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Abstract. A size-resolved submicron organic aerosol com-
position dataset from a high-resolution time-of-flight mass
spectrometer (HR-ToF-AMS) collected in Mexico City dur-
ing the MILAGRO campaign in March 2006 is analyzed us-
ing 3-dimensional (3-D) factorization models. A method
for estimating the precision of the size-resolved composi-
tion data for use with the factorization models is presented
here for the first time. Two 3-D models are applied to the
dataset. One model is a 3-vector decomposition (PARAFAC
model), which assumes that each chemical component has
a constant size distribution over all time steps. The second
model is a vector-matrix decomposition (Tucker 1 model)
that allows a chemical component to have a size distribu-
tion that varies in time. To our knowledge, this is the first
report of an application of 3-D factorization models to data
from fast aerosol instrumentation, and the first application
of this vector-matrix model to any ambient aerosol dataset.
A larger number of degrees of freedom in the vector-matrix
model enable fitting real variations in factor size distribu-
tions, but also make the model susceptible to fitting noise in
the dataset, giving some unphysical results. For this dataset
and model, more physically meaningful results were ob-
tained by partially constraining the factor mass spectra using
a priori information and a new regularization method. We
find four factors with each model: hydrocarbon-like organic
aerosol (HOA), biomass-burning organic aerosol (BBOA),
oxidized organic aerosol (OOA), and a locally occurring

organic aerosol (LOA). These four factors have previously
been reported from 2-dimensional factor analysis of the high-
resolution mass spectral dataset from this study. The size
distributions of these four factors are consistent with previ-
ous reports for these particle types. Both 3-D models pro-
duce useful results, but the vector-matrix model captures real
variability in the size distributions that cannot be captured
by the 3-vector model. A tracerm/z-based method provides
a useful approximation for the component size distributions
in this study. Variation in the size distributions is demon-
strated in a case study day with a large secondary aerosol
formation event, in which there is evidence for the coating
of HOA-containing particles with secondary species, shifting
the HOA size distribution to larger particle sizes. These 3-D
factorizations could be used to extract size-resolved aerosol
composition data for correlation with aerosol hygroscopic-
ity, cloud condensation nuclei (CCN), and other aerosol im-
pacts. Furthermore, other fast and chemically complex 3-D
datasets, including those from thermal desorption or chro-
matographic separation, could be analyzed with these 3-D
factorization models. Applications of these models to new
datasets requires careful construction of error estimates and
appropriate choice of models that match the underlying struc-
ture of those data. Factorization studies with these 3-D
datasets have the potential to provide further insights into or-
ganic aerosol sources and processing.
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1 Introduction

Fine particles have important effects on human health, cli-
mate forcing, visibility, as well as deposition of nutrients
and acids to crops and ecosystems. Some of the physi-
cal processes underlying these effects include deposition of
toxic compounds into the lungs (Mauderly and Chow, 2008),
cloud condensation-nucleus (CCN) activation (Andreae and
Rosenfeld, 2008), scattering and absorbing of radiation (Wat-
son, 2002), and particle settling and deposition (Feng, 2008).
The extent and impact of these effects depend on both par-
ticle size and chemistry, with particles with submicron di-
ameters being especially important. These aerosol effects
are complex because aerosol size distributions are dynamic.
Many processes can change the size distributions of aerosols,
including creation of new particles by nucleation; growth by
coagulation and condensation; decrease in size by evapora-
tion of semivolatile species upon dilution, heating, or chem-
ical reaction; and removal of particles by wet or dry depo-
sition (Whitby, 1978). Thus, measured ambient size distri-
butions do not reflect the original sources directly, but repre-
sent aerosols transformed by atmospheric processes. Many
of the processes that change a particle’s size result in simul-
taneous changes to its chemical composition. For example,
when semivolatile organic compounds condense onto an am-
monium sulfate particle, the particle size increases, and the
particle becomes an internal mixture. Thus aerosol size and
chemical composition are directly linked, and ideally should
be measured simultaneously.

Determination of size-resolved aerosol composition is
challenging and is possible with only a few techniques. The
traditional method for measuring size-resolved chemistry is
to collect particles separately in discrete size ranges and
chemically analyze the size-fractioned samples offline. Par-
ticles are segregated by momentum (proportional to aerody-
namic size) and impact onto sampling stages (e.g., DRUM
sampler, Cahill et al., 1987; MOUDI sampler, Marple et al.,
1991). These methods usually have a time resolution of a few
hours to days, are limited by both the minimum amount of
material that needs to be collected for analysis and labor and
analysis costs, and cannot capture many dynamic changes of
aerosol size distributions and chemical composition that oc-
cur over faster timescales.

In contrast, real-time measurements of size-resolved
chemical composition can be made with aerosol mass spec-
trometry. Aerosol mass spectrometers can be divided into
two main groups: those that measure single particles and
those that measure the bulk aerosol. Single-particle aerosol
mass spectrometers measure the size and chemical compo-
sition of individual aerosol particles (PALMS, Murphy and
Thomson, 1995; ATOFMS, Gard et al., 1997; Thomson
et al., 2000; Su et al., 2004; SPLAT, Zelenyuk and Imre,
2005). The single-particle mass spectra collected by these
instruments can then be clustered into types with similar
composition and the size distribution of the cluster can be

determined. These data give qualitative results about the re-
fractory and non-refractory aerosol composition. In contrast,
the Quadrupole Aerosol Mass Spectrometer (Q-AMS, Jayne
et al., 2000) and Time-of-Flight Aerosol Mass Spectrome-
ter (ToF-AMS, Drewnick et al., 2005; DeCarlo et al., 2006)
quantitatively measures the size-resolved chemical composi-
tion of bulk non-refractory submicron aerosol (∼30 000 par-
ticles in several minutes). The Q-AMS monitors only a few
ion fragments when sampling size-resolved chemical compo-
sition. In this mode, the quadrupole is stepped slowly across
the selected ion fragments; consequently, only ions at one
mass-to-charge ratio (m/z) are measured for each particle. In
contrast, the ToF-AMS measures all ion fragments for each
particle in this sampling mode to give a more complete and
precise representation of the size-resolved chemical compo-
sition of the aerosol.

Organic compounds contribute∼20–70 % of the submi-
cron aerosol mass (Zhang et al., 2007; Jimenez et al., 2009),
so understanding their role in the atmosphere is important
for understanding aerosol impacts. However, we have only
begun to understand the complexity of atmospheric organic
composition, reactions, and volatility. Organic aerosol (OA)
enters the atmosphere by two mechanisms: it can be emit-
ted directly (primary OA), or produced by secondary pro-
cesses, including gas-phase chemical reactions that produce
low-volatility products that condense onto the surfaces of ex-
isting particles, and aqueous-phase reactions that produce
species that stay in the particle phase (secondary organic
aerosol, SOA). Most primary submicron organic aerosol is
the result of incomplete combustion from sources such as
vehicle engines and biomass burning. These sources, and
vegetation, also emit SOA precursors. Measurements of sub-
micron OA by the AMS can provide insights into the con-
tributions of different aerosol sources and processes. Pri-
mary organic aerosol is represented by aerosol components
including hydrocarbon-like (HOA) and biomass-burning or-
ganic aerosol (BBOA, Ng et al., 2011). Secondary organic
aerosol is observed as oxygenated organic aerosol (OOA)
in the AMS (Dzepina et al., 2009; Jimenez et al., 2009).
These aerosol components have been identified by analyz-
ing AMS measurements with a family of mathematical tech-
niques known as factor analysis.

Factor analysis aims to represent measured data with a re-
duced number of physically meaningful factors that describe
underlying sources and processes controlling the variability
of the original data. Possible factorization models depend
on the contents of the data to be factored, how the data is
arranged, and how the suspected underlying data structure
can be mathematically described. Factor analytical methods
have been applied to chemically speciated aerosol data for
more than forty years to identify the sources of particles in ur-
ban and rural environments (e.g., Blifford and Meeker, 1967;
Thurston and Spengler, 1985; Schauer et al., 1996; Chow
and Watson, 2002; Engel-Cox and Weber, 2007; Reff et al.,
2007; Viana et al., 2008). Size-resolved concentrations have

Atmos. Meas. Tech., 5, 195–224, 2012 www.atmos-meas-tech.net/5/195/2012/



I. M. Ulbrich et al.: 3-D factorization of size-resolved organic aerosol mass spectra from Mexico City 197

also been included in some analyses, but comparatively few
researchers have simultaneously factored chemical composi-
tion data from particles in different size ranges (Yakovleva et
al., 1999; Dillner et al., 2005; Han et al., 2006; Pere-Trepat
et al., 2007; Yatkin and Bayram, 2008; Amato et al., 2009;
Gietl and Klemm, 2009; Karanasiou et al., 2009; Kleeman
et al., 2009; Srivastava et al., 2009). All of these studies
used data with limited size or temporal resolution, typically
2–6 size ranges and 12–24-h average composition data; the
study with the highest size and time resolution had 8 size
ranges and 3-hour time resolution (Han et al., 2006). In
fact, Larson et al. (2006) noted that their approach of com-
bining number size distributions with bulk aerosol composi-
tion measurements in a factorization analysis was an interim
approach until more size-resolved aerosol composition data
from aerosol mass spectrometry was available. Size- and
composition-resolved datasets such as those now available
from the AMS have the potential to better characterize and
constrain the changing size distribution of different aerosol
species.

This study uses two 3-dimensional (3-D) factorization
models to analyze a size-resolved organic composition
dataset collected during the intensive MILAGRO campaign
(Megacity Initiative: Local and Global Research Observa-
tions) in Mexico City in March 2006 (Molina et al., 2010).
During the campaign, size-resolved submicron aerosol com-
position was measured near downtown Mexico City by high-
resolution time-of-flight aerosol mass spectrometry (HR-
ToF-AMS). Previous factor analysis of the bulk submicron
organic composition dataset, i.e., without making use of
the size-resolved data, identified contributions to the organic
aerosol from HOA, BBOA, OOA, and a locally occurring or-
ganic aerosol (LOA, Aiken et al., 2009). The 3-D factoriza-
tion techniques used in this study allow us to obtain robust es-
timates of the size distributions of these aerosol components
and perhaps identify additional components. We first present
a brief overview of 3-D factorization models for datasets
that include aerosol size and composition information to de-
termine sources of aerosol. We then discuss our methods,
which include preparing the size-resolved aerosol composi-
tion measurements for factorization, and factoring these data
using two 3-D models with two algorithms. We present the
results of the two factorization models, then compare the so-
lutions and discuss the advantages and disadvantages of each
for this dataset. Finally, we discuss the implications of these
results for future studies of aerosol effects, and the use of
these models for factoring 3-D datasets from other emerging
fast aerosol instrumentation.

2 Three-dimensional array factorization

Traditional factor analyses of 2-dimensional (2-D) ma-
trices produce factors composed of two vectors. Sev-
eral approaches to factor analysis of datasets that include

aerosol size distributions or size-resolved aerosol compo-
sition datasets organized as 2-D matrices are presented in
Sect. S1 of the Supplement. In contrast, the third dimen-
sion in 3-D arrays allows for more factorization model op-
tions (Fig. 1). The first of these models is known as “Paral-
lel Factor Analysis” or “PARAFAC” (Harshman and Lundy,
1994) and extends the bilinear umixing model (Eq. S1 in the
Supplement) to a trilinear model (Fig. 1a). In this model,
each factor is described by three 1-D vectors, and we refer
to it here as the “3-vector model.” We arrange am × n × o

data arrayX of size-resolved chemical composition such that
each of them rows holds a 2-D matrix of dimensionsn × o

(columns× layers of the 3-D array) that contains the mea-
surements ofo chemical components measured at each of the
n sizes for one sample (time step). Equivalently, then × o

matrix could be thought of as the size distribution (acrossn

size bins) of each of theo chemical components. The 3-D
arrayX is reconstructed by a number of 3-vector factors as
described by

xijk =

∑
p

aip bjp ckp + eijk, (1)

wherei, j , andk are the row, column, and layer indices of
a 3-D array;p is the number of factors;aip is an element
of the m × p matrix A, the columns of which contain the
factor time series;bjp is an element of then × p matrix B,
the columns of which contain the factor size distributions;
ckp is an element of theo × p matrix C, the rows of which
contain the factor chemical profiles; andeijk is an element
of them × n × o arrayE of the residuals of the solution, i.e.,
the difference between the measured data and the reconstruc-
tion. Note that the 3-vector model incorporates the assump-
tion that each factor’s size distribution and chemical compo-
sition are unchanging over the entire measurement period.

Another option for factoring 3-D arrays produces factors
composed of a vector (1-D) and a matrix (2-D). This model
is often called the “Tucker1” model (Tucker, 1966), but we
refer to it here as the “vector-matrix model”. Three such
vector-matrix models are possible depending on which array
dimension is chosen for the vector (Fig. 1b–d). The model
in which the vector contains the chemical composition of
one factor, and the matrix its time-varying size distribution
(Fig. 1b), is described mathematically by

xijk =

∑
p

dijp ckp + eijk, (2)

wherexjik andeijk are as described as in Eq. (1);ckp is the
same as in Eq. (1) and is an element of the factor composi-
tion profile; anddijp is an element of them × n × p arrayD
in which eachm × n layer represents the time-evolving size
distribution of each factor. In this model, the chemical com-
position of each factor is assumed to be constant at all times,
but the size distribution of the aerosol component can change
over time.
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Fig. 1. Schematic representation of factorization methods of 3-D matrices.(a) In the 3-vector model, each factor is represented by three
vectors (here a mass spectrum, a size distribution, and a time series of the contribution of the factor).(b)–(d) In the vector-matrix model,
each factor is represented by one vector (representing one of the original array dimensions) and one matrix (representing the remaining array
dimensions). The model can be arranged so that any of the original dimensions is represented by the vector:(b) the vector represents a mass
spectrum,(c) the vector represents a size distribution;(d) the vector represents a time series.

Two alternate arrangements of the vector-matrix model
incorporate different assumptions about aerosol properties.
The vector-matrix model in which the vector contains the
size distribution (Fig. 1c) could identify the changing compo-
sition of aerosol size modes. In the final vector-matrix model,
the vector contains the time series, and the matrix represents
size-resolved chemical composition (Fig. 1d). Thus each fac-
tor represents the size-resolved chemical composition of the

ensemble of particles that arrive simultaneously at the sam-
pling location.

Three peer-reviewed studies that have reported factoriza-
tion of 3-D size-resolved aerosol composition datasets using
the 3-vector model (Fig. 1a; Yakovleva et al., 1999; Karana-
siou et al., 2009) and the vector-matrix model in which the
vector contains the factor time series (Fig. 1d; Pere-Trepat
et al., 2007) are summarized in Table 1 and described in
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Table 1. Details of research that applied 3-D factorization techniques to datasets of size-resolved aerosol chemical composition.

Citation Yakovleva et al. (1999)a Pere-Trepat et al. (2007) Karanasiou et al. (2009)a This work

Sampling Riverside, CA Detroit, MI Athens, Greece Mexico City, Mexico
location 1991 2002 2002 2006

Instrumentation Stationary indoor monitors 3-stage DRUM impactor Custom impactors HR-ToF-AMS
Stationary ambient monitors absorbance spectrometer aethalometer
Personal exposure monitors

Particle sizes PM2.5, PM10, personal PM10 0.1–2.5 µm PM2, PM10–2 0.01–1.2 µmb

(2 sizes, 5 types) (3 ranges) (36 ranges)

Chemical 18 elements 27 elements SO2−

4 Organic fragments at
speciation σabs(four wavelengths) BC 71m/z’s ≤ 100 amu

13 elements

Sampling time 12 h 3 h 24 h 5 min, 3 times per h

Factorization 3-vector Vector-matrix 3-vector – 3-vector
model(s) (time series as vector) – vector-matrix (mass

spectrum as vector)

Algorithm(s) PMF3c ME-2c PMF3 PMF3, ME-2

a In these studies, the data was also arranged as multiple 2-D matrices and factored using a 2-D model. These works are included in Table 1 and details are presented in Table S7 (in

the Supplement).
b Particle transmission in the AMS begins at∼0.04 µm, but smaller sizes were included in the factorization dataset to characterize noise level and provide a baseline for size

distributions.
c Algorithms are Positive Matrix Factorization 3 (PMF3) and Multilinear Engine 2 (ME-2).

Sect. S2 of the Supplement. To the best of our knowledge,
no published studies have applied the vector-matrix model in
which the vector contains chemical compositions to aerosol
datasets. Furthermore, we know of no studies that have ap-
plied 3-D factorization techniques to highly time- and size-
resolved chemical composition data.

We choose to explore the 3-vector model (Fig. 1a) and the
vector-matrix model in which the vector contains factor mass
spectra and the matrix contains the time-varying factor size
distributions (Fig. 1b). In particular, we choose this formu-
lation of the vector-matrix model because we can recognize
their chemical composition from prior work, and we expect
the component size distributions to change more rapidly than
their chemical composition as particles are transported from
their sources (Cross et al., 2009; Canagaratna et al., 2010)
and age in the atmosphere (Dzepina et al., 2009).

3 Methods

In this section we discuss the collection of size-resolved
aerosol composition data using the HR-ToF-AMS, prepara-
tion of that data for factorization, and the factorization mod-
els and algorithms used in this study. Finally, we present the
guidelines used to choose factorization solutions.

3.1 Mexico City measurements during the MILAGRO
field campaign

Data were collected during the MILAGRO field campaign in
Mexico City, Mexico, in March 2006 (Molina et al., 2010).
The campaign urban supersite (“T0”) was located at the In-
stituto Mexicano del Petroleo (IMP), 9 km NNE of the city
center, near a combination of residential, commercial, and
light industrial areas. A HR-ToF-AMS (referred to hereafter
as AMS, Aerodyne Research Inc., Billerica, MA; DeCarlo et
al., 2006) was located at T0, and data were collected from
10 to 31 March, 2006 (Aiken et al., 2009).

The sampling procedures for the AMS during the MILA-
GRO campaign have been described in detail by Aiken et
al. (2009) and are briefly summarized here. We use the size
distributions recorded in the V, i.e., single-reflectron-pass,
mode of the AMS for this study. Because of multiplexing
the ambient data with other experiments, size distributions
were collected for 2.5 min each in two adjacent time steps,
or “runs”, of every eight time steps. Thus, 5 minutes of every
20 min were spent sampling in this mode, giving 6 chemi-
cally speciated size distributions per hour.

3.2 Measurement of chemically speciated size
distributions with the AMS

The AMS generally alternates between two sampling
modes during each time step: MS mode, in which the
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ensemble-average mass spectrum of all particles is obtained;
and Particle Time-of-Flight (PToF) mode, in which the size-
resolved mass spectra, of particles are obtained (Jayne et al.,
2000; Jimenez et al., 2003; Canagaratna et al., 2007). In both
modes, particles and gases in ambient air enter the instrument
and are focused into a beam by an aerodynamic lens. The
lens transmits with nearly 100 % efficiency particles with a
vacuum aerodynamic diameter (dva) of 70–600 nm. It trans-
mits with decreasing efficiency particles withdva 35–70 nm
and 600 nm to 1.5 µm (Liu et al., 1995a,b; Jayne et al., 2000;
Zhang et al., 2004). Gases are also transmitted through the
lens with 100 % efficiency, but are not focused at the exit of
the lens. Particles and gases that are transmitted through the
lens encounter a rotating chopper wheel (∼150 Hz) that is
positioned differently for the MS and PToF sampling modes.
Only the PToF mode is described here. In PToF mode, the
chopper is positioned to partially block the particle beam,
allowing a few particles through the slit during each chop-
per cycle. Particles and gases that pass the chopper im-
pact a resistively heated surface (600◦C), and nonrefractory
aerosol components flash vaporize. The particle vapors and
gas molecules are ionized (70 eV electron impact), and the
resulting cations are transmitted by ion optics to an extrac-
tion region. In the extraction region, the ions are extracted
into the ToFMS and fly to the detector.

Particle size is determined from particle velocity in the
particle-flight region. Particle velocity is calculated from the
length of the particle-flight region from the chopper to the
vaporizer (0.293 m) and particle time of flight (PToF), mea-
sured as the time between the midpoint of the opening of
the chopper slit intersecting the particle beam and the pulsed
extraction of ions into the mass spectrometer. This PToF in-
cludes the true PToF from the chopper to the vaporizer, and
ion time of flight (IToF) from the extractor to the detector;
however, since IToF� PToF (<30 µs vs.∼3000 µs, respec-
tively), the approximation of PToF as measured is sufficient.
The measured PToF and the length of the particle flight re-
gion (Lp) give the particle velocity (vp), which is inversely
related to the particle vacuum aerodynamic diameter (dva),
by

vp =
Lc

PToF
=

vs − vl

1 + (dva/d∗)b
+ vl (3)

where vs and vl are the asymptotic velocities for very
small and very large particles, respectively, andD∗ and b

are calibration constants (Jayne et al., 2000; Allan et al.,
2003). Particle size (dva) is calibrated to PToF using fast-
vaporizing, monodisperse particles such as ammonium ni-
trate or polystyrene latex spheres (PSLs, at 800◦C).

Size-resolved mass spectra are obtained by recording
many individual mass spectra as a function of particle flight
time (Fig. 2a). The frequency of recording the mass spec-
tra determines the achievable size resolution. Mass spectra
are recorded, e.g., 100 times during each chopper cycle then
reduced to 50 spectra by co-adding two adjacent spectra, to

obtain one spectrum every 50 µs in this study. Most of the
mass spectra contain only noise because zero to a few par-
ticles enter the particle flight region during each chopper
cycle, so only a few spectra contain particle signal. Size-
resolved mass spectra from∼10 000 chopper cycles during
one 2.5-min time step are averaged into one size-resolved
mass-spectral matrix for that time step (Fig. 2b). During
one 2.5-min time step, sampling 50 % of the time in PToF
mode with a flowrate of 2.0 cm3 s−1, a 2 % chopper opening,
and a typical urban concentration of 10 000 particles cm−3,
this matrix contains the average size-resolved mass spectra
of ∼30 000 particles.

This description of PToF sampling describes “ideal” PToF
sampling in which particles stick to the vaporizer and va-
porize quickly. However, the measured particle size can be
affected if non-ideal behavior changes any part of the mea-
sured PToF. The measured PToF includes three components:
the true PToF from the chopper to the vaporizer, the vapor-
ization and ionization time, and the time for ions to transfer
from the ionization region to the TOF mass spectrometer ex-
traction region.

We discuss possible deviations from each component and
their effects here. First, the true PToF can change if a par-
ticle bounces off the vaporizer, then impacts another surface
and evaporates; thus the vaporization is “delayed”. If the va-
porized molecules from this particle are ionized and the ions
are mass analyzed, they are recorded at a nominal size larger
than the true particle size (Cross et al., 2009). Second, differ-
ent aerosol species have different vaporization rates. “Fast”
evaporation happens on the timescale of<200 µs for sev-
eral aerosol constituents (NH4NO3 and (NH4)2SO4 vapor-
ize in 80 and 150 µs, respectively, at∼600◦C, Cross et al.,
2009). In contrast, some inorganic and organic compounds in
ambient aerosol can have longer evaporation timescales (1/e

decay), e.g.,<105 µs (0.1 s for PbCl, Salcedo et al., 2010),
>5× 106 µs (5 s for∼5 % of the total organic mass, Huff-
man et al., 2009) , or∼1.4× 108 µs (2.4 min for other Pb
compounds, Salcedo et al., 2010). Ions from these longer va-
porization timescales are measured as part of the background
signal in PToF mode, while ions from moderate vaporization
timescales are recorded at larger nominal sizes than the true
particle size. The final component of the measured PToF is
the transfer time from the ionization region to the pulsed ex-
traction region of the TOF mass spectrometer. For typical
voltages of the transfer ion optics (of the order of a few tens
of volts; we will use 20 V for this example calculation), the
time to travel 96 mm between the ionization and extraction
regions (Drewnick et al., 2005) is 6 and 27 µs form/z’s 17
and 300, respectively.

Thus, transfer time� vaporization time� measured
PToF (∼3000 µs), and only variations in the vaporization
time could potentially be large enough to shift the recorded
particle size. Note that these deviations broaden the size
distribution only towards nominally larger particle sizes.
These possible deviations should be considered part of
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the particle flight region before being vaporized and ionized. Mass spectra are collected∼50 times during the particle flight time (circles).
Ions from the smaller particle arrive first (blue circle), and their mass spectrum is recorded (blue spectrum). Ions from the larger particle
arrive second (green circle), and their mass spectrum is recorded (green spectrum). (Adapted from Cross et al., 2009 with permission.)
(b) The size-resolved mass spectra can be arranged as a 2-D matrix in which one dimension represents the mass-to-charge (m/z) ratio, and
one dimension represents particle size. The same data could be conceptualized asm/z-resolved size distributions if the points in eachm/z
row are connected.(c) Over many measurement periods, the 2-D samples can be arranged into a 3-D array.

the “transfer function” of the instrument, and could be
further evaluated and corrected, although such techniques
are outside the scope of this paper.

3.3 Particle time-of-flight data analysis and data
pretreatment

Quantification of the size-resolved particle signal requires
subtracting the background signal. However, the background
signal is not explicitly measured in PToF mode. Instead, each
PToF-mode sample (during one time step or “run”) includes
measurements before and after particle signals arrive at the
detector, and these periods, or “DC regions,” can be used to
estimate the signal background (Allan et al., 2003). The sig-
nal from both periods is usually used to determine the back-
ground (Fig. S1a in the Supplement); however, some ions
have high signal from gas-phase ions that arrive before the
particles, and only the latter region is used to determine the
background level (Fig. S1b in the Supplement). The signal

over the selected regions is averaged, and, analogous to a
“DC offset”, is subtracted from the measured signal. The es-
timated background subtraction is performed separately for
each ion in every time step.

After subtracting the estimated background from the PToF
matrix of the total aerosol and gas-phase signal, the organic
ion fragments are separated from the bulk aerosol by apply-
ing a “fragmentation matrix” to the mass spectrum measured
at each particle size (Allan et al., 2004). In this work we
use the original Allan fragmentation matrix, not the updated
matrix by Aiken et al. (2008). Details of changes to the frag-
mentation matrix for this study are included in Sect. S3 of
the Supplement.

We now arrange the size-resolved organic aerosol mass
spectra obtained over many sampling periods into a 3-D array
of dimensionsm × n × o, as described in Sect. 2.3 (Fig. 2c).
The array is arranged so that the rows represent time steps
(m time averages), the columns represent particle size (n

sizes), and the “layers” or “pages” (the third dimension)
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Table 2. Comparison of error preparation steps in Ulbrich et al. (2009) and this work. “X” marks the steps performed in each work.

Error preparation step Ulbrich et al. (2009) This work

1. Calculateσijk X X
2. Apply minimum error X X
3. Smooth data X (time dimension only) X (time and size dimensions)
4. Remove datapoints without useful information X
5. Downweight low-SNR data X X
6. Downweightm/z’s directly proportional tom/z44 X X

represent ion fragments in a mass spectrum (o m/z’s, Fig. 1).
Each element of the array has units dSignal/dPToF, which
are nonlinearly transformed to units of dSignal/dlogdva (Al-
lan et al., 2003). Units of dSignal/dlogdva are converted
to dMass/dlogdva by integrating dSignal/dlogdva for each
time step, applying AMS calibration factors (Jimenez et al.,
2003), and normalizing the total PToF signal to the total mass
of the same time step measured in MS mode.

3.3.1 Estimation of measurement precision of particle
time-of-flight data

A method to estimate the precision of AMS PToF data has
not been reported previously. This quantity is required for the
factorization analyses, and so we have developed a method
for its estimation here. The precision (or random error,σ ,
often termed “error” in studies using Positive Matrix Factor-
ization, PMF) of the measured signal for onem/zat one size
in each time step can be estimated by the sum of three terms
in quadrature:

σ =

√
σ 2

IC + σ 2
DC + σ 2

elec,scat, (4)

whereσIC is the precision from Poisson ion-counting statis-
tics, calculated from the ion signal before DC-offset subtrac-
tion (i.e.,σIC =

√
I/ts, whereI is the ion signal in ions per

second andts is the time spent sampling that size bin andm/z
in seconds, analogous to the method of Allan et al. (2003)
for MS mode data);σDC is the standard error of the signals
used to estimate the DC offset (estimated asσDC = s/

√
n,

wheres is the sample standard deviation of the points av-
eraged for the DC offset andn is the number of points in
that average –n = 14 for both DC regions andn = 6 for the
later DC region in this study); andσelec,scat is the error from
electronic noise and scattered ion signals that are presumed
to contribute to every measured ion signal (estimated as the
standard deviation of the signal at very highm/z’s at all par-
ticle sizes). In this study,σelec,scat was estimated from the
signals atm/z’s > 400 for 200 time steps that did not appear
to contain actual particle signal (defined as signal at least four
times the average noise level). A fourth term could be added
to the estimation ofσ to reflect particle-counting statistics
when particle number concentrations are low.

3.3.2 Further data and error treatments prior to
factorization

Further treatments to the data and error matrices are needed
prior to array factorization for three main purposes: (1) to de-
crease the influence of low signal-to-noise ratio (SNR) data
in the factorization, (2) to remove array elements that do not
contain useful particle information, and (3) to decrease the
weight of duplicated information within the array. To imple-
ment these treatments, we follow the five-step procedure de-
scribed by Ulbrich et al. (2009), with some additions specific
to the PToF data (Table 2). The steps are described below,
and numbered as in Table 2.

1. The first step in the procedure is to calculate the error
for each measurement according to Eq. (4).

2. In the second step, we apply a minimum error thresh-
old equal to the signal measured from one ion during
one time step. This correction decreases the weight of
points whose estimated error is smaller than one count.
In the Ulbrich et al. (2009) study, this step had two func-
tions: it replaced error values calculated as less than
one ion, but also identified error values that were lower
than the average of its neighbors in time and replaced
the calculated error with that average. However, this
second part of the correction cannot be applied here
because only two adjacent measurements were made,
so no point has two truly contiguous neighbors. The
minimum-error correction increases the estimatedσ

only for very small signals. In this study, one ion is
equivalent to 1.24 Hz or 0.03 µg m−3 decade−1 log(dva),
and 52 % of the data points included in the final array
have their error increased in this step by∼8 % on aver-
age. The increases are larger for particularm/z’s and for
some particle sizes (Fig. S2 in the Supplement). Many
ions withm/z> 85 required uncertainty increases of 20–
70 %. The average increased uncertainty at each particle
size was of smaller magnitude than the average increase
by m/zand mainly affected particles that are transmitted
with lower efficiency through the aerodynamic lens, i.e.,
dva< 45 nm or>∼900 nm. The large fraction of points
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in the array that require this correction is a consequence
of the limited SNR for this PToF dataset.

3. The limited SNR of the PToF-mode data is partially the
result of lower sampling duty cycle in PToF mode than
in MS mode. In MS mode, the particle beam is sam-
pled at least 50 % of the time during the “open” mode,
but in PToF mode, the chopper allows particles to enter
the sampling region during typically 2 % of the sam-
pling time. The SNR of the PToF-mode data is fur-
ther decreased because the ions produced from particles
that reach the vaporizer are sampled over many nomi-
nal particle sizes instead of being averaged together as
in MS mode. To reduce the impact of high-frequency
noise on the PToF data, we follow the third step of the
Ulbrich et al. (2009) procedure and smooth the data in
the size and time dimensions. The particle size dimen-
sion was smoothed binomially by two points for each
m/zin each time step. In the time dimension, two adja-
cent time steps were averaged together to obtain 5-min
sample averages. The effect of these steps in the es-
timated precision was propagated in quadrature in the
PToF uncertainties.

4. The minimum error step shows that many of the sig-
nals in the array are small; the small signals have two
main causes. First, the array includes many points that
we know do not contain useful information about par-
ticle size or composition. In the size dimension, some
points represent signal before and after particles can ar-
rive, based on the theoretical lens transmission; indeed,
these are the sizes that were used to calculate the PToF
background in Sect. 3.3. Because these data should not
contain particle signal, we discard them and retain the
data for nominal particle sizes 10 nm≤ dva≤ 1200 nm.
Although we expect very little or no particle signal at
the extremes of this range, we retain these edges so that
both tails of the size distributions approach zero. Sec-
ond, somem/z’s have little chemical information. The
signal from organic fragments is found predominantly
at m/z’s ≤ 100. For example, DeCarlo et al. (2008) re-
port that 91 % of the organic signal was found below
m/z100 for an aircraft HR-ToF-AMS dataset during MI-
LAGRO. In addition, ions at higherm/z’s have lower
SNR. Mass fragments withm/z’s from 1 to 826 were
measured in PToF mode during this study, but for this
analysis we retain onlym/z’s ≤ 100 with organic frag-
ments. Finally, 2 % of the time steps have total PToF
mass concentration less than zero because of noise at
low actual concentrations, and we omit these time steps
from further analysis. These steps for removing parti-
cle sizes, ion fragments, and time steps with little or-
ganic particle information were not part of the Ulbrich
et al. (2009) procedure.

After removing sections of the array with little or-
ganic particle information, the resultant array contains
measurements at 1366 time steps (rows), 36 size bins
(columns), and 71m/z’s (layers), or∼3.5× 106 data
points. This is a 32-fold reduction from the original ar-
ray size of∼1× 108 data points. Using this smaller
array for the factorization analysis greatly reduces com-
puter time, memory, and storage requirements while
preserving the high time-, size-, and chemical resolu-
tion of the useful information.

5. Now that the data array contains only the points that will
be used for further analysis, we assess the SNR to iden-
tify portions of the data with low-information content.
The data with low-information content are reweighted,
or “downweighted”, to decrease their weight in the fit
(Paatero and Hopke, 2003).

Metrics for assessing the information content of the
data based on calculated SNR are discussed in detail by
Paatero and Hopke (2003) for 2-D datasets, but these
authors make no recommendations for 3-D datasets. In
2-D datasets, average SNR is calculated over all of the
time steps for each variable; the variables in 2-D AMS
datasets are them/z’s. In contrast, the average SNR for
3-D datasets can be calculated in more ways. Three
examples are given here: (1) the SNR could be calcu-
lated for eachm/zat each size, averaged across all of
the time steps; (2) the SNR could be calculated for each
size, averaged across all of them/z’s and time steps; or
(3) the SNR could be calculated for eachm/z, averaged
across all sizes and time steps. The third method was
used in the only published 3-D factorization study that
downweighted low-SNR data (Pere-Trepat et al., 2007).
In that study, the authors downweighted the data for
selected chemical species at all sizes and all times by
factors of 3 or 10, but no details were provided about
the criteria used to determine which species should be
downweighted. In our dataset, however, we know from
applying the minimum error that the information con-
tent (SNR) in the array varies withm/zand particle size.
For example, the minimum error was much larger than
the calculated error at many of the higherm/z’s, and the
smallest and largest particle sizes contain little particle
information regardless ofm/z. Thus, we use the first
method and calculate the SNR separately for eachm/z-
size combination by

SNRjk =

√√√√ m∑
i=1

x2
ijk

/
σ 2

ijk . (5)

We now use the average SNR values to downweight
m/z-size combinations with low SNR. The threshold for
low SNR recommended by Paatero and Hopke (2003)
is 2, and the recommended threshold for very-low SNR
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is 0.2; Paatero and Hopke call the low and very-low
SNR data “weak” and “bad,” respectively. No data are
bad in the current dataset by that criterion. However,
89 % of them/z-size combinations are weak when us-
ing the recommended threshold of SNR< 2. Since we
have established that the SNR is generally weak for this
data, and Paatero and Hopke note that the SNR thresh-
old for “weak” variables is somewhat arbitrary, we set
the threshold for weak data at SNR of 1.5. Furthermore,
m/z15 is the onlym/zwith “good” SNR atdva< 45 nm
(Fig. S3 in the Supplement), which is near the lower
range of particles transmitted by the aerodynamic lens
(∼35 nm). Thus, this signal is unlikely to represent par-
ticles and may instead represent gas-phase contributions
of 15N. Therefore, we increase the “weak” SNR thresh-
old for m/z15 to 1.6 such that the signals ofm/z15 for
dva< 125 nm anddva> 412 nm are also “weak.” With
this change, 77 % of them/z-size combinations are still
weak, but nearly allm/z’s have strong signal for parti-
cles sizes that are transmitted through the instrument’s
aerodynamic lens with 100 % efficiency (Fig. S3 in the
Supplement). We can therefore emphasize these high
SNR data by downweighting the weakm/z-size com-
binations. We increase the calculated error for the
weakm/z-size combinations (those with SNR≤ 1.5, or
SNR≤ 1.6 for m/z15) by a factor of 2 (Paatero and
Hopke, 2003).

6. Finally, we downweight information that is repeated in
the data array because of the application of the fragmen-
tation matrix. In the fragmentation matrix, the organic
signal and uncertainty atm/z’s 16, 17, and 18 are de-
fined to be proportional to the signal atm/z44. Thus the
information form/z44 is repeated in the data array four
times. This repetition is chemically meaningful, but if
thesem/z’s are used without modification, they have un-
due additional weight in the factorization analysis. We
therefore downweight the signal at these fourm/z’s by
the square root of 4 so that this information is weighted
the same as any other singlem/z(Ulbrich et al., 2009).

3.4 Array factorization

After performing these data analysis and pretreatment steps,
the data array is ready for factorization. We now discuss the
factorization models used in this study, the algorithms used
to solve the models, and the guidelines used for choosing fac-
torization solutions. All factorization results were examined
using the PMF Evaluation Tool (PET) described previously
(Ulbrich et al., 2009), with custom modifications for 3-D ar-
ray factorization.

3.4.1 Models for factoring the 3-dimensional array

Four models for factoring 3-D arrays were presented in
Sect. 2 (Fig. 1). This study applies two of these models to

the MILAGRO dataset. The first model is the 3-vector model
(Fig. 1a). Recall that the 3-vector model is so named because
each factor is composed of three vectors. When this model is
applied to the present dataset, the vectors contain the factor’s
chemical composition (here a mass spectrum), size distribu-
tion, and mass concentration time series. The 3-vector model
thus assumes that each factor’s size distribution and chemi-
cal composition is unchanging over the entire measurement
period. The second model used for this study is the vector-
matrix model. Recall that in the vector-matrix model, each
factor is composed of a vector and a matrix. In this study,
we use a vector-matrix model in which the vector contains
the aerosol composition, i.e., mass spectrum (Fig. 1b). Here-
inafter we use “the vector-matrix model” to refer to this vari-
ant of the three possible vector-matrix models, unless oth-
erwise noted. This vector-matrix model assumes that each
factor’s chemical composition is constant at all times, but
the size distribution of each factor can change over time.
To compare the factors from solutions of the 3-vector and
vector-matrix models, we must match the shapes and units.
In the factors from both models, we normalize mass spec-
tra to sum to 1 (as is standard for AMS data, Ulbrich et al.,
2009, but in contrast with the usual mass spectrometric prac-
tice of normalizing them/zwith the highest signal to 100).
In the 3-vector model, we normalize the area under the size
distribution to sum to 1, thus giving units of mass concentra-
tion (µg m−3) to the time series. In contrast, in the vector-
matrix model, the matrix represents dM/dlogdva with units
µg m−3/decade−1 log(dva). From this matrix, a factor’s av-
erage normalized size distribution can be calculated by aver-
aging all of the size distributions in the matrix, then normal-
izing to unit area. Similarly, the total time series can be cal-
culated by summing the area under the size distribution from
each time step. These two reductions of the matrix from the
vector-matrix model can then be compared directly with the
3-vector model results.

When the model does not match the data

Both models used in this study – and the bilinear model in 2-
D factorization studies – assume that there is no variability in
the mass spectrum of each factor. However, as we discussed
in the Introduction, aerosol undergoes chemical processing
in the atmosphere and thus its spectrum can change, so the
assumption of constant factor mass spectra cannot be strictly
correct. These variations might appear in two forms in the
factorization results. The variation could be fit by an addi-
tional factor, or the variation may not be fit well and appear
in the residuals. For example, Ulbrich et al. (2009) reported a
dataset in which the time series of the residuals andQ/Qexp
contributions were highly correlated with the time series of
the semi-volatile OOA-II factor, suggesting that there were
changes in the composition of OOA-II that could not be fit
with additional factors. Unfortunately, we are not aware of
criteria that might predict when changes in the underlying
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data are significant enough to cause separate factors, and so
must instead consider this possibility carefully when choos-
ing a particular factorization solution.

Despite the limitations of the assumptions of the models
used in this work, we believe that they are the most appro-
priate for the data being analyzed here. Models that allow
spectral variation should be considered in future research.

Adding a priori constraints

Solving these models requires no a priori information about
the factor mass spectra, size distributions, or time series.
However, a priori knowledge can be incorporated to con-
strain the solution if the researcher deems the additional in-
formation appropriate and reliable. For selected analyses in
this study we use the mass spectra obtained from previous
analysis of the MS-mode data from this dataset (Aiken et
al., 2009; henceforth referred to as “the HR-MS” factors,
spectra, or solution) as starting guesses for solving the mod-
els. Thus, a priori information is available, but it may not
directly correspond to the mass spectra obtained from fac-
toring the PToF data. For example, different evaporation
timescales of different organic components on the AMS va-
porizer (Sect. 3.2) could lead to slightly different factors ob-
tained from the mass spectral data compared to the charac-
teristic mass spectra recorded in the PToF mode.

To allow for differences between the HR-MS and PToF
mass spectra, we introduce a regularization parameter that
allows the intensity,c, at eachm/z in each reference fac-
tor to deviate from its starting value. Lanz et al. (2008)
used a parameter,α, that allowedc in an a priori mass spec-
trum to vary by a fraction±α from its original value. With
this parameter, the allowed range from the starting value is
c0 − αc0 ≤ c0 ≤ c0 +αc0, for 0≤ α ≤ 1. Thus whenα is at
its maximum,c may range from 0 to 2c0. However, if an
a priori spectrum is too dissimilar from the latent spectra in
the dataset – especially if the starting guesses have too-small
values for important ion fragments – even anα of 1 may not
allow the solution sufficient flexibility to find a good solu-
tion. Thus we define a different regularization parameter,β,
which allowsc to fractionally approach the limits 0 and 1.
We implementβ by

clow = c0 − β (c0 − 0),

chigh = c0 + β (1 − c0), (6)

whereclow andchigh are the low and high limits forc, respec-
tively, and 0≤ β ≤ 1. In this formulation,clow is identical to
its formulation byα, but chigh allowsm/z’s with small c0 to
grow substantially if necessary.

3.4.2 Algorithms for solving the 3-dimensional models

The two algorithms/software tools used in this study to solve
the 3-vector and vector-matrix models are Positive Matrix

Factorization 3 (PMF3, Paatero, 1997b) and the Multilin-
ear Engine 2 (ME-2, Paatero, 1999). PMF3 can only solve
the 3-vector model, while ME-2 is a flexible tool that can
solve both models, as well as other multilinear and quasi-
multilinear models (Paatero, 1999). Both algorithms con-
strain the values in the factor matrices to be positive. Specif-
ically, in PMF3 the values in factors are constrained to be
positive (Paatero, 1997b), and in ME-2 the values of the
factors are constrained by default to be non-negative, i.e.,
≥0 (Paatero, 1999). The positivity constraint helps produce
physically meaningful factors because real mass spectra, size
distributions, and mass concentrations have all positive val-
ues, and negative values arise only because of noise.

Both algorithms evaluate potential solutions by minimiz-
ing a quality-of-fit parameter,Q, defined as the sum of the
error-weighted residuals of the entire data array, or

Q =

m∑
i=0

n∑
j=0

0∑
k=0

(
eijk

/
σijk

)2
. (7)

A theoretical “expected” value ofQ (Qexp) is approximated
by the number of points in the data array minus the degrees
of freedom in the solution (i.e., the number of points in the
solution arrays, Paatero et al., 2002), or

Qexp = m n o − p (m + n + o) for the 3-vector model, (8)

and

Qexp = m n o − p (m n + o) for the vector-matrix model. (9)

The change inQexp with the addition of each factor (i.e., in-
creasingp by 1) is small for the 3-vector model, but more
substantial for the vector-matrix model. For example, in the
present dataset, each additional factor in the 3-vector model
decreasesQexp by 0.04 % of the array size [(m +n +o)/mno],
while each additional factor in the vector-matrix model de-
creasesQexp by 1.4 % of the array size [(mn+o)/mno]. Be-
cause the vector-matrix model has more degrees of freedom,
we expect it to fit substantially more of the array information
with the vector-matrix model than the 3-vector model.

We useQexp to normalize theQ values for solutions of the
models. If each point in the array is fit within its prescribed
uncertainty,eijk/σijk is ∼1, Q ∼ the size of the array (mno),
and Q/Qexp∼ 1. However, if the uncertainty values have
been calculated incorrectly,Q/Qexp may be higher or lower
than 1. Note thatQ/Qexp may be larger than 1, even if the er-
rors have been specified correctly, if variations in the data do
not behave according to the model. For example, if a factor’s
size distribution is not constant, it will not be fit well with the
3-vector model. Similarly, if a factor’s mass spectrum varies
in time in a way that cannot be fit well with an additional fac-
tor, it will be fit poorly by both models (Ulbrich et al., 2009).
The Q/Qexp values calculated with the error array used in
the computations in this study are artificially low since so
many of the points have been downweighted because of low
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SNR, interference from gas-phase molecules, or repetition of
chemical information. Thus we find it useful to recalculate
the Q/Qexp values using the error estimates calculated be-
fore downweighting (these error estimates do include appli-
cation of the minimum error and uncertainty propagation of
smoothing). We call these recalculated values “unweighted
Q/Qexp values.” We present unweightedQ/Qexp values in
this study unless otherwise noted.

To solve the models, both the PMF3 and ME-2 algorithms
begin by filling the factor matrices with random values de-
termined from random seeds. Then the algorithms itera-
tively minimize Q. The two algorithms use different mini-
mization algorithms. PMF3 uses a Gauss-Newton algorithm
(Paatero, 1997b) while ME-2 uses the conjugate gradient
method (Paatero, 1999). The difference in minimization al-
gorithms means that PMF3 and ME-2 may not find identical
solutions for the same problem, though solutions from the
two algorithms should be similar.

Finally, we note several details about the configuration of
the algorithms for this study. We run both algorithms in the
“robust mode”, in which outliers (|eijk/σijk| > 4) are dynam-
ically reweighted during the iteration so that they cannot pull
the fit with weight>4. The algorithm uses three levels of
convergence during the iteration; the convergence criteria for
these levels were set toQexp× 10−4, Qexp× 2× 10−5, and
Qexp× 10−5, respectively. Thus the final convergence crite-
ria are∼35 and∼31 absoluteQ-units for the 3-vector and
vector-matrix models, respectively.

3.4.3 Guidelines for choosing a solution

The solutions to positively constrained unmixing models are
not unique, and no set of mathematical criteria have proven
sufficient to identify the best solution of a factor analytical
model. Thus the modeler must choose the “best” solution
from the set of possible solutions; this choice is unavoidably
subjective. Paatero and Hopke (2009) note the importance of
disclosing subjective decisions in publications of factor anal-
yses so that the analyses can be repeated or modified by other
researchers. In that spirit, we present here our guidelines for
choosing the best solution from the 3-D factorizations, and
discuss the acceptability of each candidate solution of the
two models in two Appendices to the paper.

Choices regarding the best solution must be made in two
main areas. First, the number of factors in the solution must
be determined. Second, multiple solutions with this num-
ber of factors may exist, and one family must be chosen as
the best solution. The choice of the best number of factors
is discussed in more detail elsewhere (Paatero and Tapper,
1993; Paatero et al., 2002; Ulbrich et al., 2009) and is only
briefly described here. We use the recommendations of Ul-
brich et al. (2009) and consider these criteria for choosing a
solution: (1)Q/Qexp∼ 1, (2) decrease in the rate of change
of Q/Qexp with increasing number of factors, (3) little struc-
ture in the solution residuals, (4) strong correlation between

component time series and diurnal cycles with those of trac-
ers not included in the factorization array, and (5) plausibil-
ity of the factor mass spectra and their similarity to observed
spectra of real-world sources. Criteria (4) and (5) form the
basis for claiming that factors are “physically meaningful” –
that is, that physically meaningful factors can be linked to
atmospherically relevant sources or processes and assigned
meaningful names that are chemically consistent with the
factor mass spectra. For this dataset, we can also compare
to the HR-MS solution, which identified four factors: HOA,
BBOA, OOA, and LOA. We presume that the bulk aerosol
has the same composition whether measured in the MS or
PToF modes since the sampling modes are alternated every
few seconds, i.e., much faster than aerosol sources or pro-
cesses change at a fixed location. We therefore hypothesize
that we should find the factors identified in the HR-MS anal-
ysis in the 3-D analysis, and may identify additional factors.

It is possible that the solution space for a given number of
factors may contain multiple solutions; these solutions rep-
resent local minima in theQ space (Paatero, 2000, 2007).
Solutions from different local minima usually have differ-
entQ/Qexp values, but the solution with the lowestQ/Qexp
value is not necessarily the best solution. The possibility
of solutions at local minima can be explored by varying the
seed for the starting of the algorithm so that the algorithm be-
gins from different parts of theQ space and might therefore
encounter local minima. We calculate each solution from
50 different starting seeds and then compare these solutions
(Ulbrich et al., 2009). The 50 solutions can be grouped into
“families” of solutions by comparingQ/Qexp values and the
similarity of factors within the family (Allan et al., 2010; De-
Carlo et al., 2010). Each family can then be represented by
the average of the solutions in that family, and one family
can be selected as the best solution. In some cases of fac-
torization analysis there may not be sufficient evidence to
support one solution over another that has a different phys-
ical interpretation. In such cases, researchers should report
both solutions and the available supporting evidence, instead
of choosing and reporting only one solution.

3.4.4 Uncertainties in the chosen solution

In addition to choosing the best solution, we would like to un-
derstand the uncertainty of the factors in this solution. Four
main approaches to estimating the uncertainty of PMF and
ME-2 solutions have been reported. First, PMF3 can report
the standard deviations of the elements of one factor matrix
(A, B, C in Eq. 1) from the diagonal of the joint covariance
matrix of all factor elements (i.e., of all elements ofA, B,
and C) (Paatero, 2007). However, such estimates are not
reported by ME-2 and thus could not be compared for the
vector-matrix model; therefore we do not use this method.
Second, bootstrapping with row replacement (Press et al.,
2007; Norris et al., 2008; Ulbrich et al., 2009) has been
used with 2-D input matrices to estimate uncertainty in the
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factors; however, for 3-D input matrices more replacement
schemes are possible and exploration of this complex topic
is outside the scope of the current study. Third, the rotational
uncertainty of 2-D solutions has been explored with a param-
eter known as FPEAK (Paatero, 1997a; Paatero and Hopke,
2009), and the range of rotated solutions has been used as an
indication of the uncertainty in the factor solutions (Ulbrich
et al., 2009). However, no such parameter is available for ro-
tations in 3-D arrays. When 3-D matrices are factored with a
3-vector model, each solution usually has no rotational ambi-
guity (Hopke et al., 1998), even without non-negativity con-
straints. However, rotational ambiguity can occur between
two factors with one dimension, such as a size profile, that
is (almost) identical. In contrast, solutions of vector-matrix
models usually have some degree of rotational ambiguity,
especially between factors that have few or no zero values.
In both cases, the rotations are partially constrained by non-
negativity constraints. Further exploration of the rotational
ambiguity of the solutions of vector-matrix models should
be the focus of future research. Exploration of rotations is
outside the scope of the current study and was not attempted.

Finally, uncertainty in the factors can be estimated by
the variation in solutions in the same family. The variation
amongst these solutions may depend strongly on the shape of
theQ space near a local minimum and the algorithm’s con-
vergence method. Therefore these variations may better de-
scribe the solutions’ mathematical variation than the physical
variation that would help us evaluate uncertainty in aerosol
properties. Nevertheless, this approach may give some in-
sight into the mathematical uncertainties of the solution. We
calculate the variation among the solutions in one family as
the coefficient of variation (σ/µ, whereµ is the mean) of
average mass spectra over allm/z’s, size distribution over
all size bins, or time series over all times, after excluding
points with very small means (below 0.002 fraction of mass-
spectral signal, 0.006 µg m−3/decade−1 log(dva) for size dis-
tributions, and 0.005 µg m−3 for time series).

4 Results

This section presents the results of the 3-vector and vector-
matrix model factorizations, including the choice of the
“best” solution for each model. We first present results that
apply to both models, then discuss the choice of solution and
physical interpretation of the factors for each model. Several
results apply broadly to factorization with both the 3-vector
and vector-matrix models for the current dataset and are dis-
cussed here.

Q/Qexp values calculated by the algorithms using the
downweighted error array were much smaller than the ex-
pected value for a good solution (∼0.45 vs. 1, Fig. 3). The
low Q/Qexp (Fig. 3b) values reflect the large fraction of size-
bin-m/z combinations that were downweighted because of
low SNR. However, unweightedQ/Qexp values are close

 

0.48

0.44

0.40

0.36

Q
/Q

ex
p, 

do
w

nw
ei

gh
te

d

87654321
Number of Factors

1.00

0.96

0.92

0.88

Q
/Q

ex
p, 

un
w

ei
gh

te
d Q=Qexp

a)

b)

Model Constraint Algorithm
3-vector unconstrained  PMF3   
3-vector unconstrained ME-2   
vector-matrix unconstrained ME-2   
vector-matrix constrained ME-2   
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to 1 for solutions of both the 3-vector and vector-matrix mod-
els (Fig. 3a). We would expect unweightedQ/Qexp values
to be somewhat greater than 1 unless the model can fit all
the real variability in the data. Or, the errors may be slightly
overestimated for the PToF data. We expect that any small,
systematic issues in our error estimate procedure do not de-
pend strongly onm/z, size, and/or time. Thus, the weighting
of the data in this study should be consistent and we believe
that our results represent the actual structure of the dataset.

The suggested criterion of a steep change in the slope of
Q/Qexp vs. the number of factors in the solution for choos-
ing a solution for factor analytic models was not observed in
any of the models for this dataset; thus we cannot use this cri-
terion to choose a solution and must rely upon the remaining
criteria from Sect. 3.3.3: little structure in the solution resid-
uals, correlation with the time series of tracers, and identifi-
cation of the factors from the HR-MS solution.

Taking these criteria into account, we explore solutions of
the models. In solutions with at least three factors, the 50-
seed solutions do not all contain the same factors, but the
solutions can be arranged by factor similarity into several
families (Table 3). Although seed-dependent families have
been reported previously for 2-D factorization of some AMS
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Table 3. Types of factors identified in each solution family from 50 “seed” trials of the 3-vector and vector-matrix models solved by ME-2.
Each row represents one family of solutions, and each X represents one factor in a solution. Multiple Xs in one entry denote multiple
instances of this factor in the same solution. These factors usually have similar mass spectra but different size distributions and time series
(Fig. S6 in the Supplement). The columns with grey shading represent factors related to oxygenated organic aerosol (OOA). Each solution
contains one OOA factor or two factors dominated bym/z44 andm/z43. The column with darker grey shading represents factors that are
dominated bym/z’s 67, 81, and 95. These factors are not physically meaningful. The best solution of the 3-vector model has four factors and
is shown in bold. No solutions of the vector-matrix model were considered physically meaningful.

Number Factor type 3-vector Vector-matrix
of solutions Solutions

factors OOA m/z m/z HOA BBOA LOA m/z67, Number 1Q/Qexp/ Number 1Q/Qexp/
in 44 43 81, 95 of (Q/Qexp)min of (Q/Qexp)min

solution solutions solutions
in family in family

3 X X X 45 0
X X X 5 0.7 %

X X X 48 0
X X X 2 1.4 %

4 X X X X 35 0
X X X X 12 0.1 %
X X XX 3 0.4 %

X X X X 19 0
X X X X 29 0.4 %
X X X X 2 0.7 %

5 X X X X X 44 0 34 0
X X X XX 2 0.3 %
X X XX X 4 0.4 %
X X X X X 5 0.3 %
X X X X X 11 0.7 %

datasets (Allan et al., 2010; DeCarlo et al., 2010), our so-
lutions within the same family show less variation than in
the reported 2-D cases. The variation among the solutions in
each family is quite small. The average coefficient of varia-
tion of the mass spectra, size distributions, or time series of
a family in the 3-vector solutions solved by either algorithm
is less than 2 %, in the unconstrained vector-matrix model
is less than 0.8 %, and in the fully constrained vector-matrix
model (β = 0) is less than 0.05 %.

The existence of multiple families for each number of fac-
tors complicates the choice of the best solution; now we must
choose the best number of factors and the best family from
that set of solutions. Criteria for choosing a family should
be the same as for choosing the best number of factors: low
Q/Qexp, little structure in the residuals, and the factors must
be physically meaningful. The families identify local min-
ima in theQ surface being explored during the iterative min-
imization. It would be tempting to choose the family with
the most solutions; however, the number of solutions in one
family may have a stronger relationship to the probability
of entering a region of a local minimum in theQ space
and not have any intrinsic value. For example, during the

iteration, the algorithm may enter a local minimum that has
a large “opening” and therefore traps solutions that started
from many seeds. Thus we reject a criterion for choosing a
family based on the number of solutions in that family.

We now explore the solutions from the 3-vector model,
choose the best solution, and identify the factors in this
solution.

4.1 Results from the 3-vector model

The 3-vector model was solved by the PMF3 and ME-2 al-
gorithms. The results from both algorithms were similar and
are compared in Sect. S4 of the Supplement. Both algorithms
found the same families at each number of factors in the so-
lution. Since the results from the two algorithms are similar,
we present the ME-2 solutions of the 3-vector case to later
compare to solutions of the vector-matrix cases calculated
with ME-2.

Because a steep change of slope ofQ/Qexp with the ad-
dition of each factor was not observed for solutions of the
3-vector model (Fig. 3), we therefore explore all solutions
and use the criteria of finding physically meaningful factors
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to choose a good solution. Following the assumption that we
will likely find the same factors from this dataset as Aiken
et al. (2009) reported for the HR-MS data in that 2-D factor-
ization, we expect to need at least four factors in the solu-
tion. However, we also explore solutions with more factors
in case new factors appear. The choice of the best solution
of the 3-vector model is described in Sect. S5 of the Supple-
ment. The best solution of the 3-vector model has four fac-
tors, which are the factors from the HR-MS solution: OOA,
HOA, BBOA, and LOA (Fig. 4). The features of these factors
are discussed and compared to the factors from the vector-
matrix model in Sect. 5.1.

4.2 Results from the vector-matrix model

Exploration of the vector-matrix model for this dataset is
complicated by poor results in unconstrained solutions of the
model. These poor results are manifested in non-physical
factor mass spectra (Sect. S6 in the Supplement). To achieve
factorization results with more physically meaningful mass
spectra, we attempted two methods to constrain the mass
spectra using a priori information. The first method was
multiple linear regression (i.e., chemical mass balance), but
the regression failed for most of the dataset (Sect. S7 in the

Supplement). However, physically meaningful mass spectra
were obtained by constraining a priori spectra using theβ

parameter (Sect. 3.4.1) within the vector-matrix model.
The use of theβ parameter with the vector-matrix model

requires three additional choices: the number of a priori mass
spectra, the source of those mass spectra, and the value ofβ.
We are likely to identify at least four factors (OOA, HOA,
BBOA, and LOA) in the dataset, based on the results of the
3-vector factorization. Since the 3-vector factorization had
one solution with all four of these factors, we presume that all
four factors should also be identifiable with the constrained
vector-matrix model. Constraining between one and four fac-
tors gives fifteen possible combinations of a priori spectra,
but exploring all of these combinations is beyond the scope of
the present work. Because the unconstrained vector-matrix
solutions produced non-physical factors, we have little confi-
dence that constraining only one or two spectra will improve
the solutions significantly. Thus we choose to constrain all
four spectra.

Possible sources of the four a priori spectra include the
HR-MS solution and the best solution of the 3-vector model,
which had four factors. The two sources allow three com-
binations of a priori spectra: (1) all four spectra from the
HR-MS solution, (2) all four from the 3-vector solution, or
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(3) some spectra from each of these solutions. We try each of
these three options. For the third, mixed-source option, we
consider only the case taking OOA, HOA, and BBOA from
the HR-MS solution and LOA from the 3-vector solution. We
choose this combination since the OOA, HOA, and BBOA
mass spectra from the 3-vector solution are very similar to
those from the HR-MS solution, but the LOA mass spectrum
from the 3-vector solution is less similar to the HR-MS LOA.

To guide the choice of the source of constrained spectra,
we compare theQ/Qexp values from the three combinations
to the unconstrained vector-matrix solutions (Fig. 5). The
constrained cases’ higherQ/Qexp values show that the a pri-
ori spectra strongly influence the solution. The increased
Q/Qexp values suggest that the a priori spectra are not
wholly consistent with the mass spectral structure measured
in PToF mode. For example, constraining the mass spectra
to the HR-MS spectra gives the highestQ/Qexp values of
the constrained solutions. Replacing the HR-MS LOA mass
spectrum with the LOA spectrum from the 3-vector solution
decreases theQ/Qexp value. When the constrained mass
spectra come from the best 3-vector solution, theQ/Qexp
value is substantially lower than the other constrained so-
lutions, but still somewhat higher than the unconstrained
vector-matrix solutions with four factors. Thus, when using
the same spectra, the vector-matrix model captures the real
variability in the size distribution of each factor better than
the 3-vector model. Of these three cases, theQ/Qexp val-
ues suggest that the spectra from the 3-vector model give the
best fit. But as the constraint on the solutions is relaxed (β

is increased), the penalty decreases strongly and theQ/Qexp
values are similar for solutions of any of the source spectra.

In addition to theQ/Qexp values of these solutions, our
choice for the best a priori factors is also based on the mean-
ingfulness of the factor mass spectra. The HR-MS spec-
tra provide stronger spectral information because they are
derived from data with much higher SNR and high-mass-
resolution spectra, so we prefer to use the HR-MS spectra
to constrain the solution. However, the 3-vector-model LOA
spectrum is different from the HR-MS LOA. Although LOA
is a small component, it is distinct enough to be resolved
from the PToF data. Thus, the combined set of spectra with
three factors from the HR-MS solution (OOA, HOA, BBOA)
and the LOA spectrum from the 3-vector solution is a good
compromise, using mainly HR-MS spectral information and
a better starting guess for the most disparate spectrum. We
therefore choose the mixed-source spectra as the best a pri-
ori information and explore solutions of the vector-matrix
model in which we constrain these spectra. In the rest of
this work, we only discuss results of the constrained vector-
matrix model, unless otherwise noted.
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from the four-factor solution of the 3-vector model (blue curve) is
used for further analysis.

4.2.1 Choosing a solution of the constrained
vector-matrix model

To choose a solution of the constrained vector-matrix model,
we must answer two questions. First, might we be able to
identify additional, physically meaningful factors by con-
straining the first four factors and then fitting more free fac-
tors? Second, to what degree is it appropriate to relax the
constraint on the spectra, i.e., to increaseβ? We first choose
the best number of factors while fully constraining four spec-
tra, and then explore the relaxation of the constraint on the
four a priori spectra to find the best solution.

The choice of the best number of factors for the con-
strained vector-matrix model is described Sect. S7 in the
Supplement. Four factors give the best fit of the vector-
matrix model with physically-meaningful factors. In solu-
tions with more than four factors, the additional factors are
nonphysical splits of the HOA and BBOA factors. Therefore
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we continue to examine the four-factor solution and explore
the effect of relaxing the constraint on the a priori spectra.

We know of no physical or statistical constraints that could
be used to predict the optimal degree of relaxation (β) of the
constrained factors. However, we posit that starting guesses
that better match the dataset might allow smaller values of
β, while constrained spectra that are less similar to the true
factors would require a larger deviation from the original
factors, i.e., largerβ, to obtain a good solution. Thus, we
take an empirical approach to determining the most appro-
priate value ofβ for this dataset. Two options for choosing
β are considered here. First, we can compare our factors to
a priori information. This was the approach taken by Lanz
et al. (2008) when they constrained one mass spectrum in
their factorization of a 2-D matrix. However, we have al-
ready imposed more a priori information on our solutions by
constraining all of the mass spectra. Still, we could compare
the time series of our factors to the HR-MS time series or to
external tracers. However, the external tracers were already
used to support the choice of the HR-MS solution from which
we have taken the a priori spectra, so this approach would be
somewhat circular. If possible, we would prefer a more inde-
pendent approach to choosing a solution for this dataset. An

alternative option is to observe the fit residuals, which might
indicate an appropriate degree of relaxation.

We examine two types of residuals metrics of the factor-
izations: the total residuals and the totalQ/Qexp contribu-
tion summed across two dimensions of the 3-D array, i.e.,
the total residual and totalQ/Qexp as summed to form a
time series, mass spectrum, or size distribution. The resid-
ual andQ/Qexp contributions summed to a time series are
very similar across the range ofβ, and give no useful infor-
mation about how to choose a solution. However, the residu-
als summed to form a mass spectrum show that many of the
m/z’s ≤ 44 have large negative residuals, i.e., the reconstruc-
tion assigns them more signal than is measured (Fig. 6a). But
the large negative residuals of selected importantm/z’s ap-
proach zero as the constraint is relaxed; i.e.,β is increased
(Fig. 6b). In particular, twom/z’s show changes that are use-
ful for choosing a solution. The residual ofm/z44 is strongly
negative in the fully constrained case, but becomes less neg-
ative asβ is increased to 0.06. Asβ is increased further,
the residual ofm/z44 becomes more negative. Thus the in-
flection point atβ = 0.06 marks the best fit for this important
marker. In the same solution, the negative residuals for most
other m/z’s tend toward zero values asβ is increased, and
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the high residual atm/z43 is reduced to approximately zero.
Based on these trends, the solution atβ = 0.06 may be the
best solution of the constrained vector-matrix model.

The choice of theβ = 0.06 solution is supported by the
residuals andQ/Qexp contributions summed to a size distri-
bution (Fig. 6c). The residuals summed as size distributions
show that solutions with tighter constraints have large nega-
tive residuals over the size range of particles with the greatest
transmission in the AMS (dva = 50–700 nm). However, the
residuals across this size region are near zero in the solution
with β = 0.06. Asβ is increased further, the total residual
becomes positive, indicating a worse fit in this region of the
data. In addition, theQ/Qexp contribution vs. size does not
change asβ is increased past 0.06. Thus the residuals and
Q/Qexp contributions summed as size distributions confirm
our choice of the solution withβ = 0.06 as the best solution
of the constrained vector-matrix model.

Finally, we revisit the option of comparing the factor mass
spectra to the a priori spectra. The factor mass spectra have
not changed dramatically; in fact, the correlations between
the factor and a priori spectra in the solution withβ = 0.06 are
greater than 0.94 (Fig. 6d). We note that the LOA spectrum
changes the least compared to the a priori spectrum from the
3-vector solution, showing that the a priori LOA spectrum
was a better representation of the PToF data than the a priori
spectra for the other factors. The HOA and BBOA spectra
from the HR-MS solution change the most. This change is
not surprising, based on the results of the fully constrained
solutions with five factors, in which the fifth factor has the
characteristic HOA peaks shifted to higherm/z’s and is thus
described as HOA-like (Sect. S8 in the Supplement). The
HOA-like factor implies that the a priori spectra do not com-
pletely match the HOA spectrum for the PToF data. But
relaxing the constraint in the four-factor solution allows a
better fit of the higherm/zpeaks. However, the correlation
between the solution spectra and the a priori spectra never
show a dramatic change that might indicate that the solution
has become so relaxed that the spectra are strongly distorted,
and therefore do not suggest a particular value ofβ as an
appropriate relaxation of the solution.

4.2.2 Factors in the best solution of the constrained
vector-matrix model

The factors from the best solution of the constrained vector-
matrix model show the changing size and concentration of
the particles in the four factors (Figs. 7–8, S4 in the Supple-
ment). The size distributions in the factor size-distribution–
time-series matrices are normalized to unit area for each time
step to highlight the shapes of the size distributions (Fig. 7).
The contribution to the smallest and largest particle sizes,
which have lower transmission into the AMS, is very noisy
for all factors. In the middle size range, OOA and BBOA
have somewhat narrower size distributions with smaller con-
tributions to particles withdva< 100 nm and more mass in

larger particles. In contrast, LOA appears in particle of all
sizes, but most of its signal is between 80 and 600 nm. Fi-
nally, the HOA size distributions are also broad, and regu-
larly include particles with diameters as small as 50 nm and
larger than 700 nm. The HOA size distributions are less noisy
than those of the other factors, especially at smaller sizes.

The size distributions of the factors do not usually change
quickly, but an interesting exception occurs on 24 March
(Fig. 8), when a cold surge brought clean air to the Mex-
ico City basin (Aiken et al., 2009; Molina et al., 2010), de-
creasing the total submicron organic aerosol concentration
to very low levels. This event is similar to a case during
a 2003 campaign in Mexico City which has been studied in
detail (Dzepina et al., 2009). Although most days in the Mex-
ico City basin have a larger effect of background concentra-
tions and advection, and the dynamic chemical and physi-
cal changes that are no doubt occurring in the aerosol (e.g.,
Hodzic et al., 2010) are less clear when combined with the
meteorological effects, these case-study days from 2003 and
2006 are characterized by low initial background concentra-
tions, and lower wind speed and boundary layer, which al-
low observation of the evolution of the emissions from the
city. After midnight on 24 March 2006, the total organic con-
centration decreased to∼3 µg m−3, the lowest concentration
measured during the campaign. At 03:30 and 08:00 LT, sep-
arate LOA plumes are measured. As the second LOA plume
arrives, the HOA concentration begins to increase. An hour
later, a dramatic increase in the concentration of OOA begins
with the onset of photochemistry. As the OOA concentration
increases, the mode of the HOA size distribution shifts from
∼75 nm to∼300 nm over the course of three hours.

HOA growth from smaller particles is not limited to this
single event, but is also observed in diurnal average size dis-
tributions (Fig. 9). HOA shows the greatest variation in size
distribution and concentration, with higher concentrations in
the morning, and a shift to larger sizes through the afternoon.
Normalizing the size distributions to unit area shows more
clearly that HOA particles appear to grow to larger sizes
throughout the morning (Fig. 9b). In contrast, the BBOA
and OOA size distributions show little variation. In gen-
eral, OOA has largest mode of all of the aerosol components,
and higher concentrations later in the day, whereas BBOA
has higher concentrations in morning. BBOA particles trans-
ported from regional sources may have undergone chemical
processing and have probably already grown to these larger
sizes. Finally, LOA has the most dramatic changes in size
distribution, but its typically low concentrations make the
averages noisy and it is difficult to determine whether the
average changes actually reflect particle growth.

5 Discussion

In this section we discuss three main points. First, we com-
pare the best solutions of the 3-vector and vector-matrix
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Fig. 7. The best constrained vector-matrix solution, which has four factors. Four a priori mass spectra were provided as starting guesses:
OOA, HOA, and BBOA from the HR-MS solution, and LOA from the best solution of the 3-vector model (Fig. 4). The a priori spectra were
allowed to vary withβ = 0.06, as described in Eq. (6).(a) Mass spectrum of each factor, normalized to sum to 1.(b) Mass size distribution
(dM/dlogdva), normalized so that each size distribution has unit area. The factor size distributions have been binomially smoothed by one
point each in time and size for improved visual clarity. Light-grey pixels have zero signal.

models to the HR-MS solution and a tracer method for es-
timating factor size distributions. Second, we discuss the in-
sights gained from the size distributions of the factors and the
potential effect of some details of particle vaporization and
bounce on PToF sampling and the resulting factors. Finally,
we discuss directions for future research on the application
of 3-D factorization models to PToF and other datasets.

5.1 Evaluation of the assumptions of the 3-vector model

We compare the best solutions of the 3-vector and vector-
matrix models to answer two related questions. First, is the
3-vector model appropriate for this dataset? Second, is one
of these models better than the other for this dataset?

We first consider the appropriateness of the 3-vector
model. Pere-Trepat et al. (2007) noted that in their size-
resolved aerosol composition dataset, “it was found that there
is sufficient size dependence in the [factor] compositions that
the strict trilinear model does not hold.” However, these
authors provide no details to explain how they determined
that the 3-vector method was inappropriate for their data.
We seek such indicators in the solutionQ/Qexp values and
residuals. Overall,Q/Qexp values show that the best solu-
tion of the constrained vector-matrix model fits the data bet-
ter than the best 3-vector solution, although the differences
are small (0.94 vs. 0.95, respectively; Fig. 5). Furthermore,
Q/Qexp summed to size distributions is similar between the
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for organics and 1.5 µg m−3 for nitrate.(c) Size distributions from selected hours (LT), normalized to unit area to compare the shapes of the
distributions.

two solutions. In contrast, examination of the residuals of
these solutions shows that the constrained vector-matrix so-
lution provides a better fit, but does not provide evidence that
the assumptions of the 3-vector model fail for this dataset.
The major difference in the residuals of the two solutions
is seen by comparing the total residuals summed to form a
size distribution. While the residual size distribution of the
constrained vector-matrix solution is near zero or negative
(Fig. 6), that of the 3-vector model is almost always positive,
with larger residuals toward the larger sizes. The fact that the
residual is always positive indicates that there are some real
variations in the component size distributions that cannot be
fit with the 3-vector model. Thus the residuals are distributed
differently in the solutions of the two models. Yet, we have
found no distinct characteristic of the residuals that indicates
that one of the models is better or worse for this dataset.

We next compare the solutions from the 3-vector and
vector-matrix models to understand the differences between
these solutions. First, we compare the factor mass spectra

(Fig. 10a). The mass spectra of OOA, HOA, and BBOA are
similar enough to each other to identify them as the same
aerosol component by eye. The variation amongst the mass
spectra of the same component from the HR-MS solution and
the solutions of the 3-vector and vector-matrix models are
within the observed variation for OOA, HOA, and BBOA
factors in other urban datasets (Ng et al., 2011). However,
the LOA mass spectrum shows a substantially different frac-
tion of m/z58 between the 3-D and HR-MS LOAs. Even
with the high contribution ofm/z58 to the LOA spectra, the
3-D LOA spectra still retain the distinctive enhancement at
m/z91 and, to a lesser extent, characteristic HOA peaks that
dominate the shape of the HR-MS LOA spectrum. Overall,
the factor mass spectra are similar between the two 3-D fac-
torization cases, and do not provide a clear reason to choose
one solution over the other.

Second, we compare the factor time series in the 3-vector
and vector-matrix solutions (Fig. 10c). The time series of
OOA between the 3-vector and vector-matrix solutions, and
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of LOA between the same solutions, have very high cor-
relations (R > 0.96). In contrast, the HOA time series and
BBOA time series are less similar between the 3-vector and
vector-matrix solutions (R > 0.89). For the HOA and BBOA
time series, we observe several instances in which mass is
“traded” between these factors. We explain trading, which is
also observed in 2-D PMF solutions, with an example. On
16 and 17 March, the 3-vector model attributes more mass
to BBOA than does the vector-matrix model, but less mass
to HOA than the vector-matrix model (Fig. 10c). Thus the
HOA and BBOA factors have “traded mass” over this short
time period. The trading of mass is the main difference be-
tween the HOA and BBOA time series for the two solutions,
though in both models the general trends for the time series
of both factors are very similar. HOA and BBOA have sim-
ilar unit-resolution mass spectra, making them hard to sepa-
rate in some datasets (Lanz et al., 2008); this similarity likely
contributes to the trading in these factors’ time series. Aiken
et al. (2009) reported that factoring high-resolution spectra
(i.e., the HR-MS dataset) substantially improved the sepa-
ration of these two factors compared to factorization of the
unit-mass-resolution spectral data. The improvement is the
result of separating, before performing the factorization, the
information from HR ions at the same nominalm/zthat have
different contributions to HOA and BBOA. For example,
HOA and BBOA have similar contributions fromm/z57 in

the unit resolution mass spectra, but the HR-MS factors show
thatm/z57 in HOA is almost exclusively from C4H+

9 , while
C3H5O+ contributes a major fraction of them/z57 signal for
BBOA. However, the high-resolution size distributions are
not available, and thus these two factors are harder to sepa-
rate. Nevertheless, the time series from our factorization of
the unit-resolution PToF data with the vector-matrix model
track the HR-MS time series more closely than do the time
series from the 3-vector model.

We notice other interesting trends when comparing the
time series from the 3-D solutions to those of the HR-MS so-
lution. First, both 3-D models attribute more mass to BBOA
than the HR-MS solution in the latter third of the campaign.
Interestingly, this is the “low fire period” of the campaign,
during which several non-AMS fire tracers and models indi-
cate that fire activity was much reduced (Aiken et al., 2010).
But comparison of the 3-D and HR-MS solutions shows that
this BBOA signal is trading with the OOA signal. Because
we believe, based on the reasons discussed above, that the
HR-MS factorization should give more accurate results, the
calculated BBOA during this period is likely an artifact of the
factorization. Second, the OOA time series from the 3-D so-
lutions are very noisy. However, binomial smoothing of the
3-D OOA time series by one point improves the correlation
with the HR-MS OOA fromR = 0.68 toR = 0.81. The noise
in the OOA factors from the 3-D solutions is likely caused
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by the low SNR ofm/z44 in PToF mode. Third, there is only
moderate correlation between the 3-D and HR-MS LOA time
series (R = 0.66 and 0.62 for the 3-vector and vector-matrix
solutions, respectively). The 3-D LOA factors are assigned
less than half the average mass contribution of the HR-MS
solution (0.52, 0.65, and 1.39 µg m−3 for the 3-vector, vector-
matrix, and HR-MS solutions, respectively). However, the 3-
D solution mass spectra for LOA have less contribution from
the characteristic HOA peaks, and that mass may have been
traded to the HOA factor. Overall, the results from the 3-D
solutions are consistent with the general characteristics of the
HR-MS solution.

Third, we can make two comparisons of the size distribu-
tions from the two 3-D factorizations. First, we can compare
the static size distributions from the 3-vector model with the
average size distributions from the vector-matrix model. Sec-
ond, we can compare the dynamic diurnal average size distri-
butions from the vector-matrix to size distributions estimated

from tracerm/z’s (Zhang et al., 2005; Cubison et al., 2008;
Wang et al., 2010).

The comparison of the average size distributions shows
some differences between the 3-vector and vector-matrix
models (Fig. 10b). The size distributions from the two mod-
els are very similar for OOA and BBOA, consistent with the
constancy of their normalized size distributions observed in
Fig. 9. In contrast, the HOA and LOA size distributions
show more differences between the two models. The HOA
size distribution from the vector-matrix model is shifted to
higher particle sizes compared to the 3-vector model. The
LOA size distributions are even more different between the
two models. The average LOA size distribution from the
vector-matrix model is strongly shifted to larger particles
compared to the distribution from the 3-vector model, with
about a third less particle mass between 50 and 300 nm in
the vector-matrix solution. However, the size distributions
from the 3-vector solution are within one standard deviation
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of the average from the vector-matrix model for all factors.
Thus it appears that the 3-vector model is not fitting varia-
tions in the real size distributions that can be captured by the
vector-matrix model.

Now we compare the dynamic estimates of the size dis-
tributions from the 3-vector solution, vector-matrix solution,
and tracer methods. The size distributions ofm/z’s 44, 57,
58, and 60 are used as tracers of OOA, HOA, LOA, and
BBOA, respectively. The tracer size distribution smoothed in
the same manner as the factorization data array (Sect. 3.3.2,
Step 3) and scaled by the slope of the regression line be-
tween the MS-mode and PToF-mode time series for thatm/z.
Then an estimation formula between the tracer and the com-
ponent is applied. In this work, we use tracer-component re-
lationships derived from MS-mode data for OOA from Ng et
al. (2011) and for HOA and BBOA from Aiken et al. (2009).
The tracer-component relationship for LOA is estimated as
the size distribution ofm/z58/f58, wheref58 is the fraction
of m/z58 in the 3-D LOA factor mass spectrum. Size distri-
butions from selected daytime hours for the four factors are
shown in Fig. 11 and are not scaled to unit area. (Comparison
of all 24 h can be viewed as movies in the Supplement.)

The dynamic OOA size distributions are quite similar for
the two 3-D models. The OOA size distributions from the

tracer method are also similar to those from the 3-D models,
but are generally narrower than the 3-D model size distribu-
tions. In addition, the tracer method OOA size distribution
sometimes has negative concentrations for particles with di-
ameters greater than 800 nm. Thus noise in them/z44 size
distribution is carried through the tracer method, whereas this
noise is tempered in the 3-D models by the contribution of
otherm/z’s present in the OOA mass spectrum.

In contrast, the HOA and BBOA size distributions in the
3-vector and vector-matrix models exhibit trading of mass
between these two factors, as discussed above. HOA always
has a larger mass contribution and BBOA a smaller mass
contribution in the vector-matrix model. The vector-matrix
model fits real variation in the size distributions and was de-
termined in the discussion above to be more consistent with
the HR-MS solution, and thus more likely to be correct. In
addition to the differences in mass contribution, the modes
of the size distributions differ between the models. The size
distributions for both HOA and BBOA are shifted to larger
particle diameters in the vector-matrix model, as discussed
above. For HOA, the tracer size distribution usually matches
the vector-matrix distribution well, though the tracer distribu-
tion has more mass at 08:00 LT than either of the 3-D models.
Like the tracer HOA size distribution, the tracer BBOA size
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distribution generally follows the vector-matrix size distribu-
tion, but has a slightly smaller mass concentration. The size
distributions from the tracer method sometimes show nega-
tive concentrations for large particles, but less severely than
for OOA.

Finally, the LOA size distributions from the 3-vector and
vector-matrix models agree well at small particle sizes, but
diverge for larger particle sizes. The vector-matrix model
always attributes more LOA mass to larger particles than
does the 3-vector model. This trend is more important in
terms of the fraction of the mass in large particles as the day
progresses.

In conclusion, it appears that both 3-D methods can rep-
resent much of the real variation in the time series and mass
spectra of the components. While the 3-vector model cap-
tures the main features in the size distributions reasonably
well and may be useful for simplified analysis and initial
explorations of datasets, it cannot identify particle growth
events that are resolved by the vector-matrix model. The
vector-matrix model appears to be superior for more accu-
rately capturing the factor concentrations (as evidenced by
comparison with the HR-MS solution) and for identifying
real variations of the size distributions. However, the full ad-
vantage of the vector-matrix model may not be apparent with
this dataset because it includes only a few strong periods of
rapid changes in the size distributions. Only the OOA growth
event on 24 March 2006 shows fast changes in the HOA size
distribution (Figs. 8, S5 in the Supplement). Furthermore,
the appearance of LOA only in brief spikes makes it harder
to understand this small component. Nevertheless, we prefer
the vector-matrix model for exploring the size distributions
of AMS components. Finally, the tracer method appears to
provide a reasonable estimate of the size distributions for this
dataset.

5.2 Insights into ambient aerosol and PToF sampling

The size distributions of OOA, HOA, and BBOA are consis-
tent with previous interpretations of these factors in Mexico
City and other studies. OOA has the largest mode diame-
ter of ∼400 nm, and an asymmetric distribution with strong
extension to smaller particles. This shape is consistent with
the condensation of semivolatile gas-phase molecules onto
smaller particles (Zhang et al., 2005). BBOA has a slightly
smaller mode at∼300 nm. Although BBOA is generated
as primary aerosol from a combustion process, BBOA has
a smaller fraction of ultrafine (dva< 100 nm) particles than
OOA (McMeeking et al., 2005; Levin et al., 2010). In con-
trast, the size distribution of HOA is quite broad, with the
largest fraction of ultrafine particles of any of these fac-
tors. The ultrafine fraction is consistent with the primary
nature of this combustion source, and with past measure-
ments of freshly emitted vehicle-exhaust particles. Fresh ex-
haust particles have a mode atdva∼ 100 nm, and a second
mode withdva∼ 500 nm is sometimes present (Canagaratna

et al., 2004). Thus the broad HOA size distribution found
here may not represent only fresh HOA. A similar, broad
distribution of HOA particles was observed at an urban Pitts-
burgh sampling location (Zhang et al., 2005). The broad size
distributions could be explained by emission of many larger
HOA particles and/or the growth of HOA particles as they are
coated by condensation of secondary organic and inorganic
species onto existing particle surface area during the day. For
example, during the large OOA growth event on 24 March,
the HOA size distribution grows as the OOA concentration
increases (Sect. 4.2.2, Fig. 8). During this event, it is unlikely
that the HOA particles remain externally mixed with other
particles; rather, the HOA particles are most likely coated by
OOA and secondary inorganics (ammonium nitrate and sul-
fate), and thus have an HOA core and coating of secondary
material. When these particles are sampled in the AMS, they
have mixed HOA-OOA mass spectra and are recorded at the
particle’s coated size. Therefore the HOA size distribution
grows to larger particle sizes, even though each particle has
a mixed composition. Thus, particle size distributions must
be interpreted as showing the size distribution of particles
containingan aerosol component, and not necessarily as the
size distribution of externally mixed particles of any single
component.

The size distribution of LOA gives some new insight into
the source of this component previously identified by Aiken
et al. (2009). These authors identified this factor as local
based on its spiky time series, which correlates with single-
particle measurements of nitrogen-containing organic car-
bon particles and lead-zinc-containing particles that appear
to come from local industrial sources (Moffet et al., 2008).
The HR mass spectrum of LOA includes N-containing peaks
characteristic of aliphatic amines (m/z’s 58 and 86) and stable
C6H5CnH+

2n ions characteristic of phenylalkyl compounds
(m/z’s 91 and 105, McLafferty and Turecek, 1993). The size
distribution of LOA on the morning of 24 March, when LOA
briefly has a large fraction of the organic mass is bimodal
with modes atdva ∼100 nm and∼270 nm. Since LOA ap-
pears to come from an individual, local source, it may have
a more variable size distribution than, e.g., HOA, which rep-
resents the average size distribution of millions of vehicles
and other combustion sources. Nitrogen-containing factors
have been identified in some HR-AMS-PMF analyses of ur-
ban datasets (Docherty et al., 2011; Sun et al., 2011) and their
direct sources are also uncertain.

Finally, we assess the calculated errors for the PToF data.
The unweightedQ/Qexp values of the solutions near 1
(Fig. 3) suggest that the errors have about the right magni-
tude. However,Q/Qexp near 1 is not sufficient evidence
that the error values are correct. Because 34 % of the data
array elements have values less than 0, which cannot be
fit with the positivity constraint, these elements must con-
tribute toQ/Qexp. Even if every positive array element is fit
within its estimated uncertainty and contributesQ/Qexp of
∼1, the negative array elements must contribute additionally
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to Q/Qexp. Thus ourQ/Qexp values appear to be somewhat
low, and the error estimates for the PToF data may be slightly
overestimated.

5.3 Fitting of variations in mass spectra and size
distributions

We explained in Sect. 3.4.1 that atmospheric processing of
aerosol could change the mass spectrum, and if the process-
ing resulted in slower particle vaporization, the apparent size
distribution of OA components. We now discuss whether
such changes were fit as additional factors in the solutions
of either factorization model. The most likely place to find
such additional factors is in solutions of the 3-vector model,
whose requirements of constant mass spectrum and time se-
ries for each factor restrict this model’s ability to fit varia-
tions. Only a few solutions of the 3-vector model included a
pair of factors with similar mass spectra and time series but
different size distributions, indicating a mathematical rather
than physically meaningful separation.

In Sect. 3.4.1 we also noted a 2-D factorization case in
which the time series of the residuals andQ/Qexp contribu-
tions were highly correlated with the time series of the semi-
volatile OOA-II factor, suggesting that there were changes in
the composition of OOA-II that could not be fit with addi-
tional factors (Ulbrich et al., 2009). However, no such corre-
lations were observed in the factorization of this dataset, nor
did we observe other indicators that spectral variation was
significant enough to interfere with the factorization using
these models.

5.4 Directions for future research

In this section we first discuss the application of 3-D fac-
torizations to PToF datasets from ToF-AMS instruments and
our recommendations for applying these techniques. Finally,
we suggest potential applications for 3-D factorization mod-
els to AMS instruments currently in development.

First, we reiterate that the analysis presented here has
used the size distributions of unit-mass-resolutionm/z’s. The
unit-mass-resolution data in this study hindered separation
of HOA, BBOA, and LOA because these factors have con-
tributions from a common series ofm/z’s. In contrast, the
Aiken et al. (2009) study factored higher-resolution data, in
which ions at each nominalm/z can be separated into the
contrasting time series of individual ions. The time series of
more ions might allow the separation of additional factors if
the factorization were performed on the size distribution of
high-resolution fragments. However, constructing that fac-
torization array would require fitting high-resolution ions for
each size-resolved mass spectrum, which is not yet part of
the standard HR-AMS data analysis software (PIKA) and is
a major project by itself. Nevertheless, this analysis might
be possible with high-SNR datasets from locations with suf-
ficient aerosol mass concentrations. Increasing the SNR of

the PToF data by reducing the range ofm/z’s sampled (De-
Carlo et al., 2006), using an aerosol concentrator (Khlystov
et al., 2005), or applying these techniques to C-ToF-AMS
data (which has∼4 times more signal than the V-mode of
the HR-ToF-AMS, DeCarlo et al., 2006) should also help im-
prove factorization results.

We also reiterate that the two vector-matrix models not
used in the present study (Fig. 1c and d) could be applied to
size-resolved chemical-composition datasets to explore dif-
ferent questions than we have considered here. The vector-
matrix model in which the vector contains a factor size dis-
tribution and the matrix shows how the chemical composi-
tion of that characteristic size distribution changes with time
(Fig. 1c) would likely identify modes of submicron aerosol
and the sources and processes affecting the those aerosol (Al-
farra et al., 2004; Zhang et al., 2005). In contrast, the vector-
matrix model in which the vector contains a factor time se-
ries and the matrix shows the size dependence of that factor’s
chemical composition (Fig. 1d) assumes that particles from a
single source arrive at the receptor together and may have
different chemical composition at each size, but the size-
composition relationship does not change with time (Pere-
Trepat et al., 2007). Application of these two vector-matrix
models to size-resolved chemical-composition datasets is of
interest and would allow quantitative evaluation of their ap-
propriateness for describing these data.

We make two recommendations to researchers who wish
to factor size-resolved AMS datasets. First, we suggest be-
ginning with 2-D factorization of the high-resolution, mass
spectral mode data. In our case, the factors from the HR-MS
solution were critical for diagnosing the initial unsatisfactory
solutions of the vector-matrix model. In addition, the 2-D
factors were also useful for confirming when the 3-D factors
had split and were not physically meaningful. Second, we
recommend exploring the 3-vector model and at least one of
the vector-matrix models shown in Fig. 1. Comparison of
the results of two models enables the exploration of the ap-
propriateness of each model’s assumptions. Finally, we do
not recommend constraining the factors in any model unless
the unconstrained solutions are not useful. However, we rec-
ommend that researchers who constrain factors using a pa-
rameter such asα or β carefully examine residuals of the fit
and other available metrics to choose an appropriate degree
of relaxation for their datasets.

In addition to their application to size-resolved chemical
composition datasets, these 3-D factorization models have
the potential to analyze the structure of other 3-D datasets.
The 3-vector and vector-matrix models can be applied to
any appropriate 3-D data array for which the model as-
sumptions are appropriate, not just the specific data type
described here. For example, chemically resolved thermal-
desorption datasets are inherently three-dimensional. The
3-D factorizations described in this work could be applied
to thermal denuder-AMS datasets (previously factored us-
ing 2-D methods, Huffman et al., 2009), or data from any
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of several thermal-desorption mass spectrometers, includ-
ing the thermal-desorption particle-beam mass spectrom-
eter (TDPBMS, Tobias et al., 2000), thermal-desorption
chemical-ionization mass spectrometer (TD-CIMS, Smith
and Rathbone, 2008), or the micro-orifice volatilization im-
pactor coupled to a CIMS (MOVI-CIMS, Yatavelli and
Thornton, 2010). As a second example, the themal-
desorption aerosol GC/MS-FID, or TAG, uses chromatogra-
phy to separate organic compounds from thermally desorbed
ambient aerosol, also forming an inherently 3-D dataset
(Williams et al., 2006, 2010). In the TAG dataset, the major-
ity of the signal is present as an “unresolved complex mix-
ture” which has not yet been analyzed in detail (Williams et
al., 2010). In each of these cases, the third dimension of the
data (thermal desorption temperature or chromatographic re-
tention time) is expected to provide information distinct from
the bulk mass spectra, and we expect that separation of ad-
ditional factors should be possible from these datasets. Ap-
plication of 3-D models to new datasets requires careful con-
struction of error estimates and appropriate choice of models
that match the underlying structure of that data.

6 Conclusions

We have applied two 3-D factorization models to three weeks
of continuous HR-ToF-AMS size-resolved organic aerosol
composition data from Mexico City. In the 3-vector model
(Fig. 1a), each factor is composed of a characteristic chemi-
cal composition (mass spectrum), a characteristic size distri-
bution, and the time series of the mass concentration of that
component. In this model, the mass spectrum and size dis-
tribution are constant over the course of the measurements.
In contrast, in the vector-matrix model in which the vector
is a mass spectrum (Fig. 1b), the matrix shows the chang-
ing size distribution of that chemical component with time.
The vector-matrix model has more degrees of freedom than
the 3-vector model; the additional freedom provides greater
ability to fit the dynamic nature of the data, but also to be
distorted by noise in the dataset. Preparation of the data for
factorization required a method for estimating the precision
of the measured data, developed here for the first time. Noise
hampered initial results of the vector-matrix model, but phys-
ically meaningful factors were obtained after partially con-
straining the mass spectra using a priori information and a
new regularization parameter. For this dataset, four factors
were identified that were consistent with factors obtained by
Aiken et al. (2009) from factorization of the bulk (i.e., not
size-resolved) HR-MS organic measurements from the same
instrument. These factors represent oxidized organic aerosol
(OOA), hydrocarbon-like organic aerosol (HOA), biomass-
burning organic aerosol (BBOA) and a locally emitted or-
ganic aerosol (LOA). However, the mass spectra of these
factors are not identical to those from the HR-MS solution.
These differences may be due to noise and/or a fraction of

slowly vaporizing compounds whose ions are averaged into
the total signal in MS mode but are recorded as part of the
background in PToF mode.

The results of the vector-matrix model show diurnal cy-
cles in the size distribution of HOA and suggest growth
by condensation of secondary species onto pre-existing
HOA particles, especially during an OOA growth event on
24 March 2006. The size distributions of HOA and BBOA
are consistent with source size distributions, and the size dis-
tribution of OOA is consistent with that of more aged sec-
ondary aerosols. The size distribution of LOA supports the
interpretation that this component is locally produced, prob-
ably by industrial combustion. In addition, these size dis-
tributions are less noisy and likely more robust than those
obtained previously by tracer methods, and could be used for
future cloud condensation nuclei (CCN) and hygroscopicity
studies (Cubison et al., 2008; Gunthe et al., 2009; Wang et
al., 2010).

The vector-matrix model appears to capture real variabil-
ity in the size distributions that cannot be captured in the
3-vector model. While the 3-vector model captures the
main modes in the size distributions reasonably well, it can-
not identify particle growth events that are resolved by the
vector-matrix method. The tracerm/z-based method provides
a useful approximation for the component size distributions
in this study. We suggest that others who apply 3-D factor-
ization techniques first factor a 2-D version of the HR-MS
data to understand the main trends in the dataset and as a
basis for understanding factors from 3-D model solutions.

Other versions of the vector-matrix model are possible and
could be applied to this type of dataset to explore other ques-
tions about aerosol evolution. Finally, these techniques, with
appropriate error estimates and choice of 3-D model, can be
applied to other 3-D datasets, especially those obtained by
measuring thermal desorption aerosol mass spectra or chro-
matographically resolved aerosol composition.

Supplementary material related to this
article is available online at:
http://www.atmos-meas-tech.net/5/195/2012/
amt-5-195-2012-supplement.zip.
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