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A number of features and applications of subleading-color amplitudes of N = 4 SYM theory are
reviewed. Particular attention is given to the IR divergences of the subleading-color amplitudes,
the relationships of N = 4 SYM theory to N = 8 supergravity, and to geometric interpretations of
one-loop subleading-color and NkMHV amplitudes of N = 4 SYM theory.

1. Introduction

Planar amplitudes of N = 4 SYM theory have been extensively studied by a variety of
methods, see, for example, [1–23]. For a recent overview, see [24] and the special issue of
Journal of Physics A, devoted to “Scattering amplitudes in gauge theories.” Subleading-color
(i.e., nonplanar) amplitudes, however, usually receive less attention [25–33]. Nevertheless
interesting insights are available from various applications of subleading color amplitudes.
One case in point is a possible weak/weak duality between N = 4 SYM theory and N = 8
supergravity [15, 34–46]. Since nonplanar graphs appear on an equal footing with planar
graphs in N = 8 supergravity, one needs to understand the nonplanar graphs in N = 4 SYM
if the weak/weak duality is to be explored.

This paper will cover three significant topics. Section 2 discusses the IR divergences
of various subleading-color amplitudes. In Section 3 the interplay between subleading-
color amplitudes of N = 4 SYM theory and amplitudes of N = 8 supergravity will be
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considered. Section 4 presents various geometric interpretations of one-loop subleading-color
amplitudes, primarily using the tools of momentum twistors and the accompanying polytope
interpretation.

In the remainder of this section, we define the notation for the color decomposition,
the loop expansion, and the 1/N expansion.

At tree level, we can decompose the amplitudes An of N = 4 SYM into color-ordered
tree amplitudes An

Atree
n (12 . . . n) = gn−2

∑

σ∈Sn/Zn

Tr(Taσ(1) . . . Taσ(n) )Atree
n (σ(1) . . . σ(n))

= gn−2
∑

P(23...n)

Tr(Ta1TaP(2) . . . TaP(n) )Atree
n (1P(2) . . . P(n)),

(1.1)

where in the second line, 1 is fixed and P(23 . . . n) is a permutation of 2, 3, . . . , n and Ta are
SU(N) generators in the fundamental representation, normalized according to Tr(TaTb) =
δab. The color-ordered amplitudes An depend on the momenta and polarizations of the
external particles.

The color-ordered amplitudes are not independent. For n-point amplitudes, there is a
basis of (n − 2)! amplitudes out of the total n!, called the Kleiss-Kuijf (KK) basis [47], and we
can find the others easily in terms of it [40]. It is based on the existence of the Kleiss-Kuijf
relations [47]

An

(
1, {α}, n,

{
β
})

= (−1)nβ
∑

{σ}i∈OP({α},{βT})
An(1, {σ}i, n), (1.2)

where σi are ordered permutations, that is, ones that keep the order of {α} and of {βT} inside
σi. Thus the KK basis is An(1,P(2, . . . , n − 1), n), where P are arbitrary permutations. All the
other An’s can be recovered from it by the use of the KK relations and cyclicity and reflection
invariance

An(12 . . . n) = (−1)nAn(n . . . 21). (1.3)

At one loop, we can write a similar expansion in color-ordered amplitudes

A1−loop
n (12 . . . n) = gn

[n/2]+1∑

j=1

∑

σ∈Sn/Sn;j

Grn;j(σ)An;j(σ(1) . . . σ(n)),

Grn;1(1) = N Tr(Ta1 . . . Tan),

Grn;j(1) = Tr(Ta1 . . . Taj−1)Tr(Taj . . . Tan).

(1.4)

However, the subleading piece in the 1/N expansion can be obtained from the leading piece
by

An;j
(
12 . . . , j − 1, j, j + 1, . . . n

)
= (−1)j−1

∑

σ∈COP{α},{β}
An;1(σ), (1.5)
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where COP are cyclically ordered permutations, again keeping the order of {α} and {β} fixed
up to cyclic permutations.

At arbitrary loops, the decomposition of the four-gluon amplitude takes a form with
only single and double traces

A4(1234) = g2
∑

σ∈S4/Z4

Tr(Taσ(1)Taσ(2)Taσ(3)Taσ(4) )NA4;1(σ(1)σ(2)σ(3)σ(4))

+ g2
∑

σ∈S4/Z
3
2

Tr(Taσ(1)Taσ(2) )Tr(Taσ(3)Taσ(4) )A4;3(σ(1)σ(2)σ(3)σ(4)).
(1.6)

We also define an explicit basis [48] of single and double traces:

C[1] = Tr(Ta1Ta2Ta3Ta4), C[4] = Tr(Ta1Ta3Ta2Ta4), C[7] = Tr(Ta1Ta2)Tr(Ta3Ta4),

C[2] = Tr(Ta1Ta2Ta4Ta3), C[5] = Tr(Ta1Ta3Ta4Ta2), C[8] = Tr(Ta1Ta3)Tr(Ta2Ta4),

C[3] = Tr(Ta1Ta4Ta2Ta3), C[6] = Tr(Ta1Ta4Ta3Ta2), C[9] = Tr(Ta1Ta4)Tr(Ta2Ta3),
(1.7)

in terms of which the four-gluon amplitude can be expanded as

A4(1234) = g2
9∑

i=1

A[i]C[i]. (1.8)

The loop expansion of color-ordered amplitudes

A[i] =
∞∑

L=0

aLA
(L)
[i] , NA4;1 =

∞∑

L=0

aLA
(L)
4;1 , A4;3 =

∞∑

L=0

aLA
(L)
4;3 (1.9)

is in terms of the natural ‘t Hooft loop expansion parameter [7]

a ≡
g2N

8π2

(
4πe−γ

)ε
, (1.10)

where γ is Euler’s constant and ε = (4 −D)/2. Note that at L loops, the amplitude is at most
of order NL, which means that A(L)

[i] starts at O(N0).
For a general n-point amplitude, we will have an expansion in an arbitrary number of

multitrace color-ordered amplitudes An;j1,j2,...,jk .
Besides the loop expansion in the ‘t Hooft parameter a, we still have a 1/N expansion

of the amplitudes, which can be understood in ‘t Hooft’s double line notation as an expansion
in the topology of the diagrams. For A4, the expansion in single-trace A4;1 and double-trace
A4;3 amplitudes corresponds to the topology of the outside lines, forming boundaries of the
diagrams. For example, at one-loop, the contribution in A4;1 to the amplitude is leading, that
is, of order N (thus A4;1 of order 1), coming from a diagram with the topology of 4 external
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lines and a boundary, whereas the contribution ofA4;3 is subleading, that is, of orderN0, and
comes from a nonplanar diagram with 4 external lines, but arranged on two boundaries. It
can be obtained by taking two twists of the ‘t Hooft double lines on opposite sides of the box,
or twists on all 4 sides. Thus the multitrace expansion comes as an expansion in the topology
associated with the external lines (number of boundaries for them) and is an expansion in
integer powers of 1/N, corresponding to the number of boundaries of the diagram.

On top of that, we also have an expansion in integer powers of 1/N2, independently
forA4;1 andA4;3, corresponding to nonplanar diagrams with handles (a handle gives a factor
of 1/N2). The expansion terminates at order O(N0) for the amplitude, since in the amplitude
the powers of N can only be positive. Thus at L-loops, we have A(L)

4;1 = O(1) to O(1/NL) and

A
(L)
4;3 = O(1/N) to O(1/NL). Taken together, we will say that the gluon amplitudes have a

1/N expansion.

2. IR Divergences for Subleading N = 4 Four-Gluon Amplitudes

2.1. General Formalism

N = 4 SYM is a UV-finite theory, but IR divergences arise due to the exchange of soft and
collinear gluons. These divergences can be regulated using dimensional regularization inD =
4 − 2ε dimensions, in which they appear as poles in a Laurent expansion in ε.

In gluon-gluon scattering in N = 4 SYM, IR divergences arise both from soft gluons
and from collinear gluons, each of which gives rise to an O(1/ε) pole at one loop, leading
to an O(1/ε2) pole at that order. At L loops, the leading IR divergence of the scattering
amplitude is therefore O(1/ε2L), arising from multiple soft gluon exchanges.

Subleading-color amplitudes A(L,k), that is, those suppressed by 1/Nk relative to the
leading-color amplitude at L loops, have less severe IR divergences, being only of O(1/ε2L−k)
at L-loops.

In this section, we review the derivation of a compact all-loop-order expression for
the IR-divergent part of the N = 4 SYM four-gluon amplitude given in [41, 49]. This
result is expressed in terms of the soft (cusp) anomalous dimension γ(a), the collinear
anomalous dimension G0(a), and the soft anomalous dimension matrices Γ(	) and relies on
the assumption that the soft anomalous dimension matrices are mutually commuting, which
follows if they are all proportional to Γ(1), as has been conjectured in [30, 31, 33, 50]. This
compact expression is then used to obtain the coefficient of the leading IR pole (and some
subleading poles) of all the subleading-color amplitudes. Explicit values for the anomalous
dimensions can be obtained by comparison with various exact results.

We organize the 4-point color-ordered amplitudes A[i] defined in (1.8) into a vector in
color space [25, 26]

|A〉 =
(
A[1], A[2], A[3], A[4], A[5], A[6], A[7], A[8], A[9]

)T
, (2.1)

where (. . . )T denotes the transposed vector. The vector of color-ordered amplitudes factorizes
into [27, 29]

∣∣∣∣A
(
sij

μ2
, a, ε

)〉
= J

(
Q2

μ2
, a, ε

)
S

(
sij

Q2
,
Q2

μ2
, a, ε

)∣∣∣∣∣H
(

sij

Q2
,
Q2

μ2
, a, ε

)〉
, (2.2)
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where |H〉, which is IR-finite as ε → 0, characterizes the short-distance behavior of the
amplitude and where the prefactors J and S encapsulate the long-distance IR-divergent
behavior. The soft function S is written in boldface to denote that it is a matrix acting on
the vector |H〉. Also sij is the kinematic invariant (ki + kj)

2, μ is a renormalization scale, and
Q is an arbitrary factorization scale which serves to separate the long- and short-distance
behavior.

BecauseN = 4 SYM theory is conformally invariant, the product of jet functions J may
be explicitly evaluated as [7]

J

(
Q2

μ2
, a, ε

)
= exp

⎡

⎣−1
2

∞∑

	=1

a	

(
μ2

Q2

)	ε(
γ (	)

(	ε )2
+
2G(	)

0

	ε

)⎤

⎦, (2.3)

where γ (	) and G(	)
0 are the coefficients of the soft (or the Wilson line cusp) and collinear

anomalous dimensions of the gluon, respectively. The explicit values for these anomalous
dimensions may be obtained from the exact expressions for the planar four-gluon amplitude
[7]:

γ(a) =
∞∑

	=1

a	γ (	) = 4a − 4ζ2a2 + 22ζ4a3 + · · · ,

G0(a) =
∞∑

	=1

a	G(	)
0 = −ζ3a2 +

(
4ζ5 +

10
3
ζ2ζ3

)
a3 + · · · .

(2.4)

The soft function S is given by [27, 29]

S

(
sij

Q2
,
Q2

μ2
, a, ε

)
= P exp

[
− 1

2

∫Q2

0

dμ̃2

μ̃2
Γ

(
sij

Q2
, a

(
μ2

μ̃2
, a, ε

))]
, (2.5)

where

Γ
(
sij

Q2
, a

)
=

∞∑

	=1

a	Γ(	), a

(
μ2

μ̃2
, a, ε

)
=

(
μ2

μ̃2

)ε

a, (2.6)

suppressing the explicit dependence of Γ(	) on sij/Q
2 to lighten the notation.

At this point, wemake the assumption that the soft anomalous dimensionmatrices Γ(	)

all commute with one another. (This assumption was also used to simplify the IR divergences
of QCD in [33]. The assumption is certainly valid through two loops, since Γ(2) = (1/4)γ (2)Γ(1),
as shown in [28, 29]. In [32], it was established that Γ(3) = (1/4)γ (3)Γ(1) for the nonpure
gluon contributions. Further, Γ(L) = (1/4)γ (L)Γ(1) has been conjectured to hold to all orders in
[30, 31, 33, 50]. Difficulties may arise at four loops, however, due to the possibility of quartic
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Casimir’s terms [31, 32, 51, 52].) Therefore, the path ordering in (2.5) becomes irrelevant,
allowing us to explicitly integrate it, obtaining

S

(
sij

Q2
,
Q2

μ2
, a, ε

)
= exp

⎡

⎣1
2

∞∑

	=1

a	

(
μ2

Q2

)	ε
Γ(	)

	ε

⎤

⎦. (2.7)

Combining the exponents of the jet and soft functions into [27, 41]

G(	)(ε) =
N	

2

(
μ2

Q2

)ε[
−
(

γ (	)

ε2
+
2G(	)

0

ε

)
1 +

1
ε
Γ(	)
]
, (2.8)

we may express the four-gluon amplitude in the compact form

|A(ε)〉 = exp

[
∞∑

	=1

a	

N	
G(	)(	ε)

]
|H(ε)〉, (2.9)

or equivalently

|H(ε)〉 =
∞∑

L=0

aL
∣∣∣H(Lf)(ε)

〉
=

(
1 −

∞∑

	=1

a	

N	
F(	)(ε)

)
|A(ε)〉. (2.10)

where the matrices F(	)(ε) will be defined below. (Henceforth we suppress sij , Q, μ, and a
in the arguments of the amplitudes.) Expanding (2.10) through three loops, we obtain the
expressions given in [27, 41]

∣∣∣A(1)(ε)
〉
=

1
N

F(1)(ε)
∣∣∣A(0)

〉
+
∣∣∣H(1f)(ε)

〉
,

∣∣∣A(2)(ε)
〉
=

1
N2

F(2)(ε)
∣∣∣A(0)

〉
+

1
N

F(1)(ε)
∣∣∣A(1)(ε)

〉
+
∣∣∣H(2f)(ε)

〉
,

∣∣∣A(3)(ε)
〉
=

1
N3

F(3)(ε)
∣∣∣A(0)

〉
+

1
N2

F(2)(ε)
∣∣∣A(1)

〉
+

1
N

F(1)(ε)
∣∣∣A(2)(ε)

〉
+
∣∣∣H(3f)(ε)

〉
,

(2.11)

which will be useful in extracting the IR-divergent terms of leading- and subleading-color
amplitudes in the following section. (Note that, because of the presence of poles in F(ε), we
will need to know positive powers of ε in the expansion of lower loop amplitudes to obtain
all the IR-divergent contributions to the L-loop amplitude A(	).)

The equivalence of (2.9) and (2.10) follows if the matrices F(	)(ε) are defined through
the equation

(
1 −

∞∑

	=1

a	

N	
F(	)(ε)

)
exp

[
∞∑

	=1

a	

N	
G(	)(	ε)

]
= 1. (2.12)
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First define the functional X[M] via [7]

1 +
∞∑

	=1

a	M(	) ≡ exp

[
∞∑

	=1

a	
(
M(	) −X(	)[M]

)]
(2.13)

so that X(1)[M] = 0, X(2)[M] = (1/2)[M(1)]
2
, X(3)[M] = −(1/3)[M(1)]

3
+ M(1)M(2), and

so forth. This functional was defined for scalar functions M(	), but we can also use it for
commuting matrices. We have assumed that Γ(	) and thereforeG(	) are mutually commuting,
and thus so are F(	), as a result of (2.12). Thus

(
1 −

∞∑

	=1

a	

N	
F(	)(ε)

)
= exp

[
∞∑

L=0

a	

N	

(
−F(	)(ε) −X(	)[−F]

)]
, (2.14)

and so (2.12) is equivalent to

F(	)(ε) = −X(	)[−F] +G(	)(	ε) (2.15)

which defines F(	) recursively in terms of G(	) and F(	
′) with 	′ < 	. The explicit expressions

up through three loops

F(1)(ε) = G(1)(ε),

F(2)(ε) = −1
2

[
F(1)(ε)

]2
+G(2)(2ε),

F(3)(ε) = −1
3

[
F(1)(ε)

]3
− F(1)(ε)F(2)(ε) +G(3)(3ε).

(2.16)

agree (up to rescaling by a factor ofNL)with the expressions given in [27]when specialized
to the case of gg → gg inN = 4 SYM theory.

2.2. 1/N Expansion of IR Divergences

In this subsection, we will use the results of the previous subsection to expand the IR-
divergent contributions of the four-gluon amplitude in powers of 1/N.

The L-loop color-ordered amplitudes may be written in a 1/N expansion as

∣∣∣A(L)(ε)
〉
=

L∑

k=0

1
Nk

∣∣∣A(L,k)(ε)
〉
, (2.17)

where |A(L,0)〉 are the leading-color amplitudes, arising from planar diagrams and |A(L,k)〉,
1 ≤ k ≤ L, are the subleading-color amplitudes, which include contributions from nonplanar
diagrams as well. The single-trace amplitudes (i = 1, . . . , 6) only contain even powers of 1/N
(relative to the leading-color amplitude), while the double-trace amplitudes (i = 7, . . . , 9) only
contain odd powers of 1/N.



8 Advances in High Energy Physics

We begin by expanding (2.9):

|A(ε)〉 =
∞∑

L=0

L∑

k=0

aL

Nk

∣∣∣A(L,k)(ε)
〉
=

∞∏

	=1

∑

{n	}

1
n	 !

(
a	G

(	)(	ε)
N	

)n	 ∞∑

	0=0

	0∑

k0=0

a	0

Nk0

∣∣∣H(	0,k0)(ε)
〉
.

(2.18)

In the derivation of (2.18), we assumed that the soft-anomalous dimension matrices
are mutually commuting. We now assume further that the higher-loop soft-anomalous
dimension matrices are all proportional to the one-loop soft-anomalous dimension matrix

Γ(	) =
γ (	)

4
Γ(1)

(
assumption

) (2.19)

as has been conjectured (see footnote 1). This allows us to rewrite (2.8) as

G(	)(	ε)
N	

=
1
2

(
μ2

Q2

)	ε[
−
(

γ (	)

(	ε)2
+
2G(	)

0

	ε

)
1 +

γ (	)

4	ε
Γ(1)
]
. (2.20)

The one-loop soft anomalous dimension matrix can be written [29]:

Γ(1) = − 1
N

4∑

i=1

4∑

j /= i

Ti · Tj log
(−sij

Q2

)
, (2.21)

where Ti ·Tj = Ta
i T

a
j with Ta

i the SU(N) generators in the adjoint representation. On the basis
of (1.7), it has the explicit form [48],

Γ(1) = 2

(
α 0

0 δ

)
+

2
N

(
0 β

γ 0

)
, (2.22)

where

α =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S +T 0 0 0 0 0

0 S +U 0 0 0 0

0 0 T +U 0 0 0

0 0 0 T +U 0 0

0 0 0 0 S +U 0

0 0 0 0 0 S +T

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, β =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

T − U 0 S − U
U − T S − T 0

0 T − S U − S
0 T − S U − S

U − T S − T 0

T − U 0 S − U

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

γ =

⎛
⎜⎜⎝

S − U S − T 0 0 S − T S − U
0 U − T U − S U − S U − T 0

T − U 0 T − S T − S 0 T − U

⎞
⎟⎟⎠, δ =

⎛
⎜⎜⎝

2S 0 0

0 2U 0

0 0 2T

⎞
⎟⎟⎠

(2.23)
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with

S = log
(
− s

Q2

)
, T = log

(
− t

Q2

)
, U = log

(
− u

Q2

)
. (2.24)

If the assumption (2.19) is valid, then the 1/N expansion ofG(	)(	ε)/N	 terminates after two
terms

G(	)(	ε)
N	

= g	 +
1
N

f	, (2.25)

where g	 and f	 can be read from (2.20) and (2.22). We rewrite (2.18) as

|A(ε)〉 =
∞∑

L=0

L∑

k=0

aL

Nk

∣∣∣A(L,k)(ε)
〉
=

∞∏

	=1

∑

{n	}

1
n	 !

(
a	g	 +

a	

N
f	

)n	 ∞∑

	0=0

	0∑

k0=0

a	0

Nk0

∣∣∣H(	0,k0)(ε)
〉

(2.26)

making all N dependence explicit.
We now determine the power of the leading IR pole of |A(L,k)(ε)〉. Consider an

individual term on the right-hand side of (2.26). By counting powers of a and 1/N, one
sees that this term contributes to |A(L,k)(ε)〉, with

L = 	0 +
∞∑

	=1

	n	, k = k0 + k1, (2.27)

where k1 is the number of factors f	 present in the term. From (2.20) and (2.22), it is apparent
that g	 has a double pole in ε, but f	 only has a single pole. The leading IR pole in the term
under consideration is therefore 1/εp, where

p = 2
∞∑

	=1

n	 − k1. (2.28)

Combining (2.27) and (2.28), we find

p = 2L − k −
[
2

∞∑

	=1

(	 − 1)n	 + 2	0 − k0

]
. (2.29)

Since k0 ≤ 	0, the term in square brackets is nonnegative, and we conclude that

∣∣∣A(L,k)(ε)
〉
∼ O
(

1
ε2L−k

)
. (2.30)

This behavior was previously conjectured in [41] and shown in [49] (subject to the as-
sumptions stated above).
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Next we review the derivation [41, 49] of the coefficient of the leading IR pole of
|A(L,k)(ε)〉. Terms in (2.26) contribute to the leading IR pole only when the expression in
square brackets in (2.29) vanishes, which occurs when n	 = 0 for 	 ≥ 2, and 	0 = k0 = 0 (with
n1 unconstrained). In other words, the leading IR divergences are given by [41, 49]

|A(ε)〉 ∼ exp

[
a
G(1)(ε)

N

]∣∣∣A(0)
〉 (

leading IR divergence
)
. (2.31)

Recalling that

G(1)(ε)
N

=

(
μ2

Q2

)ε[
− 2
ε2

1 +
1
ε

(
α 0

0 δ

)
+

1
Nε

(
0 β

γ 0

)]
, (2.32)

we use (2.31) to obtain the coefficient of the leading IR pole

∣∣∣A(L,k)(ε)
〉
=

(−2)L−k

k!(L − k)!
1

ε2L−k

(
0 β

γ 0

)k∣∣∣A(0)
〉
+O
(

1
ε2L−k−1

)
, (2.33)

where the tree-level amplitudes are

∣∣∣H(0,0)
〉
=
∣∣∣A(0)

〉
= −4iK

stu
(u, t, s, s, t, u, 0, 0, 0)T , (2.34)

where s = (k1 + k2)
2, t = (k1 + k4)

2 and u = (k1 + k3)
2 are the usual Mandelstam variables,

obeying s + t + u = 0 for massless external gluons. The factor K, defined in (7.4.42) of [53],
depends on the momenta and helicity of the external gluons and is totally symmetric under
permutations of the external legs.

The leading IR pole of the planar amplitude is simply

∣∣∣A(L,0)(ε)
〉
=

(−2)L

L!ε2L

∣∣∣A(0)
〉
+O
(

1
ε2L−1

)
. (2.35)

The remaining IR divergences, from O(1/ε2L−1) to O(1/ε), are all proportional to |A(0)〉 and
are given by the (generalized) ABDK equation [7] (see Appendix A of [49]).

We now write an explicit expression for the coefficients of the leading IR poles of
subleading-color amplitudes. First we use (2.34) and (2.23) to show

γ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u

t

s

s

t

u

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 2(sY − tX)

⎛
⎜⎜⎝

1

1

1

⎞
⎟⎟⎠, γβ

⎛
⎜⎜⎝

1

1

1

⎞
⎟⎟⎠ = 2

(
X2 + Y 2 + Z2

)
⎛
⎜⎜⎝

1

1

1

⎞
⎟⎟⎠ (2.36)
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with

X = log
(

t

u

)
, Y = log

(
u

s

)
, Z = log

(s
t

)
. (2.37)

Hence, the leading IR divergence of the subleading-color amplitudes is given by

∣∣∣A(L,2m+1)(ε)
〉
=
(−4iK

stu

) (−1)L−12L−m
(
X2 + Y 2 + Z2)m(sY − tX)

(2m + 1)!(L − 2m − 1)!ε2L−2m−1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

0

0

0

1

1

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+O
(

1
ε2L−2m−2

)
,

(2.38)

∣∣∣A(L,2m+2)(ε)
〉
=
(−4iK

stu

) (−1)L2L−m−1(X2 + Y 2 + Z2)m(sY − tX)
(2m + 2)!(L − 2m − 2)!ε2L−2m−2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X − Y

Z −X

Y − Z

Y − Z

Z −X

X − Y

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+O
(

1
ε2L−2m−3

)
.

(2.39)

The results (2.38) and (2.39) were derived in [49], generalizing expressions derived in [41].

2.3. IR Divergences of A(L,1)

In this subsection, we consider the subleading-color amplitude |A(L,1)〉 and derive the first
three terms in the Laurent expansion. (It is straightforward to obtain further terms in the
Laurent expansion as needed.) Consider all terms in (2.26) for which the expression in square
brackets in (2.29) is ≤2:

∣∣∣A(L)(ε)
〉
=

1
L!

(
g1 +

1
N

f1

)L∣∣∣A(0)
〉
+

1
N(L − 1)!

(
g1 +

1
N

f1

)L−1∣∣∣H(1,1)(ε)
〉
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+
1

(L − 2)!

(
g1 +

1
N

f1

)L−2(
g2 +

1
N

f2

)∣∣∣A(0)
〉
+

1
(L − 1)!

(
g1 +

1
N

f1

)L−1∣∣∣H(1,0)(ε)
〉

+
1

N2(L − 2)!

(
g1 +

1
N

f1

)L−2∣∣∣H(2,2)(ε)
〉
+ · · ·

(
three leading IR poles

)
,

(2.40)

where we use (2.20) and (2.22) to write

g1 =

(
μ2

Q2

)ε[
− 2
ε2

1 +
1
ε

(
α 0

0 δ

)]
, f1 =

1
ε

(
μ2

Q2

)ε(0 β

γ 0

)
,

g2 =

(
μ2

Q2

)2ε[
−
(

γ (2)

8ε2
+
G(2)
0

2ε

)
1 +

γ (2)

8ε

(
α 0

0 δ

)]
, f2 =

γ (2)

8ε

(
μ2

Q2

)2ε(0 β

γ 0

)
.

(2.41)

To extract the |A(L,1)〉 amplitude, we employ the identity

(
g1 +

1
N

f1

)L
∣∣∣∣∣
1/N piece

= LgL−1
1 f1 +

(
L

2

)
gL−2
1

[
f1, g1

]
+

(
L

3

)
gL−3
1

[[
f1, g1

]
, g1
]
+
[
· · ·
[[[

f1, g1
]
, g1
]
, g1
]
· · ·
]
,

(2.42)

in which the first term on the right-hand side has an expansion that starts with 1/ε2L−1, the
second term has an expansion that starts with 1/ε2L−2, and so forth. Thus, keeping only the
terms proportional to 1/N in (2.40), and only the first three terms in the Laurent expansion,
we obtain

∣∣∣A(L,1)
〉
=

1
(L − 1)!

gL−1
1 f1

∣∣∣A(0)
〉
+

1
2(L − 2)!

gL−2
1

[
f1, g1

]∣∣∣A(0)
〉
+

1
(L − 1)!

gL−1
1

∣∣∣H(1,1)(ε)
〉

+
1

6(L − 3)!
gL−3
1

[[
f1, g1

]
, g1
]∣∣∣A(0)

〉
+

1
(L − 2)!

gL−2
1 f2

∣∣∣A(0)
〉
+

1
(L − 3)!

gL−3
1 f1g2

∣∣∣A(0)
〉

+
1

(L − 2)!
gL−2
1 f1

∣∣∣H(1,0)(ε)
〉
+O
(

1
ε2L−4

)
,

(2.43)

as obtained in [49].

2.4. IR Divergences of A(L,L)

In this subsection, we derive an expression for the coefficient of the IR divergences of the first
two terms in the Laurent expansion of the most subleading-color amplitude |A(L,L)〉.
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The only terms in (2.26) that contribute to |A(L,L)〉 are those with as many factors of
1/N as of a. Thus, only f1 and |H(	0,	0)〉 can contribute, giving

∣∣∣A(L,L)(ε)
〉
=

L∑

	0=0

1
(L − 	0)!

fL−	0
1

∣∣∣H(	0,	0)(ε)
〉
, where f1 =

1
ε

(
μ2

Q2

)ε(0 β

γ 0

)
(2.44)

exact to all orders in the ε expansion. Keeping just the first two terms in the Laurent
expansion, we find

∣∣∣A(L,L)(ε)
〉
=

1
(L − 1)!

fL−1
1

[
1
L
f1
∣∣∣A(0)

〉
+
∣∣∣H(1,1)(ε)

〉]
+O
(

1
εL−2

)

=
1

(L − 1)!
1

εL−1

(
0 β

γ 0

)L−1∣∣∣A(1,1)(Lε)
〉
+O
(

1
εL−2

)
.

(2.45)

This was derived in [49] and confirms the conjecture made in (4.45) and (4.46) of [41].

2.5. Exact Expressions at One and Two Loops

N = 4 SYM scattering amplitudes may be expressed in terms of planar and nonplanar scalar
loop integrals. The two-loop four-gluon scattering amplitude was first computed by Bern et
al. [54] (see also [36]). Explicit expressions for these IR-divergent integrals as the Laurent
expansions in ε were later obtained by Smirnov in the planar case [55] and by Tausk in the
nonplanar case [56]. In this subsection, we review these results and some formulas for the
1/N expansion of these divergences.

Recall from (2.17) that A(L,k)
[i] denotes the L-loop color-ordered amplitude which is

subleading by a factor of 1/Nk in the 1/N expansion. Single-trace amplitudes are denoted
by i = 1, . . . , 6 and double-trace amplitudes by i = 7, . . . , 9 (see (1.7)).

At one loop, the single-trace amplitudes are given by [34]

A
(1,0)
[1] = M(1)(s, t)A(0)

[1] = 2iKI
(1)
4 (s, t) (2.46)

with the other single-trace amplitudes A(1,0)
[2] and A

(1,0)
[3] obtained by letting t ↔ u, and s ↔ u,

respectively. The identities A(L)
[1] = A

(L)
[6] , A

(L)
[2] = A

(L)
[5] , and A

(L)
[3] = A

(L)
[4] are satisfied at all loop

orders. In (2.46), I(1)4 (s, t) denotes the scalar box integral

M(1)(s, t) = −1
2
stI

(1)
4 (s, t),

I
(1)
4 (s, t) = I

(1)
4 (t, s) = −iμ2εeεγπ−D/2

∫
dDp

p2
(
p − k1

)2(
p − k1 − k2

)2(
p + k4

)2 ,
(2.47)

an explicit expression for which is given, for example, in [7].
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The one-loop double-trace amplitudes are given by [34]

A
(1,1)
[7] = A

(1,1)
[8] = A

(1,1)
[9] = 2

(
A

(1,0)
[1] +A

(1,0)
[2] +A

(1,0)
[3]

)
(2.48)

= 4iK
[
I
(1)
4 (s, t) + I

(1)
4 (t, u) + I

(1)
4 (u, s)

]
. (2.49)

Relation (2.48) follows from the one-loop U(1) decoupling identity [57].
At two loops, the leading-color single-trace amplitude is given by [54]

A
(2,0)
[1] = M(2)(s, t)A(0)

[1] = −iK
[
sI

(2)P
4 (s, t) + tI

(2)P
4 (t, s)

]
, (2.50)

where I(2)P4 (s, t) denotes the scalar double-box (planar) integral

M(2)(s, t) =
1
4
st
[
sI

(2)P
4 (s, t) + tI

(2)P
4 (t, s)

]
,

I
(2)P
4 (s, t) =

(
−iμ2εeεγπ−D/2

)2 ∫ dDpdDq

p2
(
p + q
)2
q2
(
p − k1

)2(
p − k1 − k2

)2(
q − k4

)2(
q − k3 − k4

)2 ,

(2.51)

an explicit expression for which is given, for example, in [7]. The double-trace amplitude is
[54]

A
(2,1)
[7] = −2iK

[
s
(
3I(2)P4 (s, t) + 2I(2)NP

4 (s, t) + 3I(2)P4 (s, u) + 2I(2)NP
4 (s, u)

)

−t
(
I
(2)NP
4 (t, s) + I

(2)NP
4 (t, u)

)
− u
(
I
(2)NP
4 (u, s) + I

(2)NP
4 (u, t)

)]
,

(2.52)

and the subleading-color single-trace amplitude is [54]

A
(2,2)
[1] = −2iK

[
s
(
I
(2)P
4 (s, t) + I

(2)NP
4 (s, t) + I

(2)P
4 (s, u) + I

(2)NP
4 (s, u)

)

+ t
(
I
(2)P
4 (t, s) + I

(2)NP
4 (t, s) + I

(2)P
4 (t, u) + I

(2)NP
4 (t, u)

)

−2u
(
I
(2)P
4 (u, s) + I

(2)NP
4 (u, s) + I

(2)P
4 (u, t) + I

(2)NP
4 (u, t)

)]
,

(2.53)

where I(2)NP
4 (s, t) denotes the two-loop nonplanar integral

I
(2)NP
4 (s, t) =

(
−iμ2εeεγπ−D/2

)2 ∫ dDpdDq

p2
(
p + q
)2
q2
(
p − k2

)2(
p + q + k1

)2(
q − k3

)2(
q − k3 − k4

)2 ,

(2.54)
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an explicit expression for which is given in [56]. All the other single- and double-trace
amplitudes A(2,k)

[i] are obtained by making the appropriate permutations of s, t, and u in these
expressions.

It is well known [7] that planar amplitudes have the property of uniform transcenden-
tality. It is less obvious but nevertheless true [41] that subleading-color N = 4 amplitudes
at one and two loops (and presumably beyond) also have uniform transcendentality. What
makes this surprising is that the nonplanar integral I(2)NP

4 (s, t) that contributes to A(2,1) and
A(2,2) does not have uniform transcendentality [39, 58]. The subleading transcendentality
parts, however, cancel out in the expressions (2.52) and (2.53). (The same thing happens for
the two-loop four-point amplitude of N = 8 supergravity [39, 58].)

The two-loop amplitudes obey the following group theory relations [59]:

A
(2,1)
[7] = 2

(
A

(2,0)
[1] +A

(2,0)
[2] +A

(2,0)
[3]

)
−A

(2,2)
[3] ,

A
(2,1)
[8] = 2

(
A

(2,0)
[1] +A

(2,0)
[2] +A

(2,0)
[3]

)
−A

(2,2)
[1] ,

A
(2,1)
[9] = 2

(
A

(2,0)
[1] +A

(2,0)
[2] +A

(2,0)
[3]

)
−A

(2,2)
[2]

(2.55)

and may be easily verified using (2.50), (2.52), and (2.53). In addition, we have

A
(2,2)
[1] +A

(2,2)
[2] +A

(2,2)
[3] = 0, (2.56)

also easily verified using (2.53). Together these equations imply

6
3∑

i=1

A
(2,0)
[i] −

9∑

i=7

A
(2,1)
[i] = 0 (2.57)

which is the two-loop generalization of the U(1) decoupling relation (2.48). Both (2.56) and
(2.57) are encapsulated in the equation

6
3∑

i=1

A
(L)
[i] −N

9∑

i=7

A
(L)
[i] = 0, L ≤ 2, (2.58)

which is valid through two loops.
At one loop, we also saw that one can relate all the subleading-color amplitudes An;j

to the leading amplitude An;1 via the group theory relation (1.5).
We now list some explicit formulas for the IR-divergent pieces of one- and two-loop

amplitudes that will be of use in the following section. At one loop, the leading 4-point
amplitude is given by (2.46)with

M(1)(s, t) = − 1
ε2

(
μ2

−s

)ε

− 1
ε2

(
μ2

−t

)ε

+
1
2
log2
(s
t

)
+
2π2

3
+O(ε), (2.59)
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while the exact relation (2.48) can be used to write both the IR-divergent and IR-finite con-
tributions to the double-trace subleading-color amplitude

∣∣∣A(1,1)(ε)
〉
=
(−8iK

stu

)[(
μ2

−u

)ε
(sY − tX)

ε
− (s + t)XY

]
⎛
⎜⎜⎝

1

1

1

⎞
⎟⎟⎠ +O(ε), (2.60)

where we have only included the [7–9] components of A(1,1)
[i] as the others vanish.

At two loops, the planar amplitude is given by (2.50) with [60]

M(2)(ε) =
1
2

[
M(1)(ε)

]2
−
(
ζ2 + εζ3 + ε2ζ4

)
M(1)(2ε) − π4

72
+O(ε). (2.61)

The two-loop double trace amplitude has an IR divergence given by the general formula
(2.38), which yields

∣∣∣A(2,1)(ε)
〉
=
(−8iK

stu

)
(−2)(sY − tX)

ε3

⎛
⎜⎜⎝

1

1

1

⎞
⎟⎟⎠ +O

(
1
ε2

)
. (2.62)

Finally, the subleading-color single-trace amplitude is given by (2.45)which in this case yields

∣∣∣A(2,2)(ε)
〉
=

1
ε

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X − Y

Z −X

Y − Z

Y − Z

Z −X

X − Y

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

A
(1,1)
[7] (2ε) +O

(
ε0
)
. (2.63)

Only the [1] through [6] components are listed, as the [7] through [9] components vanish.

3. Subleading-Color Amplitudes of N = 4 SYM and
Amplitudes of N = 8 Supergravity

The AdS5/CFT4 correspondence provides a strong/weak duality between N = 4 SYM and
N = 8 supergravity. These relationships have been extensively explored and exploited.
There are also numerous indications of a weak/weak duality between the two theories,
although this latter possibility is much less developed. Nevertheless this may be a very
fruitful approach in attempts to understand relationships between the two theories. A lot
of work has been done to relate the perturbation expansions of these two theories [15, 34–
38, 41–46, 61, 62]. Part of this program is the extension of the tree-level KLT theories, but
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many relations have been found at loop level as well. Since this work is extensive, we will
not attempt to review it all here. Since nonplanar graphs appear on an equal footing with
planar graphs in N = 8 supergravity, it seems important to understand nonplanar graphs in
N = 4 SYM if a weak-weak duality is to be explored. This is the focus of this section.

We will review the known exact relations between the 4-point functions of subleading
N = 4 SYM and those ofN = 8 supergravity, at one and two loops. For more than two loops,
the known relation for n = 4 is for the leading IR singularity only. One application of these
ideas for n = 5 at one loop is a new form of (tree level) KLT relations. Others are possible
relations between N = 4 subleading-color amplitudes andN = 8 sugra for n ≥ 5.

3.1. One and Two-Loop Relations

In this subsection, we demonstrate the existence of some exact relations between N = 4
SYM amplitudes and N = 8 supergravity amplitudes at the one- and two-loop levels. The
L-loop N-independent SYM amplitude A(L,L) may be expected to be related to the L-loop
supergravity amplitude, as both have O(1/εL) leading IR divergences. Other subleading-
color SYM amplitudes A(L,k) have O(1/ε2L−k) leading IR divergences and consequently
satisfy relations involving lower-loop supergravity amplitudes. The normalization of
A

(L,2m+1)
SYM (s, t) is arbitrary. We have chosen one that is most natural in the context of the

SYM/supergravity relations presented in this subsection.
In this section we use the notation

A
(L,2m)
SYM (s, t) = aLA

(L,2m)
[1] , A

(L,2m+1)
SYM (s, t) = − aL

√
2
A

(L,2m+1)
[8] , (3.1)

noting that the other componentsA(L,k)
[i] are obtained by permutations of s, t, and u. However,

we omit the argument (s, t) for functions that are completely symmetric under permutations
of s, t, and u.

Factor out the tree amplitude to define

M
(L,k)
SYM (s, t) =

A
(L,k)
SYM (s, t)

A
(0)
SYM(s, t)

, (3.2)

so that the coupling constant aL is now included in the definition of M(L,k)
SYM (s, t), and where.

A
(0)
SYM(s, t) = −4iK

st
. (3.3)

In what follows we denote Atree
SYM(ij . . . k) = A(ij . . . k) (see also (2.34)). Recall that the

one-loop N-independent SYM four-gluon amplitude is given by (2.47), obtaining

A
(1,1)
SYM = −2

√
2iK

[
g2N

8π2

(
4πe−γ

)ε
][

I
(1)
4 (s, t) + I

(1)
4 (t, u) + I

(1)
4 (u, s)

]
. (3.4)
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The one-loop supergravity four-graviton amplitude may be expressed as [34, 36]

A
(1)
SG = 8iK2

[
(κ/2)2

8π2

(
4πe−γ

)ε
][

I
(1)
4 (s, t) + I

(1)
4 (t, u) + I

(1)
4 (u, s)

]
. (3.5)

after stripping off a factor of (κ/2)2 for a four-point amplitude. The supergravity amplitude is
proportional toK2 rather thanK due to the KLT relations [63] (a manifestation of the relation
“closed string = (open string)2”). This factor is also present in the tree-level supergravity
amplitude, so we can factor it out as follows:

A
(1)
SG = A

(0)
SGM

(1)
SG =

(
16iK2

stu

)
M

(1)
SG. (3.6)

Defining λSYM = g2N and λSG = (κ/2)2, one observes that the one-loop SYM and supergravity
amplitudes are related by

M
(1,1)
SYM(s, t) =

√
2
λSYM
λSGu

M
(1)
SG. (3.7)

In other words, the ratio of the one-loop subleading-color SYM and the one-loop supergravity
amplitudes (after factoring out the tree amplitudes) is simply proportional to the ratio
of coupling constants, where we encounter the effective dimensionless coupling λSGu for
supergravity because λSG is dimensionful.

Finally, rewrite (3.7) in the manifestly permutation-symmetric form

1
3

[
(λSGu)M

(1,1)
SYM(s, t) + c.p.

]
=
√
2λSYMM

(1)
SG, (3.8)

(where c.p. denotes cyclic permutations of s, t, and u) even though uM
(1,1)
SYM(s, t) is already

symmetric under permutations. A similar symmetrized relation can be written for the one-
loop leading-color amplitude

(λSGu)M
(1,0)
SYM(s, t) + c.p. = −λSYMM(1)

SG
(3.9)

obtained from the one-loop decoupling relation (2.48) together with (3.7).
Now turn to two loops. There are some relations between SYM and supergravity

amplitudes that hold only for the IR-divergent terms. The easiest case to analyze is the two-
loop N-independent SYM amplitude A(2,2)

SYM(s, t), since, from (2.63),

A
(2,2)
SYM(s, t) = −

√
2a

X − Y

ε
A

(1,1)
SYM(2ε) +O

(
ε0
)
. (3.10)
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This can be rewritten as

M
(2,2)
SYM(s, t) = −2a λSYM

λSGu

(
X − Y

ε

)
M

(1)
SG(2ε) +O

(
ε0
)
, (3.11)

where X = log(t/u), Y = log(u/s), Z = log(s/t), as in (2.37), thus obtaining a relation to the
one-loop supergravity amplitude.

Using the relation M
(2)
SG(ε) = (1/2)[M(1)

SG(ε)]
2 + O(ε0) between the one- and two-loop

supergravity amplitudes [41, 58, 64, 65], we can write this as

1
3

[
(λSGu)

2M
(2,2)
SYM(s, t) + c.p.

]
= 2λ2SYMM

(2)
SG, (3.12)

where this relation is exact (!), as may be easily verified by using the exact expression for the
N-independent SYM amplitude [54] and from (2.53)

M
(2,2)
SYM(s, t) =

a2st

2

[
s
(
I
(2)P
4 (s, t) + I

(2)NP
4 (s, t) + I

(2)P
4 (s, u) + I

(2)NP
4 (s, u)

)

+ t
(
I
(2)P
4 (t, s) + I

(2)NP
4 (t, s) + I

(2)P
4 (t, u) + I

(2)NP
4 (t, u)

)

−2u
(
I
(2)P
4 (u, s) + I

(2)NP
4 (u, s) + I

(2)P
4 (u, t) + I

(2)NP
4 (u, t)

)]

(3.13)

and that for the two-loop supergravity amplitude [36]

M
(2)
SG = −s

3tu

4

[
(κ/2)2

8π2

(
4πe−γ

)ε
]2[

I
(2)P
4 (s, t) + I

(2)NP
4 (s, t) + I

(2)P
4 (s, u) + I

(2)NP
4 (s, u)

]
+ c.p.,

(3.14)

where I(2)P4 and I
(2)NP
4 are the two-loop planar and nonplanar 4-point functions.

Now consider the two-loop subleading-color amplitude M
(2,1)
SYM. The two-loop decou-

pling relation (2.57) can be rewritten as

−
√
2
[
uM

(2,1)
SYM(s, t) + c.p.

]
= 6
[
uM

(2,0)
SYM(s, t) + c.p.

]
. (3.15)

Using the ABDK relation [60]

M
(2,0)
SYM(ε) =

1
2

[
M

(1,0)
SYM(ε)

]2
+ af (2)(ε)M(1,0)

SYM(2ε) +O(ε), f (2)(ε) = −
(
ζ2 + εζ3 + ε2ζ4

)
,

(3.16)
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together with (3.9), we can rewrite (3.15) as

1
3

[
(λSGu)M

(2,1)
SYM(s, t) + c.p.

]
+

1√
2

{
(λSGu)

[
M

(1,0)
SYM(s, t)

]2
+ c.p.

}

=
√
2
λ2SYM
8π2

(
4πe−γ

)ε
f (2)(ε)M(1)

SG(2ε) +O(ε).

(3.17)

Unlike (3.12), however, (3.17) only holds through O(ε0), which relates to the one-loop
supergravity amplitude rather than the two-loop one.

Note that (3.8) and (3.12) can be written as

1
3

[
(λSGu)

LM
(L,L)
SYM (s, t) + c.p.

]
=
(√

2λSYM
)L

M
(L)
SG

(3.18)

for L = 0, 1, and 2. Can this relation be valid at higher loops? It turns out not to be the case,
but we can still find some relations valid for L ≥ 3.

3.2. Three or More Loops

On the supergravity side, there is an exact exponentiation formula [64, 65], which implies

M
(L)
SG =

1
L!

[
M

(1)
SG

]L
+O
(

1
εL−2

)
=

1
L!

[−λSG(sY − tX)
8π2ε

]L
+O
(

1
εL−1

)
. (3.19)

Since the leading IR divergences of A(L,L) is O(1/εL), one can show that the following
relations hold:

[
λ2SG

s2 + t2 + u2

3

]k
1
3

[
(λSGu)M

(2k+1,2k+1)
SYM (s, t; ε) + c.p.

]

= λ2k+1SYM
22k+1/2

(2k + 1)!

[
M

(2)
SG(ε) +

1
6

(
λSG
8π2

)2(sX + tY + uZ

ε

)2
]k

M
(1)
SG(ε) +O

(
1
ε2k

)
,

(3.20)

for L = 2k + 1

[
λ2SG

s2 + t2 + u2

3

]k
1
3

[
(λSGu)

2M
(2k+2,2k+2)
SYM (s, t; ε) + c.p.

]

= λ2k+2SYM
22k+2

(2k + 2)!

[
M

(2)
SG(ε) +

1
6

(
λSG
8π2

)2(sX + tY + uZ

ε

)2
]k

M
(2)
SG(ε) +O

(
1

ε2k+1

)
(3.21)

for L = 2k + 2 (where k = 0, 1, 2, . . .).
That is, we have an exact relation at L-loops for the leading IR divergence ∼ O(1/εL),

with an untested relation for the subleading divergence of O(1/εL−1); see also (2.45).
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An interesting fact is that either (3.18) or (3.20) and (3.21)without the extra term, and
also the relation (3.17), have a possible interpretation in terms of the ‘t Hooft string picture of
the 1/N expansion. Thus at least in the case of L = 1, 2, (3.18) and (3.17) still do, so one can
hope that there is a correct relation at higher L yet to be determined.

3.3. New KLT Relations

One of the pioneering connections between SYM and supergravity theories are the KLT
relations [63], originally proved using string theorymethods [35, 63]. More recently, alternate
versions of KLT relations have been presented based on field theoretic techniques at the tree
level [44, 45]. One form of these new relations has manifest (n − 3)! permutation symmetry
for the n-point functions, and another has (n − 2)! symmetry, but requires regularization as
a consequence of singularities. They are part of a flurry of recent activity relating N = 4
SYM and N = 8 supergravity, including [40, 42, 43, 46, 61, 66–68] (among older works see
also [37, 69, 70]). Recent work applying the KLT relations includes [71–74]. In our quest
for SYM-supergravity relations, we first review previous KLT relations; we then note that
A5;3 and the 1-loop supergravity amplitude both have 1/ε IR divergences. We present here
a tree-level KLT relation for the n = 5-point amplitudes derived in [75], using information
from one-loop SYM and supergravity amplitudes and their IR divergences. This results in
a KLT relation for 5-point functions with 2(n − 2)! manifest symmetry, without the need for
regularization. These KLT relations are proved explicitly using the helicity spinor formalism
and the Parke-Taylor formula. In analogy with Section 3.1 on 4-point functions of N = 8
supergravity and subleading-color N = 4 SYM theories, both with the 1/ε IR divergence,
we explore the possibility that the 1-loop 5-point supergravity amplitude can be expressed as
a linear combination of the A5;3 SYM amplitudes. In particular a linear relation is proposed
among the 1/ε IR divergences of the two theories.

At tree level, the KLT relations are quadratic relations between the n-point amplitudes
of N = 4 SYM and those of N = 8 supergravity. In these relations, the helicity information
is all contained within the amplitudes, and the coefficients are all function of the kinematic
invariants sij only.

These relations relate graviton tree amplitudes with sums of squares (products) of
gauge tree amplitudes. The original KLT relations were derived from string theory in the
α′ → 0 limit [35, 63] and can be expressed as (we use the notation of [37])

Atree
n,sugra(12 . . . n) = (−1)n+1

[
An(12 . . . n)

∑

perms
f
(
i1 . . . ij

)
f
(
l1 . . . lj ′

)

× An

(
i1, . . . , ij , 1, n − 1, l1, . . . , lj ′ , n

)
]
+ P(2, . . . , n − 2)

f
(
i1, . . . , ij

)
= s
(
1, ij
) j−1∏
m=1

(
s(1, im) +

j∑
k=m+1

g(im, ik)

)
,

f
(
l1, . . . , lj ′

)
= s(l1, n − 1)

j ′∏
m=2

(
s(lm, n − 1) +

m−1∑
k=1

g(lk, lm)
)
,

(3.22)
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where “perms” are (i1, . . . , ij) ∈ P(2, . . . , n/2), (l1, . . . , lj ′ ∈ P(n/2 + 1, . . . , n − 2), j = n/2 −
1, j ′ = n/2 − 2, and gi,j = sij if i > j and zero otherwise.

In [44, 45], new forms of the KLT relations for any n-point function were found. They
are both written in terms of the functions:

S
[
i1 . . . ik | j1 . . . jk

]
=

k∏

t=1

⎛

⎝sit1 +
k∑

q>t

θ
(
it, iq
)
sitiq

⎞

⎠,

S̃
[
i1 . . . ik | j1 . . . jk

]
=

k∏

t=1

⎛

⎝sjtn +
k∑

q<t

θ
(
jq, jt
)
sjqjt

⎞

⎠,

(3.23)

where θ(it, iq) is zero in (it, iq) has the same order in both sets I = {i1, . . . , ik} and J =
{j1, . . . , jk} and is 1 otherwise, and similarly for θ(jq, jt).

A form of KLT relations was found in [44], but needs to be regularized, due to a
singular denominator

Atree
n,sugra = (−1)n

∑

γ,β

Ãn

(
n, γ2,n−1, 1

)
S
[
γ2,n−1, β2,n−1

]
p1
An

(
1, β2,n−1, n

)

s12...n−1
,

Atree
n,sugra = (−1)n

∑

β,γ

An

(
n, β2,n−1, 1

)
S̃
[
β2,n−1, γ2,n−1

]
pn
Ãn

(
1, γ2,n−1, n

)

s23...n
.

(3.24)

However they have a large (n−2)! manifest symmetry. Another set was proven in [45]which
is nonsingular

Atree
n,sugra = (−1)n+1

∑

σ∈Sn−3

∑

α∈Sj−1

∑

β∈Sn−j−2

An

(
1, σ2,j , σj+1,n−2, n − 1, n

)
S
[
ασ(2),σ(j) | σ2,j

]
p1

× S̃
[
σj+1,n−2 | βσ(j+1),σ(n−2), n

]
pn
Ãn

(
ασ(2),σ(j), 1, n − 1, βσ(j+1),σ(n−1), n

)
(3.25)

but with only (n − 3)! manifest symmetry.
The original KLT relation for the 5-point function is

Atree
5,sugra = s12s34A(12345)Ã(21435) + s13s24A(13245)Ã(31425) (3.26)
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and has (n − 3)! = 2! symmetry, whereas the KLT relations (3.25) become, explicitly,

Atree
5,sugra =

∑

σ,σ̃∈S2

Ã(45, σ̃23, 1)A(1, σ23, 45)S[σ̃2,3 | σ2,3]p1

= s12s13(A(45231)A(12345) +A(45321)A(13245)) + s13(s12 + s23)A(45231)A(13245)

+ s12(s13 + s23)A(45321)A(12345),

Atree
5,sugra =

∑

σ,σ̃∈S2

Ã(14, σ̃23, 5)A(1, σ23, 45)S̃[σ2,3 | σ̃2,3]p4

= s24s34[A(12345)A(14235) +A(13245)A(14325)] + s34(s24 + s23)A(12345)A(14325)

+ s24(s34 + s23)A(13245)A(14235)
(3.27)

and have (n − 3)! = 2! symmetry.
We now derive another KLT relation for 5-point amplitudes using information about

subleading one-loop amplitudes.
As we saw in (1.5), the An;j are related to the An;1 via group theory. In particular, for

5-point amplitudes, one has a single-trace amplitude A5;1 and a double-trace amplitude A5;3

related by [76]

A5;3(45123) =
∑

σ∈COP123
4

A5;1(σ(1), . . . , σ(4), 5). (3.28)

The single-trace amplitude is given by

A
(1,0)
5 (12345) ≡ A5;1(12345) = −1

4
A(12345)

∑

cyclic

F(1)
(
s, t,m2

)
, (3.29)

where

F(1)
(
s, t,m2

)
= stI

(1)
5

(
s, t,m2

)
(3.30)

is the dimensionless one-mass box, and I(1)(s, t,m2) is the 1-loop scalar box integral (2.47)
with momenta 3,4 in the same corner and m2 = P 2 = (p3 + p4)

2.
Substituting in (3.28), we find

A5;3
(
fg;hij

)
=

∑

abcde∈30 fixed terms

F(cde;ab)
[
sabcde;+;fghijA(abcde) + sabcde;−;fghijA(abedc)

]
.

(3.31)

Here sabcde;±;fghij are signs, defined as follows. The relative sign is plus if ab belong to hij, and
minus otherwise, and the overall sign is plus if the permutation of hij inside abcde is even,
and minus if it is odd.
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The 1-loop N = 8 supergravity amplitude is [62], written in terms of the scalar 1m
box I(123, 45) (with momenta 4,5 on the same corner of the box), and the dimensionless box
F(123; 45) is

A
1-loop
5,sugra

(
12q3q2q1

)
= −1

2

∑

30 perms

sq2q1s12s2q3A
(
12q3q2q1

)
A
(
12q3q1q2

)
F
(
12q3; q2q1

)
(3.32)

or

A
1-loop
5,sugra(12345) = −1

2

∑

30 perms

F(cde;ab)scdsdesabA(cdeab)A(cdeba). (3.33)

The IR behavior of the 1-loop 1m scalar box is

I4,1m
(
s, t,m2

)
=

rΓ
s12s23

{
2
ε2
[
(−s12)−ε + (−s23)−ε − (−s45)−ε

]
+ finite

}
=⇒

F(cde;ab) � rΓ
ε2
[
(−scd)−ε + (−sde)−ε − (−sab)−ε

]
+ finite

rΓ =
Γ(1 + ε)Γ2(1 − ε)

Γ(1 − 2ε)
,

(3.34)

where D = 4 − 2ε.

3.3.1. IR Behavior of the Double-Trace 1-Loop SYM Amplitude A5;3

Using (3.34), we find

A5;3
(
fg;hij

)
=

∑

abcd∈30 terms

F(cde;ab)
[
sabcde;+;fghijA(abcde) + sabcde;−;fghijA(abedc)

]

∼ rΓ
ε2

∑

abcd∈30 terms

[
s−εcd + s−εde − s−εab

][
sabcde;+;fghijA(abcde)+sabcde;−;fghijA(abedc)

]
.

(3.35)

Organizing the coefficients of each divergence, we find

A5;3
(
fg; lmn

)
� rΓ

ε2

∑

i<j

(
−sij
)−ε ∑

abc /= i,j

εlmn

[
A
(
ijabc

)]
, (3.36)

where εlmn[A(ijabc)] means A(ijabc) is multiplied by the sign of the permutation of l,m, n
inside i, j, a, b, c, and the sum over a, b, c contains all the 6 terms of the arbitrary permutation
of the a, b, c /= i, j.

The leading (1/ε2) divergence of A5;3(45; 123), given by

∑

i<j

∑

abc /= i,j

ε123
[
A
(
ijabc

)]
, (3.37)
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vanishes by explicit computation, so that the leading IR divergence of A5;3 is 1/ε, as ex-
pected from a generalization of the subleading-color amplitude of the 4-gluon amplitude
[39, 49]. (The vanishing of the 1/ε2 IR divergence of (3.37) is also a consequence of (4.7).)

3.3.2. IR Behavior ofN = 8 Supergravity One-Loop Amplitudes and KLT Relations

Using (3.32), we obtain

A
1-loop
5,sugra(12345) = −1

2

∑

30 perms

F(cde;ab)scdsdesabA(cdeab)A(cdeba)

� − 1
2ε2

∑

30 perms

[
s−εcd + s−εde − s−εab

]
scdsdesabA(cdeab)A(cdeba).

(3.38)

Organizing the terms by IR divergences, we obtain

A
1-loop
5,sugra �

1
ε2

∑

i<j

s1−εij ×
[
∑

d

scdsdeA
(
ijcde

)
A
(
ijedc

)
+
∑

c

sicsabA
(
ijabc

)
A
(
ijbac

)

+
∑

c

sjcsabA
(
ijcba

)
A
(
ijcab

)
]
.

(3.39)

On the other hand, we know that the IR behavior of the 1-loop n-point supergravity
amplitude is [77]

A
1-loop
n,sugra(1 . . . n) �

1
ε2

Atree
n,sugra(1 . . . n)

∑

i<j

s1−εij (3.40)

which means that we must have the KLT relation

Atree
5,sugra(12345) =

∑

d

scdsdeA
(
ijcde

)
A
(
ijedc

)
+
∑

c

sicsabA
(
ijabc

)
A
(
ijbac

)

+
∑

c

sjcsabA
(
ijcba

)
A
(
ijcab

)
, ∀
(
ij
)
.

(3.41)

Note that it has the larger manifest symmetry of 2 × (n − 2)! = 2 × 3! and has no need to be
regularized.

The tree-level KLT formula (3.41) has been derived using the IR behavior of 1-loop
computations. However it can be proved explicitly. To do so, use the helicity spinor formalism
and the Parke-Taylor formula [78], which states that

Atree
n,SYM

(
1+2+ . . . i− . . . j− . . . n+) =

〈
ij
〉4

〈12〉〈23〉 · · · 〈n1〉 ,
(3.42)
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or for our case, for instance choosing 1−2−,

A
(
1−2−3+4+5+

)
=

〈12〉4

〈12〉〈23〉〈34〉〈45〉〈51〉 .
(3.43)

A similar formula exists for the supergravity amplitude [37]

Atree
5,sugra

(
1−2−3+4+5+

)
=

〈12〉8ε(1234)
N(5)

, (3.44)

where

ε
(
ijkl
)
= 4iεμνρσk

μ

i k
ν
j k

ρ

k
kσ
l ,

N(5) =
4∏

i=1

5∏

j=i+1

〈
ij
〉
.

(3.45)

A specific case of (3.41) is proved, namely,

Atree
5,sugra(12345)

= s34s45A(12345)A(12543) + s53s34A(12534)A(12435) + s45s53A(12453)A(12354)

+ s23s45A(12345)A(12354) + s24s35A(12435)A(12453) + s25s34A(12534)A(12543)

+ s13s45A(21345)A(21354) + s14s35A(21435)A(21453) + s15s34A(21534)A(21543).
(3.46)

The others follow from permutations and symmetry.
One makes use of helicity spinor identities to verify that the right-hand side of (3.46)

is equal to (3.44), proving the KLT relation.

3.3.3. Relation between A
one-loop
5,sugra and A5;3

Motivated by the fact that the leading IR divergence of the n = 5-point supergravity
amplitude and that of A5;3 are both of order 1/ε at 1 loop, one investigates whether A1-loop

5,sugra
can be expressed as a linear combination ofA5;3 amplitudes. One uses information from (3.34)
to (3.38) and finds a relation valid for IR divergences, and then one conjectures how one
possibly could extend to a relation for the full amplitudes.

Based on what happened at 4 points at 1 and 2 loops, as discussed in Section 3.1, we
want to find A

1-loop
5,sugra as a linear combination of the A5;3 amplitudes.
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In analogy with the 4-point function, we would like to find a relation of the type

A
1-loop
5,sugra(12345) =

∑

i∈fghij
βiA5;3(i)

=
∑

abcde∈30 fixed terms

F(cde;ab)
∑

i∈fghij
βi[sabcde;+;iA(abcde) + sabcde;−;iA(abedc)].

(3.47)

On the other hand,

A
1-loop
5,sugra(12345) =

∑

abcde∈30 fixed terms

F(cde;ab)αabcde, (3.48)

where from (3.33),

αabcde = −1
2
scdsdesabA(cdeab)A(cdeba) (3.49)

which means that we need

αabcde =
∑

i∈fghij
βi[sabcde;+;iA(abcde) + sabcde;−;iA(abedc)] (3.50)

to be satisfied, which are 30 equations for 10 unknowns (βi), so (3.50) is not guaranteed to
have solutions.

The 30 equations can then be rewritten, using the explicit form of αabcde, and a new
notation that will prove useful, as

−1
2
sabsbcsdeA(abcde)A(abced) =

∑

fg;hij

β(fg)εhij[A(abcde)]
(
1 − εhij(de)

A(abced)
A(abcde)

)
,

(3.51)

where εhij(de) is plus if both d, e belong to h, i, j, and minus otherwise.
In order to see if a unique solution for the βi is possible, one canmatch the IR behaviors

on the two sides of (3.47). Expressing the IR behaviors of the lhs and the rhs,

1
ε2

Atree
5,sugra(12345)

∑

i<j

sij
(
−sij
)−ε =

rΓ
ε2

∑

k∈fg;lmn

βk
∑

i<j

(
−sij
)−ε ∑

abc /= i,j

εlmn

[
A
(
ijabc

)]
(3.52)

which means that one requires, using the vanishing of the 1/ε2 IR divergence,

Atree
5,sugra(12345)sij =

∑

k∈fg;lmn

βk
∑

abc /= i,j

εlmn

[
A
(
ijabc

)]
. (3.53)
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If we denote theAtree
5,sugra(12345) by justM5, then the lhs is a vector column of (ij), M5sij . Also

denote
∑

abc /= i,j εlmn[A(ijabc)] as N(ij),(fg), so that

N(ij),(fg)β(fg) = M5sij =⇒
[
β(fg)
]
=
[
N(ij),(fg)

]−1
M5sij . (3.54)

Note that the index (fg) on thematrixN has 10 values, and these values can also be identified
by the lmn of εlmn[A(ijabc)], since it corresponds to the same 10 terms, picking out a group
(fg) or (lmn) out of 1, 2, 3, 4, 5.

At this point, however, note that the vanishing of the leading IR divergence in (3.37)
means that

∑

(ij)
N(ij),(fg) = 0,

(3.55)

that is, that the matrix N has rank 9 instead of 10. One then needs to work with the
corresponding 9×9 reduced matrixNred;(ij),(fg) and give the 10th coefficient β(fg) an arbitrary
value.

Therefore one has found a linear relation, (3.47), with coefficients obtained from (3.54),
which is satisfied by the IR divergences, and containing an arbitrary parameter. Of course, it
is still not clear that the remaining β(fg) are unique. For that, one must calculate the rank of
Nred. If its rank is less than 9, the solution is parametrized by more than one parameter, since
then some of the remaining β’s will be undetermined. As the algebra is quite involved, this is
a project for further work.

In order to see if (3.47) is also satisfied for the full amplitude, one must substitute the
solution for β(fg) back in (3.51) and see if these equations are satisfied, since now one needs
to check whether the 30 equations are satisfied by substituting the 10 unknowns β(fg) solved
as in (3.54). The verification of (3.47) for n = 5 is analogous with that for the (successful)
relation (3.9) for n = 4. Therefore, it would be interesting if (3.47), (3.50)were true. (As (3.18)
exemplifies for L = 1, n = 4, (3.47) may not be the only equation relating N = 8 supergravity
toN = 4 SYM for L = 1, n = 5.)

In principle the strategy described above can be applied to higher n-point amplitudes.
Namely, one can analyze the IR behavior of the results forN = 4 SYM andN = 8 supergravity
at 1 loop and compare these to the known behavior, which would imply a relation among tree
amplitudes from SYM and a KLT-type relation from the supergravity. Finally, one can relate
the subleading-color SYM and supergravity amplitudes and use the consistency of the IR
behavior to fix the proposed relation. For n = 6, L = 1, the results of Bjerrum-Bohr et al. [38]
are suitable for this purpose.

4. Geometric Interpretations of Subleading-Color Amplitudes

4.1. Polytope Picture

4.1.1. Polytopes forMHV Leading Amplitudes

In [79], a simple picture was found for the 1-loop color-ordered leading amplitudes of
N = 4 SYM theory, in terms of the volume of a closed polytope in AdS5. In [80], it was
generalized to subleading-color amplitudes. The picture for the leading MHV amplitude was
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obtained as follows. We start by writing the amplitude in a space dual to momenta, thus
trivializing momentum conservation

∑
i pi = 0, by pi = xi − xi+1. Then, for example, the 1-

loop dimensionless massless box function (in 4 dimensions, which is of course IR divergent)
F0m(1234) = −(1/2)stI(1)4 (s, t), with I

(1)
4 (s, t) in (2.47) becomes

F0m(1, 2, 3, 4) = i

∫
d4x0

2π2

(x1 − x3)2(x2 − x4)2

(x0 − x1)2(x0 − x2)2(x0 − x3)2(x0 − x4)2
. (4.1)

We then construct xαα̇ = xμ(σμ)αα̇ and finally map

xαα̇ −→ XAB =

⎛

⎝−1
2
εαβx2 ixα

β̇

−ixβ
α̇ εα̇β̇

⎞

⎠. (4.2)

Here the X’s, satisfying

X2 ≡ 1
2
εABCDX

ABXCD = 0,

Xi ·Xj = −
(
xi − xj

)2
(4.3)

are coordinate patches on the quadric X · X = 0 in RP 5, with XAB ∼ λXAB being their
homogeneous coordinates. These X’s are considered as vertices situated at the boundary of
an AdS5 and are simple bitwistors living in twistor space, that is, there exist twistors AA and
BB such that XAB = A[ABB] (a twistor AA is made of (Aα,Aα̇)).

Consider a box function characterized by vertices X1, X2, X3, X4. Then the following
function of the Feynman parameters αi ∈ (0, 1) with

∑
αi = 1,

X(α) = α1X1 + α2X2 + α3X3 + α4X4, (4.4)

is a map to RP 5, but such thatX(α) ·X(α)/= 0, and in fact they vary over a tetrahedron in RP 5.
After normalizing by

Y (α) =
X(α)

√
X(α) ·X(α)

, (4.5)

one obtains Y (α) · Y (α) = 1, which means that Y (α) lies in the Euclidean AdS5. Since straight
lines X(α) are mapped to geodesics in AdS5, the edges and faces of the tetrahedron in AdS5
are geodesic, which by definition makes the tetrahedron ideal.

The value of the IR-finite 4-mass box matches twice the volume of the tetrahedron in
AdS5. The IR-divergent lower mass functions need to be regularized, either in dimensional
regularization, or using a mass regularization as in [79], modifyingX2 = 0 toX ·X = μ2(X ·I),
with I being a fixed point (a useful choice of I is Xi · I = 1, for all i).

The one-loopMHV n-point amplitudes divided by the treeMHV amplitudes are given
by the sum of 1-mass and 2-mass easy box functions with coefficient one, which add up to
the volume of a closed 3-dimensional polytope (without a boundary) with n vertices.
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Note that by this definition, the volume of a tetrahedron comeswith a sign, determined
by the order of the dual space vertices xi in the box function F(i, j, k, l). That also induces
an orientation (sign) for the triangular faces of the tetrahedron, determined by whether the
missing vertex from (ijkl) is in an even or odd position. Faces with same vertices and different
orientation (sign) can be glued together, forming a continuous object.

4.1.2. Polytopes forMHV Subleading-Color Amplitudes

For subleading-color amplitudes, we want to use (1.5) to relate to the leading amplitudes and
expand in the KK basis (1.2), where we will obtain a nice geometrical interpretation.

We start with the 5-point amplitude as an example. The ratio of the leading 1-loop
MHV to the tree level MHV amplitudes is the volume of a boundary of a 4-simplex,

AMHV
5;1 (12345)

AMHV
5 (12345)

≡ MMHV
5 (12345) =

∑

cyclic

I(x1, x2, x3, x4, (x5)) ≡ V (x1, x2, x3, x4, x5). (4.6)

Here I(x1, x2, x3, x4, (x5)) is the volume of the tetrahedron with vertices x1, x2, x3, x4, equal to
F(1, 2, 3, 4), and the missing vertex (x5) is added in brackets since the cyclicity involves all 5
points; V (x1, x2, x3, x4, x5) is the volume of the boundary of the 4-simplex in twistor space,
with (y)i → (Y )i; that is, we map the arguments of V into twistor space.

Using (1.5) and writing the tree amplitudes in terms of the KK basis, we obtain

A5;3(12345) = A5(12345)[(M5(12345) −M5(41235)) + (M5(43125) −M5(31245))]

+A5(12435)[(M5(12435) −M5(31245)) + (M5(34125) −M5(41235))]

+A5(14235)[(M5(14235) −M5(31425)) + (M5(34125) −M5(41235))]

+A5(13245)[(M5(23145) −M5(42315)) + (M5(43125) −M5(31245))]

+A5(13425)[(M5(23145) −M5(31425)) + (M5(43125) −M5(24315))]

+A5(14325)[(M5(23145) −M5(31425)) + (M5(34125) −M5(23415))].

(4.7)

We see that for each KK basis member we have the sums of two terms which are some simple
differences ofM5’s. In fact these differences can be written as the differences of two polytope
volumes, which in turn can be written as the volume of a simple polytope. For instance, the
coefficient of the KK basis element A5(12345) in (4.7) is

(
MMHV

5 (12345) −MMHV
5 (41235)

)
+
(
MMHV

5 (43125) −MMHV
5 (31245)

)

= [V (x1, x2, x3, x4, x5) − V ((x4 − x5 + x1), x1, x2, x3, x4)]

+ [V (x4, (x1 + x4 − x5), x1, (x1 − x3 + x4), (x2 − x3 + x4))

−V (x1, (x1 − x3 + x4), (x2 − x3 + x4), x4, x5)].

(4.8)
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In the two brackets, the two volumes of opposite sign correspond to polytopes with n − 1 = 4
points common out of n = 5, and the relative sign is such that we can write this as the volume
of the polytope obtained by the taking the union of the two polytopes.

By examining the n = 6 case [80] as well, we can understand the general pattern for
An;3. The general formula is

AMHV
n;3 (n − 1, n, 1, 2, . . . ., n − 2) =

∑

{σ}i∈OP({α},{βT})|jmax

AMHV
n (1, {σ}i, n)

×
∑

n−1∈{α},{β};jmax∈{α},{β}
(−)nβMMHV

n

({
β
}
, 1, {α}, n

)
(4.9)

with MMHV
n being the volume of a closed polytope and pairs of opposite sign Mn’s adding

up to another closed polytope. It is obtained as follows. In the above, just from (1.5), we have
Mn({β}, 1, {α}, n), where n− 1 is either in {α} or in {β}, and otherwise {α} contains 2, 3, . . . , k
and {β} contains k + 1, . . . , n − 2.

For the tree amplitude prefactors, when using the KK relations (1.2), from {α} and {β}
we form the permutation {σ}i which contains {α} and {βT}, keeping the ordering, that is, in
the KK basis amplitude, we haveA(1, {σ}, n). Here if we extract the n−1, then {α} = 2, . . . , jmax

is ordered; that is, it goes from left to right in the permutation, and then {β} = jmax+1, . . . , n−2
is transposed and still ordered; that is, it goes from right to left. The same jmax (extracted from
the resulting KK basis member) is obtained from either k or k + 1. That means that there are
exactly 4 terms corresponding to the same KK basis member, corresponding to both jmax and
n − 1 belonging to either {α} or {β}.

The sign of the terms is obtained from the sign in the KK relations (1.2), that is, (−1)nβ ,
where here {β} refers to the individual Mn({β}, 1, {α}, n) term. The fact that jmax belongs to
either {α} or {β} means that in Mn({β}, 1, {α}, n) we have jmax either at the end of {α}, or
at the beginning of {β}; that is, we have a flip of jmaxn versus njmax in between terms with
different signs, hence a different nβ (with or without jmax). The exception is when actually
(n − 1) is at the end of {α}, and not jmax, in which case the same flip is now (n − 1)n versus
n(n − 1), and the same relative minus sign applies.

Since the pair in the difference in the () bracket multiplying KK basis members has the
same n − 2 permutation, and the remaining two terms are flipped, we have the difference of
two n-polytopes with a common n − 1-polytope, just as in the 5-point case.

We can generalize to An;j also, obtaining

AMHV
n;j

(
n − j + 2, . . . , n, 1, . . . , n − j + 1

)

=
∑

{σ}i∈OP({α},{βT})|jmax∈{1,...,n−j+1},lmax∈{n−j+2,...,n−1}

AMHV
n (1, {σ}i, n)

×
∑

{n−1,...,n−j+2}∈{α},{β};jmax∈{α},{β}
(−)nβ+j−1MMHV

n

({
β
}
, 1, {α}, n

)
,

(4.10)

where again we have pairs of MMHV
n ’s of different signs and with n − 1 common vertices

adding up to give other closed polytopes (of n + 1 vertices).
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The new features with respect to theAn;3 are as follows. The KK basis elements that we
get are of a special type: if we take out n−1, . . . , n−j+2 from the amplitude, then the situation
should be like the one for n = 3, namely, in the remaining permutation we go from 1 to a jmax

towards the right, and then towards the left. But moreover, in n− 1, . . . , n− j + 2, we also have
some ordering: some of them are in {α}, some in {βT}, which means that n − 1, . . . , lmax + 1 is
cyclic (i.e., towards the right), and n− j +2, . . . , lmax is also cyclic (i.e., we change the direction
of the cyclicity at lmax).

The number of termsmultiplying a KK basis member is even, corresponding to having
jmax in {α} or {β} and any number of the j − 2 terms {n − 1, . . . , n − j + 2} in {α} and the rest
in {β}. They come in pairs, the pairs corresponding to jmax being just before n or just after,
or otherwise one of the {n − 1, . . . , n − j + 2} being either just before, or just after n, and the
pairs as before having different sign. The sign of the terms is then simply (−1)j−1+nβ . In terms
of polytopes, the two terms of different sign correspond as before to polytopes with only a
vertex differing between them, which means they again add up to another polytope with one
more vertex.

As a simple application of this analysis, we note that (4.7), (4.9), and (4.10) show that
the amplitudes Mn come in alternating pairs. Each of these Mn has leading IR singularity
1/ε2 +O(1/ε) and therefore at one-loop An,j has only a 1/ε IR singularity.

4.1.3. Polytope Picture for the 6-Point LeadingNMHV Amplitude

The leading (planar) gluon amplitudes ANMHV
6;1 for the split-helicity configuration are [81]

ANMHV
6;1

(
1+2+3+4−5−6−

)
=

cΓ
2

(
B1W

(1)
6 + B2W

(2)
6 + B3W

(3)
6

)
, (4.11)

whereW (i)
6 are cyclic permutations ofW (1)

6 , andW
(i+3)
6 ≡ W

(i)
6 , given in terms of box functions

by

W
(i)
6 = F1m

6:i + F1m
6:i+3 + F2mh

6:2;i+1 + F2mh
6:2;i+4, (4.12)

and the F’s are dimensionless boxes. We can write polytope interpretations for the W
(i)
6 ’s

based on the fact that the F’s have polytope interpretation. Denoting for instance by
(4561(23)) what was previously called I(x4, x5, x6, x1(x2, x3)), we write

W
(1)
6 = (4561(23)) + (1234(56)) + (12(3)4(5)6) + (45(6)1(2)3)

≡ A1 +A3 +A2 +A4,

W
(2)
6 = (5612(34)) + (2345(61)) + (23(4)5(6)1) + (56(1)2(3)4)

≡ A5 +A7 +A6 +A8,

W
(3)
6 = (6123(45)) + (3456(12)) + (34(5)6(1)2) + (61(2)3(4)5)

≡ A9 +A11 +A10 +A12,

(4.13)



Advances in High Energy Physics 33

where the A’s are tetrahedra defined in the order they appear in the W
(i)
6 above, while for

example for the 6-point MHV amplitude, we have

AMHV
6;1 (123456) = A(123456)[(12(3)45(6)) + (23(4)56(1)) + (34(5)61(2))

+ (1234(56)) + (2345(61)) + (3456(12))

+(4561(23)) + (5612(34)) + (6123(45))]

= A(123456)[A13 +A14 +A15 +A3 +A7 +A11 +A1 +A5 +A9],

(4.14)

where again the various A’s are defined in the order they appear. However, because of the
spin coefficients of W (i)

6 , we cannot find a simple polytope interpretation for the subleading-
color amplitudes.

4.2. Momentum Twistor Representation

4.2.1. Momentum Twistor Representation for LeadingNkMHV Amplitudes

Instead, we can use a momentum twistor [17, 20] representation for the NkMHV super-
amplitudes in order to find a simple formula for the subleading NkMHV amplitudes.

The MHV tree-level color-ordered superamplitudes are given by the Nair formula
[82], a supersymmetric generalization of the Parke-Taylor formula [78, 83],

An,2(12 . . . n) =
δ4
(∑n

i=1 λiλ̃i
)
δ8(∑n

i=1 λiη̃
i
)

〈12〉〈23〉 · · · 〈n − 1, n〉〈n, 1〉 ,
(4.15)

where as usual 〈ij〉 ≡ εαβλ
(i)
α λ

(j)
β , η̃ is a spinor with an index I = 1, . . . , 4 for supersymmetries

suppressed, and the 2 inAn,2 refers toR-charge, since theNkMHV amplitude hasm = k+2 R-
charge.

The leading singularities of an amplitude are the discontinuities of the amplitude over
the singularities where we put a maximum number of propagators on-shell, as explained in
[18], where a conjecture for these leading singularities was proposed.

In terms of supermomentum twistors Zi, the leading singularity of the (color-ordered,
planar, i.e., leading) NkMHV superamplitude is [19, 23]

Ln,m =
δ4
(∑

λλ̃
)
δ8(∑λη̃

)

〈12〉〈23〉 · · · 〈n1〉

∫
dnkD

Vol(Gl(2))

∏k
μ=1δ

4|4(∑n
i=1 DμiZi

)

(12 . . . k)(23 . . . k + 1) · · · (n12k − 1)
= Ln,2 × Rn,k,

(4.16)

where k = m − 2. The prefactor Ln,2 is the tree MHV amplitude (4.15), and the integral
Rn,k = Rn,m−2, is Yangian invariant. This object is dual conformal covariant, only Rn,k being
dual conformal invariant, and the tree amplitude is covariant.

The one-loop amplitudes of N = 4 SYM can be reduced to just boxes via the van
Neerven and Vermaseren procedure, with some coefficients. The leading singularities also
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coincide with the coefficients of these box functions [18]. For one-loop MHV, the coefficients
of the boxes are known to be just the MHV tree amplitudes, agreeing with the result above.

4.2.2. SubleadingNkMHV Amplitudes in Momentum Twistor Space

The planar (leading) color-ordered NkMHV amplitude is a sum of permutations of boxes
with coefficients equal to the leading singularities,

An;1(1 . . . n) =
∑

σ

Ln,k(σ)In;4(σ) =
∑

AMHV
n (σ)Rn;k(σ)In;4(σ), (4.17)

where In;4 are boxes. At 6 points, the permutations σ combine such that we can organize the
sum as a sum over cyclic permutations, with several boxes having the same coefficient [18].
For this coefficient we can factorize the tree MHV amplitude, which is cyclically invariant, so
that it appears as a common factor

A6;1(1 . . . 6) = AMHV
6 (1 . . . 6)

∑

λ=cyclic

R6;k(λ)
∑

σ/λ

I6;4(σ). (4.18)

At higher n-point, the situation is slightly more complicated. The box diagrams are ordered
in groups that can be cyclically permuted, for each group having a given formula for the
residue, but unlike 6-point, the residue is not universal for all the groups [18]. However, all
the diagrams still have the external legs in the original order, which means, since the MHV
tree amplitude is cyclically invariant, that we can again factorize the MHV tree amplitude,
obtaining for planar NkMHV amplitudes

An;1(1 . . . n) = AMHV
n (1 . . . n)

∑

groups of diagrams

∑

λ=cyclic

Rn;k(λ)
∑

σ/λ

In;4(σ)

≡ AMHV
n (1 . . . n)Mn;k(1 . . . n)

(4.19)

which implicitly defines Mn,k.
We now finally note that we have the same formula for An;1(1 . . . n) in terms of AMHV

n

and Mn;k from the previous section on polytopes, so we can apply the same calculations we
used to obtain theMHVAn;j in terms ofAn;1 in Section 2.We just have to change the definition
ofMn;k as in (4.19) and thus also drop the polytope interpretation ofMn,k. But otherwise the
same (4.10) found in the MHV case holds in the generalNkMHV case as well, as can be seen
from (4.9).
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4.2.3. Application to the 6-PointNMHV Amplitude

For the superamplitude, we use an explicit form of the twistor formula (4.18), doing the
twistor space integrals over the 1-loop NMHV contours. The result is [84, 85]

A
(1)NMHV
6;1 (123456) =

a

2
A

(0)MHV
6 (123456)

×
[
(R413 + R146)W

(1)
6 + (R524 + R251)W

(2)
6 + (R635 + R362)W

(3)
6

]

≡ A
(0)MHV
6 (123456)M(1)NMHV

6 (123456).

(4.20)

From the Rn;k terms in (4.18), one gets the sum of basic dual conformal invariant R-invariants
Rj,j+3,j+5 above. Here the Rj,j+3,j+5 are given by

Rrst = − 〈s − 1s〉〈t − 1t〉δ(4)(Ξrst)
x2
st〈r|xrtxts|s − 1〉〈r|xrtxts|s〉〈r|xrsxst|t − 1〉〈r|xrsxst|t〉

,

Ξrst =
r−1∑

t

ηi〈i|xtsxsr |r〉 +
s−1∑

r

ηi〈i|xstxtr |r〉,

xst = xs − xt =
t−1∑

i=s

pi.

(4.21)

As explained before, we can then perform the same combinatorics that led us to (4.9),
just that now we use M(1)NMHV

6 (123456) instead of the M6(123456).

5. Summary

We have reviewed a number of features of subleading-color amplitudes of N = 4 SYM
theory, a subject considerably less developed than that of the leading (planar) amplitudes.
Nevertheless this topic should not be ignored if the structure of perturbative N = 8
supergravity and its relationship to N = 4 SYM theory are to be understood, as nonplanar
graphs appear on an equal footing inN = 8 supergravity.

After presenting a detailed description of the IR divergences ofN = 4 SYM theory, we
obtained the leading (and some subleading) IR divergences of subleading-color amplitudes
at L loops and tested these against known exact results for one- and two-loop four-point
functions. These ideas applied to the one-loop five-point function led to a new KLT relation,
as well as possible new relations betweenN = 4 SYM andN = 8 supergravity amplitudes. A
geometric interpretation of the one-loop subleading and NkMHV amplitudes of N = 4 SYM
was presented in the last section.

Since reformulations and extensions of known results frequently lead to new insights,
we advocate that continued study of subleading-color amplitudes is likely to be fruitful. In
particular, it would be important for our understanding of the relation ofN = 4 SYM toN = 8
supergravity to extend (3.20) and (3.21) to subleading IR divergences, and to higher n-point
functions. An example of the latter is the speculative (3.47) for L = 1 and n = 5. However,
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(3.8) and (3.17) remind us that (3.47) may not be the only way to relate the two theories, so
that the subjects discussed in this paper should provide many opportunities for future work.
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