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BOUNDARY VALUE PROBLEMS FOR n-TH ORDER
DIFFERENTIAL INCLUSIONS WITH FOUR-POINT

INTEGRAL BOUNDARY CONDITIONS

Bashir Ahmad and Sotiris K. Ntouyas

Abstract. In this paper, we discuss the existence of solutions for a four-point integral
boundary value problem of n-th order differential inclusions involving convex and non-convex
multivalued maps. The existence results are obtained by applying the nonlinear alternative
of Leray Schauder type and some suitable theorems of fixed point theory.

Keywords: differential inclusions, four-point integral boundary conditions, existence, non-
linear alternative of Leray Schauder type, fixed point theorems.

Mathematics Subject Classification: 34A60, 34B10, 34B15.

1. INTRODUCTION

In this paper, we consider the following n-th order differential inclusion with four-point
integral boundary conditions

x(n)(t) ∈ F (t, x(t)), 0 < t < 1,

x(0) = α
ξ∫
0

x(s)ds, x′(0) = 0, x′′(0) = 0, . . . , x(n−2)(0) = 0,

x(1) = β
1∫
η

x(s)ds, 0 < ξ < η < 1,

(1.1)

where F : [0, T ]× R → P(R) is a multivalued map, P(R) is the family of all subsets
of R and α, β ∈ R.

Multi-point boundary conditions arise in a variety of problems of applied math-
ematics and physics. Nonlocal multi-point problems constitute an important class of
boundary value problems and have been addressed by many authors, for instance, see
[1, 5–7,10,17,19–21,23,26,27,30,31].

Integral boundary conditions have various applications in applied fields such as
blood flow problems, chemical engineering, thermoelasticity, underground water flow,
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population dynamics, etc. For a detailed description of the integral boundary condi-
tions, we refer the reader to the papers [2, 11] and references therein.

Differential inclusions arise in the mathematical modelling of certain problems in
economics, optimal control, stochastic analysis, etc. and are widely studied by many
authors, see [3, 4, 8, 9, 14,28,29] and the references therein.

The aim of our paper is to establish some existence results for the problem (1.1),
when the right hand side is convex as well as nonconvex valued. The first result relies
on the nonlinear alternative of Leray-Schauder type. In the second result, we shall
combine the nonlinear alternative of Leray-Schauder type for single-valued maps with
a selection theorem due to Bressan and Colombo for lower semicontinuous multivalued
maps with nonempty closed and decomposable values, while in the third result, we
shall use the fixed point theorem for contraction multivalued maps due to Covitz and
Nadler. The methods used are standard, however their exposition in the framework
of problem (1.1) is new.

The paper is organized as follows: in Section 2 we recall some preliminary facts
that we need in the sequel and in Section 3 we prove our main results.

2. PRELIMINARIES

Let us recall some basic definitions on multi-valued maps [16,22].

For a normed space (X, ‖ · ‖), let Pcl(X) = {Y ∈ P(X) : Y is closed}, Pb(X) =
{Y ∈ P(X) : Y is bounded}, Pcp(X) = {Y ∈ P(X) : Y is compact}, and Pcp,c(X) =
{Y ∈ P(X) : Y is compact and convex}. A multi-valued map G : X → P(X) is
convex (closed) valued if G(x) is convex (closed) for all x ∈ X. The map G is bounded
on bounded sets if G(B) =

⋃
x∈B G(x) is bounded in X for all B ∈ Pb(X) (i.e.,

supx∈B{sup{|y| : y ∈ G(x)}} < ∞). G is called upper semi-continuous (u.s.c.) on
X if for each x0 ∈ X, the set G(x0) is a nonempty closed subset of X, and if for
each open set N of X containing G(x0), there exists an open neighborhood N0 of
x0 such that G(N0) ⊆ N. G is said to be completely continuous if G(B) is relatively
compact for every B ∈ Pb(X). If the multi-valued map G is completely continuous
with nonempty compact values, then G is u.s.c. if and only if G has a closed graph,
i.e., xn → x∗, yn → y∗, yn ∈ G(xn) imply y∗ ∈ G(x∗). G has a fixed point if there is
x ∈ X such that x ∈ G(x). The fixed point set of the multivalued operator G will be
denoted by FixG. A multivalued map G : [0; 1] → Pcl(R) is said to be measurable if
for every y ∈ R, the function

t 7−→ d(y,G(t)) = inf{|y − z| : z ∈ G(t)}

is measurable.
Let C([0, 1],R) denote a Banach space of continuous functions from [0, 1] into

R with the norm ‖x‖∞ = supt∈[0,1] |x(t)|. Let L1([0, 1],R) be the Banach space of
measurable functions x : [0, 1] → R which are Lebesgue integrable and normed by
‖x‖L1 =

∫ 1

0
|x(t)|dt.
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Definition 2.1. A multivalued map F : [0, 1]×R→ P(R) is said to be Carathéodory
if:

(i) t 7−→ F (t, x) is measurable for each x ∈ R,
(ii) x 7−→ F (t, x) is upper semicontinuous for almost all t ∈ [0, 1].

Further, a Carathéodory function F is called L1-Carathéodory if

(iii) for each α > 0, there exists ϕα ∈ L1([0, 1],R+) such that

‖F (t, x)‖ = sup{|v| : v ∈ F (t, x)} ≤ ϕα(t)

for all ‖x‖∞ ≤ α and for a.e. t ∈ [0, 1].

For each y ∈ C([0, 1],R), define the set of selections of F by

SF,y := {v ∈ L1([0, 1],R) : v(t) ∈ F (t, y(t)) for a.e. t ∈ [0, 1]}.

Let X be a nonempty closed subset of a Banach space E and G : X → P(E)
be a multivalued operator with nonempty closed values. G is lower semi-continuous
(l.s.c.) if the set {y ∈ X : G(y) ∩B 6= ∅} is open for any open set B in E. Let A be a
subset of [0, 1]×R. A is L⊗B measurable if A belongs to the σ-algebra generated by
all sets of the form J × D, where J is Lebesgue measurable in [0, 1] and D is Borel
measurable in R. A subset A of L1([0, 1],R) is decomposable if for all x, y ∈ A and
measurable J ⊂ [0, 1] = J , the function xχJ + yχJ−J ∈ A, where χJ stands for the
characteristic function of J .

Definition 2.2. Let Y be a separable metric space and let N : Y → P(L1([0, 1],R))
be a multivalued operator. We sayN has a property (BC) ifN is lower semi-continuous
(l.s.c.) and has nonempty closed and decomposable values.

Let F : [0, 1]× R → P(R) be a multivalued map with nonempty compact values.
Define a multivalued operator F : C([0, 1]× R)→ P(L1([0, 1],R)) associated with F
as

F(x) = {w ∈ L1([0, 1],R) : w(t) ∈ F (t, x(t)) for a.e. t ∈ [0, 1]},

which is called the Nemytskii operator associated with F.

Definition 2.3. Let F : [0, 1]×R→ P(R) be a multivalued function with nonempty
compact values. We say F is of lower semi-continuous type (l.s.c. type) if its asso-
ciated Nemytskii operator F is lower semi-continuous and has nonempty closed and
decomposable values.

Let (X, d) be a metric space induced from the normed space (X; ‖ · ‖). Consider
Hd : P(X)× P(X)→ R ∪ {∞} given by

Hd(A,B) = max
{

sup
a∈A

d(a,B), sup
b∈B

d(A, b)
}
,

where d(A, b) = infa∈A d(a; b) and d(a,B) = infb∈B d(a; b). Then (Pb,cl(X), Hd) is a
metric space and (Pcl(X), Hd) is a generalized metric space (see [24]).
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Definition 2.4. A multivalued operator N : X → Pcl(X) is called:

(a) γ-Lipschitz if and only if there exists γ > 0 such that

Hd(N(x), N(y)) ≤ γd(x, y) for each x, y ∈ X,

(b) a contraction if and only if it is γ-Lipschitz with γ < 1.

The following lemmas will be used in the sequel.

Lemma 2.5 ([25]). Let X be a Banach space. Let F : [0, T ] × R → Pcp,c(X) be
an L1-Carathéodory multivalued map and let Θ be a linear continuous mapping from
L1([0, 1], X) to C([0, 1], X). Then the operator

Θ ◦ SF : C([0, 1], X)→ Pcp,c(C([0, 1], X)), x 7→ (Θ ◦ SF )(x) = Θ(SF,x)

is a closed graph operator in C([0, 1], X)× C([0, 1], X).

Lemma 2.6 (Nonlinear alternative for Kakutani maps [18]). Let E be a Banach
space, C a closed convex subset of E, U an open subset of C and 0 ∈ U. Suppose that
F : U → Pcp,c(C) is a upper semicontinuous compact map; where Pcp,c(C) denotes
the family of nonempty, compact convex subsets of C. Then either:

(i) F has a fixed point in U , or
(ii) there is u ∈ ∂U and λ ∈ (0, 1) with u ∈ λF (u).

Lemma 2.7 ([12]). Let Y be a separable metric space and let N : Y → P(L1([0, 1],R))
be a multivalued operator satisfying the property (BC ). Then N has a continuous se-
lection, that is, there exists a continuous function (single-valued) g : Y → L1([0, 1],R)
such that g(x) ∈ N(x) for every x ∈ Y .

Lemma 2.8 ([15]). Let (X, d) be a complete metric space. If N : X → Pcl(X) is a
contraction, then FixN 6= ∅.

In order to define the solution of (1.1), we consider the following lemma.

Lemma 2.9. For a given y ∈ C[0, 1], the unique solution of the boundary value
problem 

x(n)(t) = y(t), 0 < t < 1,

x(0) = α
ξ∫
0

x(s)ds, x′(0) = 0, x′′(0) = 0, . . . , x(n−2)(0) = 0,

x(1) = β
1∫
η

x(s)ds, 0 < ξ < η < 1,

(2.1)
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is given by

x(t) =

t∫
0

(t− s)n−1

(n− 1)!
y(s)ds+

+
1
n∆

[
α
(
n− β(1− ηn)

) ξ∫
0

( s∫
0

(s−m)n−1

(n− 1)!
y(m)dm

)
ds+

+αβξn
1∫
η

( s∫
0

(s−m)n−1

(n− 1)!
y(m)dm

)
ds− αξn

1∫
0

(1− s)n−1

(n− 1)!
y(s)ds

]
+

+
tn−1

∆

[
− α

(
1− β(1− η)

) ξ∫
0

( s∫
0

(s−m)n−1

(n− 1)!
y(m)dm

)
ds+

+β(1− αξ)
1∫
η

( s∫
0

(s−m)n−1

(n− 1)!
y(m)dm

)
ds−

−(1− αξ)
1∫

0

(1− s)n−1

(n− 1)!
y(s)ds

]
,

(2.2)

where

∆ =
αξn

n

(
1− β(1− η)

)
+ (1− αξ)

(
1− β(1− ηn)

n

)
6= 0. (2.3)

Proof. We know that the general solution of the equation x(n)(t) = y(t) can be written
as

x(t) = c1 + c2t+ c3t
2 + . . .+ cnt

n−1 +

t∫
0

(t− s)n−1

(n− 1)!
y(s)ds, (2.4)

where c1, c2, . . . , cn ∈ R are arbitrary constants. Applying the boundary conditions
for the problem (2.1), we find that c2 = 0, . . . , cn−1 = 0,

c1 =
α

∆

(
1− β(1− ηn)

n

) ξ∫
0

( s∫
0

(s−m)n−1

(n− 1)!
y(m)dm

)
ds+

+
αξn

n∆

{
β

1∫
η

( s∫
0

(s−m)n−1

(n− 1)!
y(m)dm

)
ds−

1∫
0

(1− s)n−1

(n− 1)!
y(s)ds

}
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and

cn = − α
∆

(
1− β(1− η)

) ξ∫
0

( s∫
0

(s−m)n−1

(n− 1)!
y(m)dm

)
ds+

+
(1− αξ)

∆

{
β

1∫
η

( s∫
0

(s−m)n−1

(n− 1)!
y(m)dm

)
ds−

1∫
0

(1− s)n−1

(n− 1)!
y(s)ds

}
,

where ∆ is given by (2.3). Substituting the values of c1, . . . , cn in (2.4), we get (2.2).

Definition 2.10. A function x ∈ Cn([0, 1],R) is a solution of the problem (1.1) if
there exists a function f ∈ L1([0, 1],R) such that f(t) ∈ F (t, x(t)) a.e. on [0, 1] and

x(t) =

t∫
0

(t− s)n−1

(n− 1)!
f(s)ds+

+
1
n∆

[
α
(
n− β(1− ηn)

) ξ∫
0

( s∫
0

(s−m)n−1

(n− 1)!
f(m)dm

)
ds+

+αβξn
1∫
η

( s∫
0

(s−m)n−1

(n− 1)!
f(m)dm

)
ds− αξn

1∫
0

(1− s)n−1

(n− 1)!
f(s)ds

]
+

+
tn−1

∆

[
− α

(
1− β(1− η)

) ξ∫
0

( s∫
0

(s−m)n−1

(n− 1)!
f(m)dm

)
ds+

+β(1− αξ)
1∫
η

( s∫
0

(s−m)n−1

(n− 1)!
f(m)dm

)
ds+

−(1− αξ)
1∫

0

(1− s)n−1

(n− 1)!
f(s)ds

]
.

3. MAIN RESULTS

Theorem 3.1. Assume that:

(H1) F : [0, 1]× R→ P(R) is Carathéodory and has convex values,
(H2) there exists a continuous nondecreasing function ψ : [0,∞)→ (0,∞) and a func-

tion p ∈ L1([0, 1],R+) such that

‖F (t, x)‖P := sup{|y| : y ∈ F (t, x)} ≤ p(t)ψ(‖x‖∞) for each (t, x) ∈ [0, 1]×R,
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(H3) there exists a number M > 0 such that

M

1
(n− 1)!

(
1 +

δ1 + δ2
|∆|

)
ψ(‖x‖∞)‖p‖L1

> 1, (3.1)

where

δ1 =
|α|ξn

n

(
|n− β(1− ηn)|+ |β|+ 1

)
, (3.2)

and

δ2 = |α(1− β((1− η))|ξn + (|β|+ 1|)|1− αξ|. (3.3)

Then the boundary value problem (1.1) has at least one solution on [0, 1].

Proof. Define an operator Ω : C([0, 1],R)→ P(C([0, 1],R)) by

Ω(x) =



h ∈ C([0, 1],R) :

h(t) =



t∫
0

(t− s)n−1

(n− 1)!
f(s)ds+

+
1
n∆

[
α
(
n− β(1− ηn)

) ξ∫
0

( s∫
0

(s−m)n−1

(n− 1)!
f(m)dm

)
ds+

+αβξn
1∫
η

( s∫
0

(s−m)n−1

(n− 1)!
f(m)dm

)
ds−

−αξn
1∫

0

(1− s)n−1

(n− 1)!
f(s)ds

]
+

+
tn−1

∆

[
− α

(
1− β(1− η)

) ξ∫
0

( s∫
0

(s−m)n−1

(n− 1)!
f(m)dm

)
ds+

+β(1− αξ)
1∫
η

( s∫
0

(s−m)n−1

(n− 1)!
f(m)dm

)
ds−

−(1− αξ)
1∫

0

(1− s)n−1

(n− 1)!
f(s)ds

]


for f ∈ SF,x.We will show that Ω satisfies the assumptions of the nonlinear alternative
of Leray-Schauder type. The proof consists of several steps. As a first step, we show
that Ω is convex for each x ∈ C([0, 1],R). For that, let h1, h2 ∈ Ω. Then there exists
f1, f2 ∈ SF,x such that for each t ∈ [0, 1], we have
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hi(t) =

t∫
0

(t− s)n−1

(n− 1)!
fi(s)ds+

+
1
n∆

[
α
(
n− β(1− ηn)

) ξ∫
0

( s∫
0

(s−m)n−1

(n− 1)!
fi(m)dm

)
ds+

+ αβξn
1∫
η

( s∫
0

(s−m)n−1

(n− 1)!
fi(m)dm

)
ds− αξn

1∫
0

(1− s)n−1

(n− 1)!
fi(s)ds

]
+

+
tn−1

∆

[
− α

(
1− β(1− η)

) ξ∫
0

( s∫
0

(s−m)n−1

(n− 1)!
fi(m)dm

)
ds+

+ β(1− αξ)
1∫
η

( s∫
0

(s−m)n−1

(n− 1)!
fi(m)dm

)
ds−

− (1− αξ)
1∫

0

(1− s)n−1

(n− 1)!
fi(s)ds

]
, i = 1, 2.

Let 0 ≤ ω ≤ 1. Then, for each t ∈ [0, 1], we have

[ωh1 + (1− ω)h2](t) =

t∫
0

(t− s)n−1

(n− 1)!
[ωf1(s) + (1− ω)f2(s)]ds+

+
1
n∆

[
α
(
n− β(1− ηn)

) ξ∫
0

( s∫
0

(s−m)n−1

(n− 1)!
[ωf1(m) + (1− ω)f2(m)]dm

)
ds+

+ αβξn
1∫
η

( s∫
0

(s−m)n−1

(n− 1)!
[ωf1(m) + (1− ω)f2(m)]dm

)
ds−

− αξn
1∫

0

(1− s)n−1

(n− 1)!
[ωf1(s) + (1− ω)f2(s)]ds

]
+

+
tn−1

∆

[
− α

(
1− β(1− η)

) ξ∫
0

( s∫
0

(s−m)n−1

(n− 1)!
[ωf1(m) + (1− ω)f2(m)]dm

)
ds+

+ β(1− αξ)
1∫
η

( s∫
0

(s−m)n−1

(n− 1)!
[ωf1(s) + (1− ω)f2(s)]dm

)
ds−

− (1− αξ)
1∫

0

(1− s)n−1

(n− 1)!
[ωf1(s) + (1− ω)f2(s)]ds

]
.

Since SF,x is convex (F has convex values), therefore it follows that
ωh1 + (1− ω)h2 ∈ Ω(x).
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Next, we show that Ω maps bounded sets into bounded sets in C([0, 1],R). For
a positive number r, let Br = {x ∈ C([0, 1],R) : ‖x‖∞ ≤ r} be a bounded set in
C([0, 1],R). Then, for each h ∈ Ω(x), x ∈ Br, there exists f ∈ SF,x such that

h(t) =

t∫
0

(t− s)n−1

(n− 1)!
f(s)ds+

1
n∆

[
α
(
n− β(1− ηn)

) ξ∫
0

( s∫
0

(s−m)n−1

(n− 1)!
f(m)dm

)
ds+

+ αβξn
1∫
η

( s∫
0

(s−m)n−1

(n− 1)!
f(m)dm

)
ds− αξn

1∫
0

(1− s)n−1

(n− 1)!
f(s)ds

]
+

+
tn−1

∆

[
− α

(
1− β(1− η)

) ξ∫
0

( s∫
0

(s−m)n−1

(n− 1)!
f(m)dm

)
ds+

+ β(1− αξ)
1∫
η

( s∫
0

(s−m)n−1

(n− 1)!
f(m)dm

)
ds− (1− αξ)

1∫
0

(1− s)n−1

(n− 1)!
f(s)ds

]
,

and

|h(t)| ≤
∣∣∣ α
n∆

[
(n− β(1− ηn))− n(1− β(1− η))tn−1

]∣∣∣×
×

ξ∫
0

( s∫
0

(s−m)n−1

(n− 1)!
|f(m)|dm

)
ds+

+
∣∣∣∣ βn∆

[
αξn + n(1− αξ)tn−1

]∣∣∣∣
1∫
η

( s∫
0

(s−m)n−1

(n− 1)!
|f(m)|dm

)
ds+

+
∣∣∣∣ 1
n∆

[
αξn + n(1− αξ)tn−1

]∣∣∣∣
1∫

0

(1− s)n−1

(n− 1)!
|f(s)|ds+

+

t∫
0

(t− s)n−1

(n− 1)!
|f(s)|ds ≤

≤
{ ∣∣∣ α
n∆

[
(n− β(1− ηn))− n(1− β(1− η))tn−1

]∣∣∣ ξn

(n− 1)!
+

+
∣∣∣∣ βn∆

[
α+ n(1− αξ)tn−1

]∣∣∣∣ 1
(n− 1)!

+

+
∣∣∣∣ 1
n∆

[
αξn + n(1− αξ)tn−1

]∣∣∣∣ 1
(n− 1)!

+
1

(n− 1)!

} 1∫
0

p(s)ψ(‖x‖∞)ds ≤

≤ 1
(n− 1)!

(
1 +

δ1 + δ2
|∆|

)
ψ(‖x‖∞)

1∫
0

p(s)ds ≤

≤ 1
(n− 1)!

(
1 +

δ1 + δ2
|∆|

)
ψ(r)

1∫
0

p(s)ds.
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where ∆, δ1, and δ2 are given by (2.3), (3.2) and (3.3) respectively. Thus,

‖h‖∞ ≤
1

(n− 1)!

(
1 +

δ1 + δ2
|∆|

)
ψ(r)

1∫
0

p(s)ds.

Now we show that Ω maps bounded sets into equicontinuous sets of C([0, 1],R). Let
t′, t′′ ∈ [0, 1] with t′ < t′′ and x ∈ Br, where Br is a bounded set of C([0, 1],R). For
each h ∈ Ω(x), we obtain

|h(t′′)− h(t′)| =

=
∣∣∣ t
′′∫

0

(t′′ − s)n−1

(n− 1)!
f(s)ds−

t′∫
0

(t′ − s)n−1

(n− 1)!
f(s)ds+

+
|(t′′)n−1 − (t′)n−1|

∆

[
− α

(
1− β(1− η)

) ξ∫
0

( s∫
0

(s−m)n−1

(n− 1)!
f(m)dm

)
ds+

+ β(1− αξ)
1∫
η

( s∫
0

(s−m)n−1

(n− 1)!
f(m)dm

)
ds−

− (1− αξ)
1∫

0

(1− s)n−1

(n− 1)!
f(s)ds

]∣∣∣ ≤
≤
∣∣∣ t′∫

0

(t′ − s)n−1 − (t′′ − s)n−1

(n− 1)!
f(s)ds−

t′′∫
t′

(t′′ − s)n−1

(n− 1)!
f(s)ds

∣∣∣+
+
∣∣∣ |(t′′)n−1 − (t′)n−1|

∆

[
− α

(
1− β(1− η)

) ξ∫
0

( s∫
0

(s−m)n−1

(n− 1)!
f(m)dm

)
ds+

+ β(1− αξ)
1∫
η

( s∫
0

(s−m)n−1

(n− 1)!
f(m)dm

)
ds−

− (1− αξ)
1∫

0

(1− s)n−1

(n− 1)!
f(s)ds

]∣∣∣.
Obviously the right hand side of the above inequality tends to zero independently

of x ∈ Br as t′′ − t′ → 0. As Ω satisfies the above three assumptions, therefore
it follows by the Ascoli-Arzelá theorem that Ω : C([0, 1],R) → P(C([0, 1],R)) is
completely continuous.

In our next step, we show that Ω has a closed graph. Let xn → x∗, hn ∈ Ω(xn)
and hn → h∗. Then we need to show that h∗ ∈ Ω(x∗). Associated with hn ∈ Ω(xn),
there exists fn ∈ SF,xn

such that for each t ∈ [0, 1],
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hn(t) =

t∫
0

(t− s)n−1

(n− 1)!
fn(s)ds+

+
1
n∆

[
α
(
n− β(1− ηn)

) ξ∫
0

( s∫
0

(s−m)n−1

(n− 1)!
fn(m)dm

)
ds+

+ αβξn
1∫
η

( s∫
0

(s−m)n−1

(n− 1)!
fn(t)(m)dm

)
ds− αξn

1∫
0

(1− s)n−1

(n− 1)!
fn(s)ds

]
+

+
tn−1

∆

[
− α

(
1− β(1− η)

) ξ∫
0

( s∫
0

(s−m)n−1

(n− 1)!
fn(m)dm

)
ds+

+ β(1− αξ)
1∫
η

( s∫
0

(s−m)n−1

(n− 1)!
fn(m)dm

)
ds−

− (1− αξ)
1∫

0

(1− s)n−1

(n− 1)!
fn(s)ds

]
.

Thus we have to show that there exists f∗ ∈ SF,x∗ such that for each t ∈ [0, 1],

h∗(t) =

t∫
0

(t− s)n−1

(n− 1)!
f∗(s)ds+

+
1
n∆

[
α
(
n− β(1− ηn)

) ξ∫
0

( s∫
0

(s−m)n−1

(n− 1)!
f∗(m)dm

)
ds+

+ αβξn
1∫
η

( s∫
0

(s−m)n−1

(n− 1)!
f∗(m)dm

)
ds− αξn

1∫
0

(1− s)n−1

(n− 1)!
f∗(s)ds

]
+

+
tn−1

∆

[
− α

(
1− β(1− η)

) ξ∫
0

( s∫
0

(s−m)n−1

(n− 1)!
f∗(m)dm

)
ds+

+ β(1− αξ)
1∫
η

( s∫
0

(s−m)n−1

(n− 1)!
f∗(m)dm

)
ds−

− (1− αξ)
1∫

0

(1− s)n−1

(n− 1)!
f∗(s)ds

]
.

Let us consider the continuous linear operator Θ : L1([0, 1],R)→ C([0, 1],R) given by
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f 7→ Θ(f)(t) =

t∫
0

(t− s)n−1

(n− 1)!
f(s)ds+

+
1
n∆

[
α
(
n− β(1− ηn)

) ξ∫
0

( s∫
0

(s−m)n−1

(n− 1)!
f(m)dm

)
ds+

+ αβξn
1∫
η

( s∫
0

(s−m)n−1

(n− 1)!
f(m)dm

)
ds− αξn

1∫
0

(1− s)n−1

(n− 1)!
f(s)ds

]
+

+
tn−1

∆

[
− α

(
1− β(1− η)

) ξ∫
0

( s∫
0

(s−m)n−1

(n− 1)!
f(m)dm

)
ds+

+ β(1− αξ)
1∫
η

( s∫
0

(s−m)n−1

(n− 1)!
f(m)dm

)
ds−

− (1− αξ)
1∫

0

(1− s)n−1

(n− 1)!
f(s)ds

]
.

Observe that

‖hn(t)− h∗(t)‖ =
∥∥∥ t∫

0

(t− s)n−1

(n− 1)!
(fn(s)− f∗(s))ds+

+
1
n∆

[
α
(
n− β(1− ηn)

) ξ∫
0

( s∫
0

(s−m)n−1

(n− 1)!
(fn(m)− f∗(m))dm

)
ds+

+ αβξn
1∫
η

( s∫
0

(s−m)n−1

(n− 1)!
(fn(m)− f∗(m))dm

)
ds−

− αξn
1∫

0

(1− s)n−1

(n− 1)!
(fn(s)− f∗(s))ds

]
+

+
tn−1

∆

[
− α

(
1− β(1− η)

) ξ∫
0

( s∫
0

(s−m)n−1

(n− 1)!
(fn(m)− f∗(m))dm

)
ds+

+ β(1− αξ)
1∫
η

( s∫
0

(s−m)n−1

(n− 1)!
(fn(m)− f∗(m))dm

)
ds−

− (1− αξ)
1∫

0

(1− s)n−1

(n− 1)!
(fn(s)− f∗(s))ds

]∥∥∥→ 0 as n→∞.
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Thus, it follows by Lemma 2.5 that Θ ◦ SF is a closed graph operator. Further, we
have hn(t) ∈ Θ(SF,xn). Since xn → x∗, therefore, we have

h∗(t) =

t∫
0

(t− s)n−1

(n− 1)!
f∗(s)ds+

+
1
n∆

[
α
(
n− β(1− ηn)

) ξ∫
0

( s∫
0

(s−m)n−1

(n− 1)!
f∗(m)dm

)
ds+

+αβξn
1∫
η

( s∫
0

(s−m)n−1

(n− 1)!
f∗(m)dm

)
ds− αξn

1∫
0

(1− s)n−1

(n− 1)!
f∗(s)ds

]
+

+
tn−1

∆

[
− α

(
1− β(1− η)

) ξ∫
0

( s∫
0

(s−m)n−1

(n− 1)!
f∗(m)dm

)
ds+

+β(1− αξ)
1∫
η

( s∫
0

(s−m)n−1

(n− 1)!
f∗(m)dm

)
ds−

−(1− αξ)
1∫

0

(1− s)n−1

(n− 1)!
f∗(s)ds

]
for some f∗ ∈ SF,x∗ .

Finally, we discuss a priori bounds on solutions. Let x be a solution of (1.1). Then
there exists f ∈ L1([0, 1],R) with f ∈ SF,x such that, for t ∈ [0, 1], we have

x(t) =

t∫
0

(t− s)n−1

(n− 1)!
f(s)ds+

+
1
n∆

[
α
(
n− β(1− ηn)

) ξ∫
0

( s∫
0

(s−m)n−1

(n− 1)!
f(m)dm

)
ds+

+αβξn
1∫
η

( s∫
0

(s−m)n−1

(n− 1)!
f(m)dm

)
ds− αξn

1∫
0

(1− s)n−1

(n− 1)!
f(s)ds

]
+

+
tn−1

∆

[
− α

(
1− β(1− η)

) ξ∫
0

( s∫
0

(s−m)n−1

(n− 1)!
f(m)dm

)
ds+

+β(1− αξ)
1∫
η

( s∫
0

(s−m)n−1

(n− 1)!
y(m)dm

)
ds−

−(1− αξ)
1∫

0

(1− s)n−1

(n− 1)!
f(s)ds

]
.
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In view of (H2), for each t ∈ [0, 1], we obtain

|x(t)| ≤
∣∣∣ α
n∆

[
(n− β(1− ηn))− n(1− β(1− η))tn−1

]∣∣∣×
×

ξ∫
0

( s∫
0

(s−m)n−1

(n− 1)!
|f(m)|dm

)
ds+

+
∣∣∣∣ βn∆

[
αξn + n(1− αξ)tn−1

]∣∣∣∣
1∫
η

( s∫
0

(s−m)n−1

(n− 1)!
|f(m)|dm

)
ds+

+
∣∣∣∣ 1
n∆

[
αξn + n(1− αξ)tn−1

]∣∣∣∣
1∫

0

(1− s)n−1

(n− 1)!
|f(s)|ds+

+

t∫
0

(t− s)n−1

(n− 1)!
|f(s)|ds ≤

≤
{ ∣∣∣ α
n∆

[
(n− β(1− ηn))− n(1− β(1− η))tn−1

]∣∣∣ ξn

(n− 1)!
+

+
∣∣∣∣ βn∆

[
α+ n(1− αξ)tn−1

]∣∣∣∣ 1
(n− 1)!

+

+
∣∣∣∣ 1
n∆

[
αξn + n(1− αξ)tn−1

]∣∣∣∣ 1
(n− 1)!

+
1

(n− 1)!

} 1∫
0

|f(s)|ds ≤

≤ 1
(n− 1)!

(
1 +

δ1 + δ2
|∆|

)
ψ(‖x‖∞)

1∫
0

p(s)ds.

Consequently, we have

‖x‖∞
1

(n− 1)!

(
1 + δ1+δ2

|∆|

)
ψ(‖x‖∞)‖p‖L1

≤ 1.

In view of (H3), there exists M such that ‖x‖∞ 6= M . Let us set

U = {x ∈ C([0, 1],R) : ‖x‖∞ < M + 1}.

Note that the operator Ω : U → P(C([0, 1],R)) is upper semicontinuous and com-
pletely continuous. From the choice of U , there is no x ∈ ∂U such that x ∈ µΩ(x)
for some µ ∈ (0, 1). Consequently, by Lemma 2.6, we deduce that Ω has a fixed point
x ∈ U which is a solution of the problem (1.1). This completes the proof.

As a next result, we study the case when F is not necessarily convex valued. Our
strategy to deal with this problems is based on the nonlinear alternative of Leray
Schauder type together with the selection theorem of Bressan and Colombo [12] for
lower semi-continuous maps with decomposable values.
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Theorem 3.2. Assume that (H2), (H3) and the following conditions hold:

(H4) F : [0, 1]×R→ P(R) is a nonempty compact-valued multivalued map such that:
(a) (t, x) 7−→ F (t, x) is L ⊗ B measurable,
(b) x 7−→ F (t, x) is lower semicontinuous for each t ∈ [0, 1],

(H5) for each σ > 0, there exists ϕσ ∈ L1([0, 1],R+) such that

‖F (t, x)‖=sup{|y| : y ∈ F (t, x)} ≤ ϕσ(t) for all ‖x‖∞ ≤ σ and for a.e. t∈ [0, 1].

Then the boundary value problem (1.1) has at least one solution on [0, 1].

Proof. It follows from (H4) and (H5) that F is of l.s.c. type. Then from Lemma 2.7,
there exists a continuous function f : C([0, 1],R) → L1([0, 1],R) such that f(x) ∈
F(x) for all x ∈ C([0, 1],R).

Consider the problem

x(n)(t) = f(x(t)), 0 < t < 1,

x(0) = α
ξ∫
0

x(s)ds, x′(0) = 0, x′′(0) = 0, . . . , x(n−2)(0) = 0,

x(1) = β
1∫
η

x(s)ds, 0 < ξ < η < 1.

(3.4)

Observe that if x ∈ C2([0, 1],R) is a solution of (3.4), then x is a solution to the
problem (1.1). In order to transform the problem (3.4) into a fixed point problem, we
define the operator Ω as

Ωx(t) =

t∫
0

(t− s)n−1

(n− 1)!
f(x(s))ds+

+
1
n∆

[
α
(
n− β(1− ηn)

) ξ∫
0

( s∫
0

(s−m)n−1

(n− 1)!
f(x(m))dm

)
ds+

+ αβξn
1∫
η

( s∫
0

(s−m)n−1

(n− 1)!
f(x(m))dm

)
ds− αξn

1∫
0

(1− s)n−1

(n− 1)!
f(x(s))ds

]
+

+
tn−1

∆

[
− α

(
1− β(1− η)

) ξ∫
0

( s∫
0

(s−m)n−1

(n− 1)!
f(x(m))dm

)
ds+

+ β(1− αξ)
1∫
η

( s∫
0

(s−m)n−1

(n− 1)!
f(x(m))dm

)
ds−

− (1− αξ)
1∫

0

(1− s)n−1

(n− 1)!
f(x(s))ds

]
.
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It can easily be shown that Ω is continuous and completely continuous. The re-
maining part of the proof is similar to that of Theorem 3.1, so we omit it. This
completes the proof.

Now we prove the existence of solutions for the problem (1.1) with a nonconvex
valued right hand side by applying a fixed point theorem for a multivalued map due
to Covitz and Nadler [15].

Theorem 3.3. Assume that the following conditions hold:

(H6) F : [0, 1] × R → Pcp(R) is such that F (., x) : [0, 1] → Pcp(R) is measurable for
each x ∈ R,

(H7) Hd(F (t, x), F (t, x̄)) ≤ m(t)|x − x̄| for almost all t ∈ [0, 1] and x, x̄ ∈ R with
m ∈ L1([0, 1],R+) and d(0, F (t, 0)) ≤ m(t) for almost all t ∈ [0, 1].

Then the boundary value problem (1.1) has at least one solution on [0, 1] if

1
(n− 1)!

(
1 +

δ1 + δ2
|∆|

)
‖m‖L1 < 1.

Proof. Observe that the set SF,x is nonempty for each x ∈ C([0, 1],R) by the as-
sumption (H6), so F has a measurable selection (see [13, Theorem III.6]). Now we
show that the operator Ω satisfies the assumptions of Lemma 2.8. To show that
Ω(x) ∈ Pcl((C[0, 1],R)) for each x ∈ C([0, 1],R), let {un}n≥0 ∈ Ω(x) be such that
un → u (n→∞) in C([0, 1],R). Then u ∈ C([0, 1],R) and there exists vn ∈ SF,x such
that, for each t ∈ [0, 1],

un(t) =

t∫
0

(t− s)n−1

(n− 1)!
vn(s)ds+

+
1
n∆

[
α
(
n− β(1− ηn)

) ξ∫
0

( s∫
0

(s−m)n−1

(n− 1)!
vn(m)dm

)
ds+

+αβξn
1∫
η

( s∫
0

(s−m)n−1

(n− 1)!
vn(m)dm

)
ds− αξn

1∫
0

(1− s)n−1

(n− 1)!
vn(s)ds

]
+

+
tn−1

∆

[
− α

(
1− β(1− η)

) ξ∫
0

( s∫
0

(s−m)n−1

(n− 1)!
vn(m)dm

)
ds+

+β(1− αξ)
1∫
η

( s∫
0

(s−m)n−1

(n− 1)!
vn(m)dm

)
ds−

−(1− αξ)
1∫

0

(1− s)n−1

(n− 1)!
vn(s)ds

]
.
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As F has compact values, we pass onto a subsequence to obtain that vn converges
to v in L1([0, 1],R). Thus, v ∈ SF,x and for each t ∈ [0, 1],

un(t)→ u(t) =

t∫
0

(t− s)n−1

(n− 1)!
v(s)ds+

+
1
n∆

[
α
(
n− β(1− ηn)

) ξ∫
0

( s∫
0

(s−m)n−1

(n− 1)!
v(m)dm

)
ds+

+ αβξn
1∫
η

( s∫
0

(s−m)n−1

(n− 1)!
v(m)dm

)
ds− αξn

1∫
0

(1− s)n−1

(n− 1)!
v(s)ds

]
+

+
tn−1

∆

[
− α

(
1− β(1− η)

) ξ∫
0

( s∫
0

(s−m)n−1

(n− 1)!
v(m)dm

)
ds+

+ β(1− αξ)
1∫
η

( s∫
0

(s−m)n−1

(n− 1)!
v(m)dm

)
ds− (1− αξ)

1∫
0

(1− s)n−1

(n− 1)!
v(s)ds

]
.

Hence, u ∈ Ω(x).
Next we show that there exists γ < 1 such that

Hd(Ω(x),Ω(x̄)) ≤ γ‖x− x̄‖∞ for each x, x̄ ∈ C([0, 1],R).

Let x, x̄ ∈ C([0, 1],R) and h1 ∈ Ω(x). Then there exists v1(t) ∈ F (t, x(t)) such that,
for each t ∈ [0, 1],

h1(t) =

t∫
0

(t− s)n−1

(n− 1)!
v1(s)ds

+
1
n∆

[
α
(
n− β(1− ηn)

) ξ∫
0

( s∫
0

(s−m)n−1

(n− 1)!
v1(m)dm

)
ds+

+ αβξn
1∫
η

( s∫
0

(s−m)n−1

(n− 1)!
v1(m)dm

)
ds− αξn

1∫
0

(1− s)n−1

(n− 1)!
v1(s)ds

]
+

+
tn−1

∆

[
− α

(
1− β(1− η)

) ξ∫
0

( s∫
0

(s−m)n−1

(n− 1)!
v1(m)dm

)
ds+

+ β(1− αξ)
1∫
η

( s∫
0

(s−m)n−1

(n− 1)!
v1(m)dm

)
ds− (1− αξ)

1∫
0

(1− s)n−1

(n− 1)!
v1(s)ds

]
.

By (H7), we have

Hd(F (t, x), F (t, x̄)) ≤ m(t)|x(t)− x̄(t)|.
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So, there exists w ∈ F (t, x̄(t)) such that

|v1(t)− w| ≤ m(t)|x(t)− x̄(t)|, t ∈ [0, 1].

Define U : [0, 1]→ P(R) by

U(t) = {w ∈ R : |v1(t)− w| ≤ m(t)|x(t)− x̄(t)|}.

Since the multivalued operator U(t)∩F (t, x̄(t)) is measurable ([13, Proposition III.4]),
there exists a function v2(t) which is a measurable selection for V . So v2(t) ∈ F (t, x̄(t))
and for each t ∈ [0, 1], we have |v1(t)− v2(t)| ≤ m(t)|x(t)− x̄(t)|.

For each t ∈ [0, 1], let us define

h2(t) =

t∫
0

(t− s)n−1

(n− 1)!
v2(s)ds+

+
1
n∆

[
α
(
n− β(1− ηn)

) ξ∫
0

( s∫
0

(s−m)n−1

(n− 1)!
v2(m)dm

)
ds+

+ αβξn
1∫
η

( s∫
0

(s−m)n−1

(n− 1)!
v2(m)dm

)
ds− αξn

1∫
0

(1− s)n−1

(n− 1)!
v2(s)ds

]
+

+
tn−1

∆

[
− α

(
1− β(1− η)

) ξ∫
0

( s∫
0

(s−m)n−1

(n− 1)!
v2(m)dm

)
ds+

+ β(1− αξ)
1∫
η

( s∫
0

(s−m)n−1

(n− 1)!
v2(m)dm

)
ds−

− (1− αξ)
1∫

0

(1− s)n−1

(n− 1)!
v2(s)ds

]
.
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Thus,

|h1(t)− h2(t)| ≤
t∫

0

(t− s)n−1

(n− 1)!
|v1(s)− v2(s)|ds+

+
1
n∆

[
α
(
n− β(1− ηn)

) ξ∫
0

( s∫
0

(s−m)n−1

(n− 1)!
|v1(m)− v2(m)|dm

)
ds+

+ αβξn
1∫
η

( s∫
0

(s−m)n−1

(n− 1)!
|v1(m)− v2(m)|dm

)
ds−

− αξn
1∫

0

(1− s)n−1

(n− 1)!
|v1(s)− v2(s)|ds

]
+

+
tn−1

∆

[
− α

(
1− β(1− η)

) ξ∫
0

( s∫
0

(s−m)n−1

(n− 1)!
|v1(m)− v2(m)|dm

)
ds+

+ β(1− αξ)
1∫
η

( s∫
0

(s−m)n−1

(n− 1)!
|v1(m)− v2(m)|dm

)
ds−

− (1− αξ)
1∫

0

(1− s)n−1

(n− 1)!
|v1(s)− v2(s)|ds

]
≤

≤ 1
(n− 1)!

(
1 +

δ1 + δ2
|∆|

) 1∫
0

m(s)‖x− x‖ds.

Hence,

‖h1 − h2‖∞ ≤
1

(n− 1)!

(
1 +

δ1 + δ2
|∆|

)
‖m‖L1‖x− x‖∞.

Analogously, interchanging the roles of x and x, we obtain

Hd(Ω(x),Ω(x̄)) ≤ γ‖x− x̄‖∞ ≤

≤ 1
(n− 1)!

(
1 +

δ1 + δ2
|∆|

)
‖m‖L1‖x− x‖∞.

Since Ω is a contraction, it follows by Lemma 2.8 that Ω has a fixed point x which is
a solution of (1.1). This completes the proof.
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