
1. Introduction
Electrically conductive polymer textile fibre is
desirable in applications such as electronic textiles
(smart shirt) [1] which can measure body tempera-
ture and heart rate, as well as in textiles which can
be used as electrically conducting implantable elec-
trodes for brain stimulation [2]. Carbon nanotubes
offer a great potential to be used as electrically con-
ducting inclusions in textiles due to their excellent
electrical conductivity and high aspect ratio [3].
Many researchers have studied the properties of

nylon/nanoparticle [4] and PBO/carbon nanotube
textiles [5], as well as others with improved electri-
cal properties [6, 7]. Cellulose textiles reinforced
with carbon nanotubes can offer a combination of
good biocompatibility, electrical conductivity, and
the ability to be easily spun and woven into textile
fabrics [8]. However, there are three main chal-
lenges to achieving highly conductive cellulose/car-
bon nanotubes composite fibres, namely, 1) disso-
lution and fibre spinning of cellulose using a benign
solvent, 2) uniform dispersion of carbon nanotubes
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in cellulose and 3) avoiding alignment of carbon
nanotubes (which will result in lower electrical con-
ductivity) during the fibre spinning process. To
overcome the first challenge, room temperature
ionic liquids such as EMIMAc can be employed as
environmentally benign solvent, which is safer and
easier to handle than traditionally used solvents
such as carbon disulphide [9], sulphuric acid [10]
and N-methylmorpholine-N-oxide (NMMO) [11].
A number of researchers have used ionic liquids for
fibre stretching/spinning of cellulose [12–18], wool
[19, 20], chitin [21–24] and other natural polymers
[25–28], as well as composite fibres of cellulose [8,
29]. Despite this progress, the remaining two chal-
lenges, uniform dispersion of carbon nanotube in
cellulose solution dope and avoidance of high degree
of alignment of carbon nanotubes during fibre spin-
ning, still remain largely unaddressed. In the pres-
ent study, we look at methods of improving the dis-
persion of carbon nanotubes in EMIMAc and in
cellulose solution dope. We also carefully study the
effect of fibre spinning parameters such as fibre
extrusion speed and fibre winding speed on the
electrical conductivity of the cellulose/carbon nan-
otube composite fibres. This study will be specifi-
cally useful for improving the degree of dispersion
of carbon nanotubes in cellulose fibres, electrical
conductivity of cellulose/nanotubes composite fibres
and their potential use for other applications such as
conducting textiles and for implantable electrodes
for stimulation of tissues.

2. Experimental
2.1. Materials and methods
The ionic liquid (IL) 1-Ethyl-3-Methylimidazolium
Acetate (EMIMAc) and carboxymethyl cellulose
(CMC) were obtained from Sigma-Aldrich (419273,
Gillingham, UK). The cellulose pulp sheets with a
degree of polymerisation (DP) of 890 were pro-
vided by Rayonier (Jacksonville, United States).
The MWNT forest, with average MWNT outer diam-
eter of 80 nm and length of 1 mm [8], were kindly
supplied by Department of Materials Science &
Metallurgy in University of Cambridge with syn-
thesis details and characterisation published else-
where [30].
A magnetic stirrer hotplate (Fisher scientific, Lough-
borough, UK) with oil bath was used for solution
preparation. The dissolution processing was carried
out in a hood. The cellulose pulp sheets were fine

chopped into small pieces with scissors and ground
with a grinder.

2.2. CMC/MWNTs preparation
300 mg CMC was grounded uniformly in a few
millilitres of distilled water using mortar and pestle.
Then 300 mg MWNTs forest was mixed and
grounded together with the CMC/H2O suspension.
The MWNTs/CMC/H2O mixture was added in a
250 mL conical flask with 200 mL distilled water,
and sonicated for 30 min using 40% amplitude of
power at 80°C with stirring at 10.5 rad/s for 24 h
until all water evaporated, leaving only dry and thin
CMC/MWNTs film. The dry CMC/MWNTs film
was added into 20 g EMIMAc and heated at 80°C
with stirring at 10.5 rad/s for 2 h, then kept stirred
without heating for 24 h to get the uniform 15 mg/g
concentration MWNTs/EMIMAc suspension.

2.3. Fibre spinning
For fibre spinning, we used 0.08 mass fraction cel-
lulose in EMIMAc to make high viscosity
(415.5 Pa·s) solution, which was easily spun. 2 g cel-
lulose (0.08 mass fraction with respect to the total
amount of 25 g EMIMAc) was added into 11.66 g
EMIMAc in an 80 mL glass reagent bottle and
heated at 85°C with stirring at 10.5 rad/s for 2 h. Then
13.34 g MWNTs/EMIMAc suspension (0.10 mass
fraction MWNTs with respect to cellulose) was
added into the cellulose/ EMIMAc solution and
heated at 85°C with stirring at 10.5 rad/s for 5 h.
After complete dissolution, the MWNTs/cellulose/
EMIMAc fibre solution was transferred into a 20 mL
luer lock syringe (Terumo, UK). The solution in
syringe was vacuumed in a vacuum oven at 80°C
for 16 hours before spinning. Lab-built spinning
equipment, which consisted of a syringe pump, a
water bath and a winding drum with monitor, was
used for fibre spinning. Two different fibre spinning
conditions were used as shown in Figure 1. In the first
set up, the fibres were simply extruded at varying
extrusion velocities (V1) and were immediately
coagulated without fibre winding (Figure 1a). In the
second set up, the cellulose/MWNTs solution dope
was injected into water bath at fixed extrusion veloc-
ity (V1), while the winding drum and electric motor
were continuously winding the fibres at varying
winding velocities (V2) downstream (Figure 1b). The
first series of fibres were manufactured without
winding (V2 = 0) using different extrusion speeds (V1)
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of 2.65·10–3, 5.3·10–3, 7.95·10–3 and 1.06·10–2 m/s.
The second series of fibres was manufactured using
a constant extrusion speed of V1 = 5.3·10–3 m/s with
different winding speeds (V2) of 0 and 2.5·10–2 m/s.
The air gap between the nozzle and water surface
was 1 cm. After spinning, the fibres were merged in
distilled water for two days, with a change of water
every 24 h. Then the fibres were rolled and dried in a
fume hood for a further 48 h. For each kind of fibre,
two 5 mm long lengths, 2 mm apart, were coated
using conductive silver paint (Electrolube, UK). The
painted fibres were dried at room temperature for 8 h.

2.4. Film preparation
We kept fixed concentration of MWNTs (0.10 mass
fraction) in cellulose/MWNTs film and fibre’s
preparation for comparison. There was no external
shear or extensional force applied during process-
ing in film preparation, thus the MWNTs dispersion
in film could be considered as random status. The
film study was carried out only as one special case
where there was no external shear or extensional
force applied during processing (unlike the fibre
spinning process which involved both shear and
extensional deformations of polymer solution).
For film preparation, we used 0.015 mass fraction cel-
lulose to make low viscosity solution which was eas-
ily spread into a film. 0.075 g cellulose (0.015 mass
fraction with respect to the total amount of 5 g EMI-
MAc) was added into 4.5 g EMIMAc in a 10 mL
glass bottle and heated at 85°C with stirring at
10.5 rad/s for 2 h. Then 0.5 g MWNTs/EMIMAc
suspension (0.10 mass fraction MWNTs with respect
to cellulose) was added into the cellulose/ EMIMAc
solution and heated at 85°C with stirring at
10.5 rad/s for 2 h.
After complete dissolution, the MWNTs/cellulose/
EMIMAc solution was poured into a 75 mm diame-

ter glass petri dish to form a film, covering the bot-
tom of the petri dish uniformly. The film was put in
the hood at room temperature for 24 h to gel by
absorbing moisture from the air. Then, the film was
put into distilled water to remove the EMIMAc
(water was changed every day). After two days, the
film was dried in the hood at room temperature for
5 days.
Five pieces of rectangular films whose widths were
about 5 mm were· cut and labelled as Sample 1
through Sample 5. Two 5 mm long parts on each
sample were coated using conductive silver paint
(Electrolube, UK), leaving a 2 mm gap between
them. The painted films were dried at room temper-
ature for 8 h.

2.5. Characterization of cellulose/MWNTs
films and fibres

The width and height of the film sample were meas-
ured using a calliper. Three different locations’
widths and heights were measured on the film to
obtain the average width and height. The fibre’s
diameter was measured using a microscope. The
microscopy analysis was carried out using a DMI
3000B microscope produced by Leica Microsys-
tems CMS GmbH (Wetzlar, Germany) under TL-
BF (bright field transmitted light) method. Three pho-
tos on different locations were taken on the 2 mm
long part of fibre between the two silver painted
parts. For each microscope picture, three different
locations’ diameters were measured using the ImageJ
software package. Thus, for all cellulose/MWNTs
composite fibre samples, nine different locations’
fibre diameters on the 2 mm long part were meas-
ured. The average diameter and the standard devia-
tion were calculated and obvious die-swell behavior
in first series of fibres with only extrusion is shown
in Figure 2 [31].
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Figure 1. Spinning equipment for (a) the first series of cellulose/MWNTs fibres and (b) the second series of cellulose/
MWNTs fibres



The Fourier Transform Infrared Spectroscopy (FTIR)
reflection was performed on a Spectrum 100 FTIR
spectrometer (PerkinElmer). A total of 4 cumulative
scans were taken, with a resolution of 4 cm–1, in the
wavenumber range between 4000 to 650 cm–1 under
absorbance mode.
The electrical conductivity testing was conducted
with a 2-point conductivity rig to fix the samples and
a precision LCR400 bridge (Thurlby Thandar instru-
ments, UK). The two silver painted parts of films or
fibres were fixed on the two copper points of the rig
and the resistances of the 2 mm long fibres between
the points were measured. The cellulose/MWNTs
composite films and fibres’ electrical conductivity
were calculated using the Equation (1):

                                                             (1)

where R is the resistance measured over length L,
and A is the cross-sectional area of the sample [32].
All samples for scanning electron microscope (SEM)
analysis were prepared using Emitech K550 Sputter
coater with 10 seconds of gold sputter coating. Both
composite film and fibre samples were stretched
and broken manually after cooling with liquid nitro-
gen. The cross-sectional areas of the samples were
revealed and further observed by using JEOL
6340F.
Wide angle X-ray diffraction (WAXD) patterns
were obtained using CCD & X-ray photography,
Generator 8, in University of Cambridge. It consists
of an X-ray generator with c-tech XRD tube using
CuK! radiation, a sample holder and a cassette with
film inside to collect/detect the pattern. The machine
ran at 40 kV and 40 mA, with 4–6 hours of expo-
sure time to obtain the pattern on the film. The films
were developed after exposure, dried and scanned
to get digital pattern images. The pattern images
were scanned using software of IDL to obtain both
azimuthal and radial scanning data.

3. Results and discussion
3.1. MWNTs dispersion in EMIMAc
To manufacture cellulose/MWNTs composite fibres
with uniform diameter, stable properties and exper-
imental repeatability, the MWNTs need to have a
good dispersion in cellulose/EMIMAc solution.
CMC can be dissolved in both water and EMIMAc,
and has been shown to debundle carbon nanotubes
[33]. CMC is nonconductive, which may reduce the
level of direct contact between MWNTs after coat-
ing, but can give MWNTs excellent uniform disper-
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Figure 2. Fibre diameter measurements of cellulose/
MWNTs fibres as a function of extrusion speed and
winding speed

Figure 3. Optical micrographs of MWNTs dispersion in EMIMAc (a) without CMC and (b) with CMC



sion in EMIMAc and in cellulose fibres. The CMC
coating of MWNTs improves the degree of MWNTs
dispersion in cellulose which is a key requirement
in developing a high quality nanocomposite prod-
uct. Thus, we mixed CMC with MWNTs before
adding MWNTs into EMIMAc. Figure 3a shows an
optical micrograph of MWNTs dispersion without
CMC coating and Figure 3b shows the MWNTs
dispersion with CMC coating. The CMC/MWNTs
mixture had an excellent dispersion in EMIMAc.
This is because the CMC can potentially form
hydrogen bonds with EMIMAc, like cellulose, and
coated the surfaces of MWNTs to avoid self-entan-
glement, both of which contribute to the improved
dispersion in EMIMAc [33].

3.2. FTIR analysis of raw cellulose and
cellulose/MWNTs composite fibres

FTIR analysis was used to confirm that EMIMAc
was completely removed from cellulose/MWNTs
fibres. The FTIR spectra of raw cellulose, cellulose/
MWNTs fibre and EMIMA are shown in Figure 4a.
The hydrogen bond network inside raw cellulose
was broken by EMIMAc leading to cellulose’s dis-
solution [34, 35], and couldn’t recover completely
after cellulose’s coagulation. The CH2 symmetric
bending peak in the spectra (Figure 4b) weakened

and shifted from 1427.6 to 1416.4 cm–1 after regen-
eration, indicating the destruction of the intramolecu-
lar hydrogen bond  in C6–OH to some extent [35, 36].
The typical function group C=N (1562.7 cm–1) of
EMIMAc [37] is not present in cellulose/MWNTs
fibre’s spectrum (Figure 4c). This means that during
coagulation process the majority of EMIMAc has
been removed from fibres.

3.3. Electrical conductivity measurement of
cellulose/MWNTs composite film and fibres

The electrical conductivity of cellulose/MWNTs
fibres decreases as the extrusion speed (V1) increases
as seen in Table 1 and Figure 5 (winding speed was
kept to zero; V2 = 0). The average conductivity of
the cellulose/MWNTs composite film (V1 = 0) is
18.05 S/m, which is 75.2 times larger than the fibre
with the slowest extrusion speed (0.24 S/m; V1 =
2.65·10–3 m/s) and 501.4 times larger than the fibre
with the fastest extrusion speed fibre (0.036 S/m;
V1 = 1.06·10–2 m/s). The effect of winding speed on
the reduction in the electrical conductivity of fibres
was relatively small compared with the effect of
extrusion speed (Table 1 and Figure 5). A modest
decrease in conductivity (from 0.11 to 0.045 S/m)
was observed due to winding the fibres after extru-
sion as seen in Figure 5.
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Figure 4. FTIR spectra of (a) raw cellulose, cellulose/MWNTs fibre and EMIMAc between 650–4000 cm–1, (b) raw cellu-
lose and cellulose/MWNTs fibre between 1360–1480 cm–1 which show the weekended and shifted peak corre-
sponding to CH2 (1427.6, 1416.4 cm–1) of cellulose after regeneration, and (c) raw cellulose, cellulose/MWNTs
fibre and EMIMAc between 1500–1650 cm–1 which show absence of the peak corresponding to C=N
(1562.7 cm–1) of EMIMAc

Table 1. Conductivity and WAXD data for cellulose/MWNTs film and fibres

Name Extrusion speed (V1) and 
winding speed (V2)

Conductivity
[S/m] FWHM of MWNT (002) peak

Film V1 = 0, V2 = 0 18.050±3.490 164.71

Fibre series 1

V1 = 2.65·10–3 m/s, V2 = 0 0.239±0.019 –
V1 = 5.30·10–3 m/s, V2 = 0 0.112±0.016 54.07
V1 = 7.96·10–3 m/s, V2 = 0 0.080±0.010 –
V1 = 1.06·10–2 m/s, V2 = 0 0.036±0.021 –

Fibre series 2
V1 = 5.30·10–3 m/s, V2 = 0 0.112±0.016 54.07
V1 = 5.3·10–3 m/s, V2 = 2.5·10–2 m/s 0.045±0.009 28.72



3.4. SEM analysis of cellulose/MWNTs
composite film and fibres

SEM images of the composite film and fibre cross-
sections show MWNTs dispersion in cellulose (Fig-
ure 6). MWNTs appear to be oriented randomly in
the composite the film (Figure 6a). However, the
MWNTs show more alignment as the extrusion
speed is increased (Figure 6b–6c).
SEM images of cellulose/MWNTs fibres’ cross sec-
tions (Figure 6b–6c), when the extrusion speed was
very slow, show that MWNTs have a slight ten-
dency to align along the fibre axis. As the extrusion
and winding speeds increased, the alignment of
MWNTs along fibre axis greatly increased. This
means that during spinning, MWNTs dispersed well
in EMIMAc and became aligned because of the
shear and extensional force. This alignment is con-
tributing to the decrease in fibre conductivity,
because MWNTs are not in effective contact. The
conducting pathways formed by contact between
MWNTs through the fibre sample are reduced sig-

nificantly due to the interval between orientated
MWNTs as shown by previous theoretical work for
electrical percolation of rigid rods [38]. Previous
researchers have also reported alignment of carbon
nanotubes during extrusion of polycarbonate and
carbon nanotubes fibres using TEM analysis [39].
The decrease of conductivity due to alignment of
nanofibres was also predicted in our previous stud-
ies using a combination of dissipative particle
dynamics and Monte Carlo modelling method [40].

3.5. X-ray analysis of aellulose/MWNTs
composite film and fibres

Figure 7 shows the WAXD radial scanning data
(intensity against 2") of cellulose and MWNTs in a
cellulose/MWNTs composite film and fibres at
varying extrusion speeds. The diffraction patterns
of these film and fibres correspond to the cellulose
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Figure 6. SEM micrographs of stretched and broken cross sections of (a) cellulose/MWNTs film, (b) cellulose/MWNTs
fibre with spinning speed of V1 = 5.3·10–3 m/s, V2 = 0 m/s and (c) cellulose/MWNTs fibre with spinning speed of
V1 =5.3·10–3 m/s, V2 = 2.5·10–2 m/s

Figure 7. Integrated radial scans of cellulose/MWNTs film
and fibres under different extrusion speeds with-
out winding (V1 = 2.65·10–3 m/s, V2 = 0 m/s; V1 =
5.3·10–3 m/s, V2 = 0 m/s)

Figure 5. Conductivity of cellulose/MWNTs film and fibres
with extrusion only, or with  extrusion and wind-
ing



II structure [41, 42], which is a widely known type
of crystal structure of regenerated cellulose after its

dissolution. In addition, the (002) graphitic peak at
2" = 26.8° corresponding to MWNTs is also observed
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Figure 8. WAXD patterns of (a) cellulose/ MWNTs film, (b) cellulose/MWNTs fibres with speed of V1 = 2.65·10–3 m/s,
V2 = 0 m/s, (c) V1 = 5.3·10–3 m/s, V2 = 0 m/s and (d) V1 = 5.3·10–3 m/s, V2 = 2.5·10–2 m/s, and azimuthal scans of
(e) cellulose/MWNTs fibres spun with different extrusion speeds without winding (V1 = 0 m/s, V2 = 0 m/s; V1 =
5.3·10–3 m/s, V2 = 0 m/s) as well as (f) cellulose/MWNTs fibres spun with different winding speeds and fixed
extrusion speed (V1 = 5.3·10–3 m/s, V2 = 0 m/s; V1 = 5.3·10–3 m/s, V2 = 2.5·10–2 m/s)



in the composite fibres as expected [8, 43]. The
peaks at around 12° correspond to cellulose (1–10)
plane, whereas the peaks at around 22° correspond
to cellulose (020) plane [8, 39, 41].
Figure 8a–8d show the two dimensional WAXD
diffraction patterns of cellulose film and fibres spun
at different spinning rates. SEM image of the film
(Figure 6a) shows no alignment of MWNTs. Simi-
larly WAXD data (Figure 8a and 8e) for film sam-
ple shows diffraction ring corresponding to MWNTs
and hashas intensity uniformly distributed azimut -
hally along the circumference, which confirm no
preferred orientation of MWNTs [43]. In a stretched
fibre, the MWNTs have a preferred orientation with
their longitudinal axes parallel to the strain direc-
tion, which appear as concentrated intensity in the
diffraction ring in the azimuthal direction. The inten-
sity of the diffraction ring becomes more anisotropic
as the extrusion/winding speed increases, as shown in
Figure 8b–8d [43]. Figure 8e–8f shows the azimuthal
scans of MWNT (002) peak of these fibres. The full
width at half maximum (FWHM) for MWNT (002)
azimuthal scan is shown in Figure 8e, which
decreases from 164.71 to 54.07 with increased extru-
sion speed from 0 m/s (film, no extrusion) to
5.3·10–3 m/s. The full width half max (FWHM) of
002 peak from MWNTs is a measure of degree of
alignment of the MWNTs. The lower the value of
FWHM, the higher is the degree of alignment of
MWNTs, which is consistently observed with the
increase in the extrusion and winding speeds of the
composite fibre [44]. This confirms that the align-
ment of MWNTs in fibre increases as extrusion
speed increases, which is the reason for the reduc-
tion in the conductivity of fibres as shown in
Table 1. This observation is consistent with the SEM
images for the cross-section of film and fibre com-
posites. In Figure 8f, the FWHM for MWNT (002)
azimuthal scan peak reduces from 54.07 to 28.72 as
fibre winding speed increases from 0 m/s to
2.5·10–2 m/s. This confirms that the increased
degree of MWNTs alignment is due to the increase
in fibre winding speed.

4. Conclusions
In this paper we presented a novel method for uni-
form dispersion of MWNTs for manufacturing elec-
trically conducting textiles. Dispersion of MWNTs
is challenging due to their low surface energy. To

address this problem we used non-covalent surface
modification of MWNTs using CMC, which wraps
around carbon nanotubes to enable good dispersion
in water as well as ionic liquid (EMIMAc). This
process modification allows us to use ionic liquid as
a common platform to achieve good dispersion of
MWNTs, as well as act as a benign solvent for spin-
ning of cellulose nanocomposite fibres. To under-
stand the effect of alignment of MWNTs due to
shear and extensional deformation of fibre during
spinning process, we systematically studied the
change in the electrical properties of cellulose/
MWNT in two ways: as a function of extrusion
speed without fibre winding/spinning, and as a func-
tion of fibre winding/spinning speed at constant
extrusion speed. Increased extrusion speed causes a
significant decrease in the electrical conductivity of
the cellulose/MWNT fibre due to alignment of
MWNTs, which results in reduced contact between
MWNTs in the cellulose fibre matrix. The increased
degree of alignment of MWNTs after extrusion and
after fibre spinning/stretching was confirmed by
SEM and WAXD studies. While it is important to
produce textiles at high extrusion and winding
speeds for increased productivity, it is clear from
this study that in order to achieve good electrical
conductivity the cellulose/MWNTs based smarts tex-
tiles need to be spun at moderately low speeds
(extrusion speed such as V1 = 5.3·10–3 m/s). The set
of experiments carried out in the current work pro-
vide useful basic guideline for manufacturing of
such smart textiles from cellulose/MWNTs com-
posite fibres.
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