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It is shown that a nonsolvable third-order hyperbolic potential becomes quasi-exactly solvable
after the introduction of a hyperbolic effective mass step. Stationary energies and L2-solutions of
the corresponding Schrödinger equation are obtained in explicit form.

1. Introduction

Hyperbolic potentials are commonly used to model interatomic and intermolecular forces.
Most famous examples of such potentials include the Pöschl-Teller, the Rosen-Morse, and
the Scarf-type potentials, which have been studied extensively. Many of these hyperbolic
potentials are exactly solvable or quasi-exactly solvable; the corresponding closed-form
Schrödinger eigenfunctions and stationary energies can be found, for example, in [1–
3] and the references therein. In this paper, we study solvability hyperbolic potentials
in combination with effective (position-dependent) masses. Effective masses occur in the
context of transport phenomena in crystals (e.g., semiconductors), where the electrons are
not completely free, but interact with the potential of the lattice. The quantum dynamics of
such electrons can be modeled by an effective mass, the behaviour of which is determined
by the band curvature [4–6]. The solvability of the Schrödinger equations with effective mass
and hyperbolic potentials has been studied recently using point canonical transformations
[7–9] and supersymmetry-based factorization [10, 11]. In comparison with the constant mass
case, the effective-mass Schrödinger equations are less likely to be solvable for potentials of
physical interest. This is so because the effective mass function—which must be chosen to
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be physically meaningful—gives the equation a more complicated form than in the constant-
mass case. Thus, the solvable Schrödinger equation does not in practice remain solvable after
the introduction of an effective mass. The purpose of this paper is to observe the opposite
situation. We consider the Schrödinger equation for a nonsolvable, hyperbolic potential of
order three that generalizes many well-known potentials, including the Pöschl-Teller and the
Rosen-Morse potential. We combine our potential with an effective mass step that has proved
useful in studying the effective-mass Schrödinger equations [7, 12, 13]. After the introduction
of the effectivemass, the corresponding Schrödinger equation becomes quasi-exactly solvable
and even admits L2-solutions. In Section 2, we summarize our results, stating the stationary
energies and the corresponding solutions of the effective mass Schrödinger equation. We also
give conditions for the solutions to be L2-normalizable. In Section 3, the results are proved.

2. Statement of Results

The stationary Schrödinger equation with effective massm and potential V has the following
general form [14]:

1
2m(x)

Ψ′′(x) − m′(x)
2m2(x)

Ψ′(x) + (E − V (x))Ψ(x) = 0. (2.1)

We take the effective mass to be a smooth step function:

m(x) = 1 + tanh(x), (2.2)

which, as mentioned in the Introduction, has been used frequently in studies of effective mass
problems. Now, we define the potential in (2.1) as follows:

Va,b,c,d(x) = a tanh(x) + b tanh2(x) + c tanh3(x) + d, (2.3)

where a, b, c, and d are real numbers. Potential (2.3) and its special cases are common models
for intermolecular forces; as typical examples let us mention the following subcases that have
been studied before regarding their solvability [1, 2]:

Va,b,0,a+b(x) = a(1 + tanh(x)) + b
(
1 + tanh (x)2

)
, (2.4)

Va,b,0,−b(x) = a tanh(x) − b
1

cosh2(x)
, (2.5)

V0,a,0,0(x) = a tanh2(x), (2.6)

V0,−a,0,a(x) = a
1

cosh2(x)
. (2.7)

Potentials (2.5) and (2.7) are the Rosen-Morse potential and the Pöschl-Teller potential,
respectively. It is well known that the Schrödinger equation (2.1) for constant mass and
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potential (2.3) is not solvable. However, it becomes solvable if we introduce the effective
mass (2.2).

2.1. The Stationary Energies

Throughout this paperwe assume that the energyE in the Schrödinger equation (2.1) satisfies
the following relation:

E = b − a + d − c, (2.8)

where a, b, c, and d are the coupling constants of potential (2.3). Since the latter potential
depends on the value of the energy (2.8), the corresponding Schrödinger equation can be at
most quasi-exactly solvable. Aswewill see below, for a given setting of the coupling constants
a, b, c, d, there is exactly one solution available.

2.2. Solution and L2-Normalizability for c /= 0

Under condition (2.8) and c /= 0, the Schrödinger equation (2.1) with effective mass (2.2) and
potential (2.3) admits the following complete solution:

Ψ(x) = C1Ψ1(x) + C2Ψ2(x), (2.9)

where C1, C2 are constants and the functions Ψ1, Ψ2 are given by

Ψ1(x) = exp
(√

2c(tanh(x) − 1)
)
(tanh(x) − 1)

√
2(a+c)

×U

(
−b + c√

2c
+
√
2(a + c) +

1
2
,
√
8(a + c) + 1,

√
8c(1 − tanh(x))

)
,

(2.10)

Ψ2(x) = exp
(√

2c(tanh(x) − 1)
)
(tanh(x) − 1)

√
2(a+c)

×1F1

(
−b + c√

2c
+
√
2(a + c) +

1
2
,
√
8(a + c) + 1,

√
8c(1 − tanh(x))

)
.

(2.11)

Here, U and 1F1 denote the usual confluent hypergeometric functions [15]. We have the
following conditions for L2-normalizability.

(i) The solution Ψ1 given in (2.10) satisfies Ψ1 ∈ L2(k,∞) for every k ∈ � if and only if
the following two conditions are fulfilled:

a + c > 0,

b + c√
2c

+
√
2(a + c) +

1
2
∈ �0 .

(2.12)
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Note that the second condition forces the hypergeometric function U in (2.10) to become a
polynomial.

(ii) The solution Ψ2 given in (2.11) satisfies Ψ2 ∈ L2(k,∞) for every k ∈ � if and only if
the following condition is fulfilled:

a + c > 0. (2.13)

Here, it is not necessary that the hypergeometric function 1F1 in (2.11) becomes a
polynomial.
If the above conditions are satisfied, we have as a special case Ψ ∈ L2(�+ ). Note that we can
never obtain Ψ ∈ L2(�) if Ψ is nontrivial.

2.3. Solution and L2-Normalizability for c = 0

In this case, the solutions in (2.10), (2.11) are not defined, and the following solutions can be
used instead:

Ψ1(x) = J√8a

(√
8b

(
tanh2(x) − 1

))
, (2.14)

Ψ2(x) = J−√8a

(√
8b

(
tanh2(x) − 1

))
, (2.15)

where J is the Bessel function of the first kind [15]. If the order of the Bessel function is a
natural number, that is, if there is a natural number n, such that a can be written as

a =
1
8
n2, (2.16)

then the following solution has to be used instead of (2.14) and (2.15):

Ψ1(x) = Jn

(√
8b

(
tanh2(x) − 1

))
, (2.17)

Ψ2(x) = Yn

(√
8b

(
tanh2(x) − 1

))
, (2.18)

where Y is the Bessel function of the second kind [15]. Note that the first solutions (2.10),
(2.11) can be written in a more compact way by means of Whittaker functions [15]. We
do not introduce these functions here, as this would affect the transparency of subsequent
calculations. The following conditions for L2-normalizability apply.



International Journal of Mathematics and Mathematical Sciences 5

(i) The solution Ψ1 given in (2.14) satisfies Ψ1 ∈ L2(�) if and only if the following
condition is fulfilled:

a > 0. (2.19)

(ii) The solution Ψ1 given in (2.17) satisfies Ψ1 ∈ L2(�) if and only if the following
condition is fulfilled:

n ≥ 1. (2.20)

(iii) The solutions Ψ2 given in (2.15) and (2.18) are not L2-normalizable on unbounded
intervals.

3. Proof of Regularity Results

Due to the continuity of the solutions given in the last section, we only have to check L2-
normalizability at positive and negative infinity. In order to simplify notation, let us set z =
tanh(x). Clearly, z → ±1 if x → ±∞.

3.1. L2-Normalizability of the Solution for c /= 0

We first study L2-normalizability of solution (2.10) at positive infinity. To this end, we assume
that the first argument of the confluent hypergeometric function U is not a negative integer
or zero:

−b + c√
2c

+
√
2(a + c) +

1
2
/∈ − �0 . (3.1)

If this condition is not fulfilled, then the confluent hypergeometric function becomes a
polynomial in its third argument, which will be treated as a separate case below. We now
take the function U from (2.10) and expand it into the Taylor series around infinity, that is,
around z = 1:

U

(
−b + c√

2c
+
√
2(a + c) +

1
2
,
√
8(a + c) + 1,

√
8c(1 − z)

)

= (1 − z)−
√

8(a+c) +O
(
(1 − z)1−

√
8(a+c)

)
.

(3.2)

Inspection of (2.10) shows that its behaviour at positive infinity (z = 1) is governed by
the following expression:

Ψ1(x) = (1 − tanh(x))
√

2(a+c)−
√

8(a+c)

= (1 − tanh(x))−
√

2(a+c).

(3.3)
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Hence, if a+c ≥ 0, then the differential probability amplitude |Ψ1|2dx around infinity is given
by (note that dx = (1 − z2)−1dz)

|Ψ1(x)|2dx =
∣∣∣∣(1 − tanh(x))−2

√
2(a+c)

∣∣∣∣dx

=
∣∣∣∣(1 − z)−2

√
2(a+c) 1

1 − z2

∣∣∣∣dz

=
∣∣∣∣(1 − z)−2

√
2(a+c)−1 1

1 + z

∣∣∣∣dz.

(3.4)

Since the exponent of 1−z is always smaller than minus one, |Ψ1|2dx is not integrable on any
interval (k, 1) for a real k ≥ 0. If a + c < 0, we have that

|Ψ1(x)|2dx =
∣∣∣∣(1 − z)−1

1
1 + z

∣∣∣∣dz. (3.5)

Again, the exponent of 1 − z is always minus one, implying that |Ψ1|2dx is not integrable on
any interval (k, 1) for a real k ≥ 0. Consequently, Ψ1 is not L2-normalizable around infinity.
Next, let us consider the case where condition (3.1) is not satisfied; that is, we assume

n := −b + c√
2c

+
√
2(a + c) +

1
2
∈ −�0 . (3.6)

In this case, the confluent hypergeometric functionU becomes a polynomial of degree n [15].
Hence, the solution Ψ1 in (2.10) behaves at positive infinity (z = 1) as follows:

Ψ1(x) = (1 − tanh(x))
√

2(a+c). (3.7)

If a + c ≥ 0, then the differential probability amplitude |Ψ1|2dx around infinity is given by

|Ψ1(x)|2dx =
∣∣∣∣(1 − tanh(x))2

√
2(a+c)

∣∣∣∣dx

=
∣∣∣∣(1 − z)2

√
2(a+c) 1

1 − z2

∣∣∣∣dz

=
∣∣∣∣(1 − z)2

√
2(a+c)−1 1

1 + z

∣∣∣∣dz.

(3.8)

The latter expression remains integrable on each interval (k, 1) for a real k ≥ 0 if and
only if

a + c > 0. (3.9)

If a + c < 0, then we have the same situation as in (3.5), implying that Ψ1 is not L2-
normalizable around infinity. Let us now study the L2-normalizability of the second solution
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(2.11) at infinity. Although the confluent hypergeometric function 1F1 becomes a polynomial
if its first argument is a negative integer or zero, we do not need to treat the latter case
separately, as we did for the function U. This is due to the fact that around tanh(x) = 1
we always have

1F1

(
−b + c√

2c
+
√
2(a + c) +

1
2
,
√
8(a + c) + 1,

√
8c(1 − tanh(x))

)
= 1 +O(tanh(x) − 1). (3.10)

Now, the inspection of solution (2.11) shows the following asymptotic behaviour at
infinity:

Ψ2(x) = (1 − tanh(x))
√

2(a+c). (3.11)

Thus, if a+c ≥ 0, then we get for the differential probability amplitude |Ψ2|2dx around
infinity (recall that z := tanh(x))

|Ψ2(x)|2dx =
∣∣∣∣(1 − tanh(x))2

√
2(a+c)

∣∣∣∣dx

=
∣∣∣∣(1 − z)2

√
2(a+c)−1 1

1 + z

∣∣∣∣dz.
(3.12)

Thus, the latter expression remains integrable at infinity (z = 1) if and only if

a + c > 0. (3.13)

As before, if a + c < 0, then we have the same situation as in (3.5), implying that Ψ1 is not
L2-normalizable on �. Next, we study L2-normalizability of solutions (2.10) and (2.11) at
negative infinity. Both hypergeometric functions U and 1F1 that appear in (2.10) and (2.11)
are bounded at minus infinity, since their last argument turns there into the finite value 2

√
8c.

Thus, since solutions (2.10) and (2.11) differ only in the type of hypergeometric function, they
present the same asymptotic behaviour at negative infinity. Inspection of (2.10) and (2.11)
shows that both solutions take a finite value there. This gives with z = tanh(x)

|Ψ1(x)|2dx =
∣∣∣∣

1
1 − z2

∣∣∣∣dz

=
∣∣∣∣(1 + z)−1

1
1 − z

∣∣∣∣dz.
(3.14)

The latter expression is not integrable at z = −1, and therefore solution (2.10) is not L2-
normalizable on any interval (−∞, k) for a real number k. Since we have seen that both
solutions (2.10) and (2.11) show the same behaviour at negative infinity, solution (2.11) is
not L2-normalizable on any interval (−∞, k) for a real number k.
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3.2. L2-Normalizability of the Solution for c = 0

We now turn to the pair of solutions (2.14) and (2.15). First note that each of these solutions
has the same asymptotic behaviour at positive and negative infinity, because the function
tanh appears in its second power only. We have at infinity

J±√8a

(√
8b

(
tanh2(x) − 1

))
= (tanh(x) − 1)±

√
8a +O

(
(tanh(x) − 1)±

√
8a+1

)
. (3.15)

This gives the following differential probability amplitude around infinity (as before,
corresponding to z = 1) for a ≥ 0:

|Ψ1(x)|2dx =
∣∣∣∣(z − 1)

√
8a 1
1 − z2

∣∣∣∣dz

=
∣∣∣∣(z − 1)

√
8a−1 1

1 + z

∣∣∣∣dz.
(3.16)

The latter expression remains integrable at z = 1 (and therefore at z = −1) if and only if

a > 0. (3.17)

If a < 0, we get

|Ψ1(x)|2dx =
∣∣∣∣(z − 1)−1

1
1 + z

∣∣∣∣dz, (3.18)

which is not integrable at z = 1. We find for the second probability amplitude around infinity
for a ≥ 0 that

|Ψ2(x)|2dx =
∣∣∣∣(z − 1)−

√
8a 1
1 − z2

∣∣∣∣dz

=
∣∣∣∣(z − 1)−

√
8a−1 1

1 + z

∣∣∣∣dz.
(3.19)

This is not integrable at z = 1. If a < 0, the same situation as in (3.18) occurs. Let
us finally derive L2-normalizability conditions for the last pair of solutions (2.17) and (2.18).
The asymptotic behaviour of these solutions is the same at positive and negative infinity. In
addition, it is the same as in (3.15); only the argument of the Bessel function must be replaced
by n:

Jn

(√
8b

(
tanh2(x) − 1

))
= (tanh(x) − 1)n +O

(
(tanh(x) − 1)n+1

)
,

Yn

(√
8b

(
tanh2(x) − 1

))
= (tanh(x) − 1)−n +O

(
(tanh(x) − 1)−n+1

)
.

(3.20)
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Thus, the results obtained for the second solution set (2.14), (2.15) apply here. This means
that the first solution (2.17) is L2-normalizable if and only if

n ≥ 1, (3.21)

whereas the second solution (2.18) is never L2-normalizable.

4. Concluding Remarks

We have presented a careful analysis of the Schrödinger equation for a third-order hyperbolic
potential and an effective mass step. Since the hyperbolic potential (2.3) and its special
cases are useful models for interatomic and intermolecular forces, this paper motivates
further studies in order to findmore combinations of intermolecular potentials and physically
meaningful effective mass functions that lead to closed-form solutions of the corresponding
Schrödinger equation.
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