
the dynamic permeability correlate well with the normalized
measurements, whereas for the dynamic SP coefficient, only
the normalized amplitude correlates well with the predic-
tions of the theory. This difference could be due to a capacitor
effect of the set-up. To prevent the capacitor effect, using
insulating plates and electrodes perforated in them may be
a solution. In addition, this difference could be related to a
slight frequency-dependence of the bulk conductivity. Using
independent impedance measurements of the sample could
also improve the results. A full-waveform seismoelectric
model in a layered geometry was obtained from the solution
of a mechanical boundary value problem and the electric-
solid ratio of the fast P-wave. The model was simplified by
neglecting the interface response. The predictions of fast P-
wave coseismic fields were compared against coseismic field
measurements. Agreement was found in terms of travel time
and waveform, while predicted amplitudes fell within the
range of the measured amplitudes. Further modeling indi-
cated that the (Biot) theory underestimates the measured
seismic attenuation. The experimental results confirm the
existing electrokinetic theory for the seismoelectric wave
effect. Moreover, it was shown that coseismic fields can be
modeled in a relatively simple way. The electrokinetic theory
was subsequently adopted to study the applicability of seis-
moelectric interferometry. It was shown that the 1D inter-
ferometric seismoelectric SH-TE Green’s function repre-
sentation retrieves accurate results for a three-layered 1D
medium bounded by a vacuum. From the numerical results
it can be concluded that seismic sources at a single boundary
location are sufficient to extract the 1D electric field response
generated by an impulsive seismic source in a layered model,
both for the coseismic field responses and the interface res-
ponse fields. In addition, it has been shown that the elec-
tromagnetic boundary source contribution to the Green’s
function retrieval in the positive time window is negligible.
However, the numerical example presented here is of course
far from resembling a real Earth setting. Nevertheless, recent
seismic interferometry studies performed on real data have
shown that by using seismic noise sources, for example P-
wave reflection responses can be correctly retrieved. Here
it is shown that for the seismoelectric case, the use of
seismic sources only is sufficient to correctly retrieve the

seismoelectric Green’s function response (for the coseismic
field responses as well as the interface response fields).
This seems promising for real applications of seismoelectric
interferometry.

Appendix

Substituting plane wave expressions into the poroelastic
boundary conditions (39) for an incident acoustic wave from
the fluid which impinges on a fluid/poroelastic-medium
boundary leads to the following linear system of equations

A ·
(

Rp,TP f ,TPs,TSV
)T =

(

k
f l
z ,φρ f , 0, 0

)T
, (A.1)

where the elements of matrix A are

a11 = k
f l
z ,

a21 = −φρ f ,
a12 =

[

1− φ + φβP f (ω)
]

k
P f
z ,

a22 =
[

Q + RβP f (ω)
]

s2P f (ω),

a32 = krk
P f
z ,

a42 = k2
r −

ω2s2P f (ω)NP f (ω)

(2G)
,

a13 =
[

1− φ + φβPs(ω)
]

kPsz ,

a23 =
[

Q + RβPs(ω)
]

s2Ps(ω),

a33 = krk
Ps
z ,

a43 = k2
r −

ω2s2Ps(ω)NPs(ω)
(2G)

,

a14 =
[

1− φ + φβS(ω)
]

kr ,

a34 = k2
r −

ω2s2S(ω)
2

,

a44 = −krkSVz ,

(A.2)

and a31 = a41 = a24 = 0, and where Nm(ω) = P − (1− φ)Q/
φ + [Q− (1− φ)R/φ]βm(ω), for m = Pf ,Ps.

Substituting plane wave expressions into the poroelastic
boundary conditions (39) for an incident fast P-wave from a
poroelastic-medium which impinges on a fluid/poroelastic-
medium boundary leads to the following linear system of
equations

B ·
(

Tp,RP f ,RPs,RSV
)T

=
⎛

⎝

[

1− φ + φβP f (ω)
]

k
P f
z ,

[

Q + RβP f (ω)
]

s2P f (ω), krk
P f
z ,−

⎡

⎣k2
r −

ω2s2P f (ω)NP f (ω)

2G

⎤

⎦

⎞

⎠

T (A.3)
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where the elements of matrix B are

b11 = k
f l
z ,

b21 = φρ f ,

b12 =
[

1− φ + φβP f (ω)
]

k
P f
z ,

b22 = −
[

Q + RβP f (ω)
]

s2P f (ω),

b32 = krk
P f
z ,

b42 = k2
r −

ω2s2P f (ω)NP f (ω)

2G
,

b13 =
[

1− φ + φβPs(ω)
]

kPsz ,

b23 = −
[

Q + RβPs(ω)
]

s2Ps(ω),

b33 = krk
Ps
z ,

b43 = k2
r −

ω2s2Ps(ω)NPs(ω)
2G

,

b14 = −
[

1− φ + φβS(ω)
]

kr ,

b34 = −
[

k2
r −

ω2s2S(ω)
2

]

,

b44 = krk
SV
z ,

(A.4)

and b31 = b41 = b24 = 0. The reflection and transmission
coefficients are defined as

Tp = ϕ̃ f l

ϕ̃sP f ,I
, RP f =

ϕ̃sP f ,R

ϕ̃sP f ,I
, RPs = ϕ̃sPs

ϕ̃sP f ,I
,

RSV = ψ̃sSV
ϕ̃sP f ,I

.

(A.5)

The potentials occur in the following plane wave expressions

ϕ̂ f l = ϕ̃ f le−i(kr rr+k
f l
z z),

ϕ̂sq = ϕ̃sqe
−i(kr rr±kP fz z),

ϕ̂sPs = ϕ̃sPse
−i(kr rr−kPsz z),

̂Ψ
s

SV =
(

0, ψ̃sSV e
−i(kr rr−kSVz z), 0

)T
,

(A.6)

for q is P f , I or P f , R. The subscript I and R refer to the
incident and reflected wave, respectively. These potentials are
related to the displacement fields as follows

û f l = ∇ϕ̂ f l,

ûs,q = ∇ϕ̂sq,

ûs,Ps = ∇ϕ̂sPs,
ûs,SV = ∇× ̂Ψ

s

SV ,

ûs = ûs,P f ,I + ûs,P f ,R + ûs,Ps + ûs,SV ,

û f = βP f ûs,P f ,I + βP f ûs,P f ,R + βPsûs,Ps + βSûs,SV .

(A.7)

Fluid pressure is related to fluid displacement by p̂ f l =
−Kf∇·û f l. Pore-fluid pressure and intergranular stresses are
obtained following the basic equations described in [60–64].
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smose électrique et de quelques phénomènes corrélatifs,”
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