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Abstract. In hilly terrain, on account of both timber ex-
ploitation as well as severe storms, fallen tree trunks can
begin to slide, thus constituting a source of danger for peo-
ple and infrastructure. Any flexible rockfall protection sys-
tem that is installed under such conditions should also be de-
signed to withstand these unique loading conditions (falling
trees). A series of tests was successfully conducted with free-
falling trunks. The tests showed the behaviour of a rock-
fall protection system, also in comparison to similar rockfall
events. Numerical simulations were performed to check per-
formance against the field tests. It could be shown that barri-
ers can be tested and designed for tree impacts according to
similar rockfall impacts.

1 Introduction

The danger of being hit by falling trees is an imminent risk in
steep areas posed by forestry work, unstable tree trunks, and
storms. Trees that have begun to slide can easily be shorn
of all branches within a few metres of their descent and at-
tain considerable velocities. Figure 1 (left photo) shows the
impact of a tree onto a flexible rockfall barrier. Normally,
the flexible rockfall protection systems available on the mar-
ket are tested only for the rockfall load case according to the
Swiss (Gerber, 2001) or European (EOTA, 2008) guidelines.
However, barriers installed in the field are often subject to
loads other than rockfall such as snow, soil, water and falling
or sliding trees (see also Volkwein et al., 2009; Volkwein
and Toniolo, 2011). Concerning sliding trees, tests were per-
formed by Hamberger and Stelzer (2008) in which the trees
were accelerated and impacted into a wire rope net barrier
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parallel to the sloping ground. It could be shown that also
thin tree samples are successfully retained.

For the first time, a flexible rockfall protection system
wherein the protection net consists of loosely connected rings
(see also Volkwein, 2004) was tested with free-falling tree
trunks in August 2005 at the rockfall protection test facility
of the WSL (Gerber, 2001). The tree trunks fell vertically,
one after the other, onto a rockfall protection system capable
of resisting rockfall events with a kinetic impact energy of
1000 kJ.

Using the results of this test series, it is possible to eval-
uate whether standard or improved flexible rockfall barriers
are suitable to protect from falling/sliding trees. The critical
interests were the puncturing of the net and the behaviour of
the net support structure. Additionally, the suitability of nu-
merical modelling of the load case “falling trees” was also
considered as to whether it is a reasonable alternative to full-
scale testing.

2 Test facility and instrumentation

The rockfall test facility is located in an old quarry at
Walenstadt, Switzerland, and is intended for type testing of
rockfall protection systems according to Gerber (2001) and
EOTA (2008). The tested barriers are mounted on a vertical
rock wall; a crane having a maximum payload of 16 tonnes is
positioned above the rockfall protection system. The object
to be dropped can be lifted up to a height of 85 m above the
level of the test area. Varying the impact velocities and/or
the size (or the mass) of the falling objects, it is possible to
achieve the target impact energies.

To record the impact and the energy absorption behaviour
of the system, eleven load cells, designed to withstand forces
up to 500 kN, were installed between the anchors and the
wire ropes, each sampled with 2000 Hz. The visual doc-
umentation of the tests was achieved with two high-speed
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Fig. 1:  (left) tree impact into a rockfall protection barrier; (right) measures for preventing tree 

trunks from slipping through below the barrier. 

Fig. 1. (Left) tree impact into a rockfall protection barrier; (right) measures for preventing tree trunks from slipping through below the
barrier.

Table 1. Test parameters for the three tree trunks compared to similar rockfall events into the same system and simulation of test “Tree A”
(rope forces with maxima measured).

Tree A Tree B Tree C Boulder 1 Boulder 2 Simulation

Test date 26 Aug 2005 26 Aug 2005 27 Aug 2005 12 Aug 2004 18 Aug 2004
Tree length/boulder size [m] 10 10 15 0.9 1.1 0.6
Weight [kg] 1600 1600 2000 1600 3200 1600
Falling height [m] 10 20 30 32 32
Impact velocity [m s−1] 14 20 24 25 25 14
Impact energy [kJ] 157 314 589 512 1004 157
Impact impulse [kNs] 22 32 48 40 80 22
Braking time [s] 0.36 0.31 0.34 0.26 0.30 0.41
Maximum deflection [m] 4.0 4.45 6.0 4.2 4.6 4.12
Total energy absorbed [kJ] 220 385 705 575 1150 222
Upslope anchor rope [kN] 64 73 114 96 135 57
Top support ropes [kN] 205 221 228 200 230 182
Lateral anchor ropes [kN] 156 159 153 124 131 78
Bottom support ropes [kN] 194 184 203 198 220 183

cameras having a recording frequency of 250 images per sec-
ond, installed at the same height as the point of impact. In
this way, side and front views of the tests were recorded. The
recorded movies allowed studying the protection system be-
haviour and reconstructing the chronological sequence dur-
ing the braking of the impacting body by the use of the video
tracking software WINAnalyze (Mikromak, 2008).

3 Test set-up

For the falling tree test, a flexible 1000 kJ rockfall protec-
tion barrier of the type Geobrugg RXI-100 was used. This
system was conceived and type-tested for multiple impacts
(Götz, 2006). A net made out of steel rings was installed be-
tween support ropes in such a way that it could move along

the support rope like a window curtain. Support ropes were
spanned over steel posts. Plastically deforming elements
were integrated into the different ropes being activated and
stretched at precisely defined forces. In this way, a portion of
the incoming energy is dissipated and necessary flexibility of
the system is enhanced. The test fence was set up as shown
in Gerber (2001, p. 19). The load cells were installed both in
the support ropes and in the retaining ropes.

The impacting bodies, i.e. the tree trunks, were chosen to
exert an actual load for the imminent danger of falling trees,
resulting in a significant loading of the barrier system. This
resulted in tree lengths between 10 and 15 m with masses
of 1600–2000 kg at an impact velocity of 14–24 m s−1. The
trunks were shorn of all branches in order to obtain a con-
centrated load on the protection net. For the same reason, the
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Fig. 2: (upper and middle part) frame sequence extracted from recorded high speed video of 

test C – 610 kJ; (lower part) simulated rockfall protection system loaded by a falling tree 

(Test A on the left) and a design rockfall event with 1,000 kJ (on the right) together with a 

magnified detail of the impact locations. The colour spectrum shows the degree of utilization 

of the single components ranging from 0 % (blue) to 100 % (red). Piercing of tree trunk front 

face not modeled in simulation. 

Fig. 2. (Upper and middle part) frame sequence extracted from recorded high speed video of test C – 610 kJ; (lower part) simulated rockfall
protection system loaded by a falling tree (Test A on the left) and a design rockfall event with 1000 kJ (on the right) together with a magnified
detail of the impact locations. The colour spectrum shows the degree of utilization of the single components ranging from 0 % (blue) to
100 % (red). Piercing of tree trunk front face not modeled in simulation.

front sections of the trunks were narrowed. The untreated
sections had a diameter of up to 60 cm. The details of the in-
dividual trees and testing conditions can be found in Table 1.

The test sequence consisted of three individual tests. Both
the weight of the tree trunks as well as the height from which
they fell were increased incrementally from test to test. The
velocities given in Table 1 are those attained by the tree
trunks as they first made contact with the net.

4 Results and discussion

The tested rockfall protection system resisted the series of
impacts without damage, successfully stopping the falling
trees. The image sequence in Fig. 2 shows, as an example,
the typical behaviour of the system and of the falling trees

during the test with Tree C. This shows that the first con-
tact between trunk and net is followed by a deformation of
the net. Following the initial impact a rebound effect sets in,
during which the tree trunk rebounds to the initial level of the
net. After this the tree trunk comes to rest inside the net.

The deformational response of the tested system to the im-
pact of the falling tree trunk is retrieved from the video anal-
ysis. From the data obtained, the braking time of the tree
trunks, the braking distance, and the totally absorbed energy
are calculated (Table 1). The braking time is the time interval
from the first contact between the tree trunk and the net, up
to the maximum deflection. The braking distance of the sys-
tem refers to the maximum deflection of the net during the
braking process. The maximum measured rope forces are
grouped and also shown in Table 1.
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In general, the process of energy dissipation (absorption)
through the system can be described as follows: Immedi-
ately after the tree trunk contacts the protection system, the
forces are transferred to all the supporting and upslope an-
chor ropes. The top support ropes are subjected to the high-
est forces. Once the tree trunk has been stopped completely
by the rockfall protection system, a rebound effect can be ob-
served. The total system behaves in a partly elastic manner
and reacts with a marked relaxation phase following the first
impact. A considerable part of the energy has already been
absorbed by the protection system. At least two such cycles
follow this phase of relaxation.

Corresponding to the increasing falling height, the impact
energy rises from 157 kJ to 589 kJ (Table 1) by the factor
3.7 between Tests A and C. The increase of braking distance
(= maximum deflection) from 4.0 to 6.0 m shows a factor 1.5
(Table 1), which results in a total energy absorption chang-
ing from 220 to 705 kJ (factor 3.2). The only half increase of
the braking distance compared to the impact energies demon-
strates that the deformation capacity of the barrier is quite
large for smaller impact energies, but converges to a maxi-
mum deformation when reaching the design energy level.

Because the braking times remain relatively constant
(0.31 s vs. 0.36 s), it may also be concluded that additional
or increasing energy will result in increased forces within the
barrier system because no additional distribution over time is
possible. This can be observed for the upslope ropes (64 vs.
114 kN, Table 1). However, the support and lateral anchor
rope forces seem to be more or less constant. Especially for
the lateral anchor ropes, it is striking that they always expe-
rienced almost the same load, irrespective of the energies of
impact. This has one main reason. The maximum system
load of 589 kJ amounts to just 59 % of the system’s design
energy of 1000 kJ. The braking elements integrated into the
support ropes have a load-deflection behaviour that exhibits
a more or less constant resistance until approximately 80–
90 % of its maximum deflection. Therefore, the brake ele-
ments are loaded within a range that keeps the forces in the
support ropes constant. The load in the lateral anchor ropes
directly depends on the support rope load and therefore also
remains constant. Without any integrated brake elements, the
upslope anchor ropes are attached more or less directly to the
net system, and from this it can be concluded that a large part
of the additional energy is transferred to the upslope anchor
ropes.

The system deflection depends on the event. As expected,
the system is subjected to a smaller stress in the first test than
in the last. The increase of the deflection curve between Tests
A and C amounts to about 2 m (Table 1). The maximum de-
flection of the system in Test A occurred later than in B and
C. This is because of the excess plastic deformation of the
overall system after Test A and the higher impact velocities
in Tests B and C. Since the system remained unchanged dur-
ing the tests, all the components experienced almost the en-
tire possible amount of three-dimensional deformation. If the

falling body is stopped now, the maximum deflection will be
reached earlier, since it is now only the elastic deformation
that needs to be overcome.

5 Computational simulation

Above results were used to verify numerical simulation per-
formed using the software FARO (Volkwein, 2004). The
software has been designed to deal with large spherical con-
crete boulders with a more or less smooth surface. Thus, the
tree tests were an ideal opportunity to obtain field results for
lower impact energies than the barrier design energy and to
test the suitability of the software also against different im-
pactors.

The computationally simulated event was Test A, and the
barrier state at its maximum deflection is given in Fig. 2
(lower part) together with the degree of utilization of the sin-
gle components. The numerical results show a usability of
the software (Table 1), having – apart from lateral ropes – a
general discrepancy of less than 11 % compared to the field
test. Looking at the impact location, one can see that the
loading rate of the net is much higher compared to the over-
all system loading rate if the impactor is small. For the max-
imum load test (1000 kJ) using a boulder with a larger front
face than that of the tree (Fig. 2, lower right), the degree of
utilization of the ring net does not differ as much from the
degree of the other components as it does for the tree test.
This effect is also described in more detail in Volkwein et
al. (2005) and Cazzani et al. (2002).

6 Conclusions

The system passed all field tests. No maintenance or repair
measures were undertaken in between the individual tests.
That leads to the conclusion that such flexible rockfall bar-
riers with ring nets are suitable to catch trees with energies
close to their rockfall capacity rating. The response of the
support system for the net is very similar to rockfall with the
same energy level. The main difference is the higher con-
centrated load in the net that occurs with falling trees at the
impact location. It was even observed that the trees are pro-
truding through it.

Furthermore, it can be stated that vertical rockfall test sites
like the Walenstadt facility are suitable for executing tests
with falling trees. It is possible to execute such tests with
energies of 600 kJ or even more in a well-defined and repeat-
able manner.

However, if barriers in the field have to be designed against
trees, prevention of tree trunks from slipping underneath the
system also has to be considered. For this case, the net could
be extended at the base and fastened to the ground as shown
in Fig. 1 (right photo).
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