UDK 517

ON PROBLEMS OF UNIVALENCE FOR THE CLASS TR(1/2)

M. Sobczak-Kneć, P. Zaprawa

In this paper we discuss the class $T R\left(\frac{1}{2}\right)$ consisted of typically

$$
J(z)=\int_{-1} \frac{\sqrt{\sqrt{1-2 z t+z^{2}}}}{a} \mu(t)
$$

where μ is the probability measure on $[-1,1]$. The problems of local univalence, univalence, convexity in the direction of real and imaginary axes are examined. This paper is the continuation of research on $T R\left(\frac{1}{2}\right)$, especially concerning problems, which results were published in [5].
Let \mathcal{A} denote the set of all functions which are analytic in the unit disk $\Delta=\{z \in \mathbf{C}:|z|<1\}$ and normalized by $f(0)=f^{\prime}(0)-1=0$. Let $T R$ denote the well known class which consists of typically real functions. Recall that the function $f \in \mathcal{A}$ belongs to $T R$ if and only if the condition

$$
\Im z \cdot \Im f(z) \geq 0 \quad z \in \Delta
$$

is satisfied.
Rogosinski [4] proved that $f \in T R \Longleftrightarrow f(z)=\int_{-1}^{1} k_{t}(z) d \mu(t)$, where $k_{t}(z)=\frac{z}{1-2 z t+z^{2}}$, and μ belongs to $P_{[-1,1]}$, i.e. the collection of all probability measures on $[-1,1]$. Similarly Szynal [6] defined the class $T R\left(\frac{1}{2}\right)=\left\{f \in \mathcal{A}: \quad f(z)=\int_{-1}^{1} f_{t}(z) d \mu(t), \quad \mu \in P_{[-1,1]}\right\}$, where

$$
\begin{equation*}
f_{t}(z)=z\left(\frac{k_{t}(z)}{z}\right)^{\frac{1}{2}}=\frac{z}{\sqrt{1-2 t z+z^{2}}} \tag{1}
\end{equation*}
$$

(C) M. Sobczak-Kneć, P. Zaprawa, 2008

In this paper Szynal considered the coefficients problems. He proved that if $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ is in $T R\left(\frac{1}{2}\right)$ then $\left|a_{n}\right| \leq 1$. This fact means that the coefficients of the function $f \in T R\left(\frac{1}{2}\right)$ are bounded by the same number as the coefficients of functions in the classes $C V, C V(i), S T\left(\frac{1}{2}\right)$ consisting of convex functions, convex in the direction of the imaginary axis functions, and starlike of order $\frac{1}{2}$ functions, respectively. Moreover, he proved that the functions of the class $T R\left(\frac{1}{2}\right)$ are typically real, so $T R\left(\frac{1}{2}\right) \subset T R$.

We shall point out the property, which in essential manner differs the class $T R\left(\frac{1}{2}\right)$ from the class $T R$. However the functions k_{t} of the class $T R$ are starlike, the functions of the form

$$
\alpha k_{1}+(1-\alpha) k_{-1}, \alpha \in(0,1)
$$

are not univalent. These functions are extremal in many univalence problems. One of the most important functions is the function

$$
z \mapsto\left[k_{1}(z)+k_{-1}(z)\right] / 2=\frac{z\left(1+z^{2}\right)}{\left(1-z^{2}\right)^{2}},
$$

which is used, for example, to determining the domain of univalence or the domain of local univalence for $T R$.

By analogy to the class $T R$, the kernel functions f_{t} of the class $T R\left(\frac{1}{2}\right)$ are starlike of order $1 / 2$. On the other hand, it is easy to check, that the functions given by the formula

$$
\alpha f_{1}+(1-\alpha) f_{-1}, \alpha \in[0,1]
$$

are univalent and convex in the direction of the imaginary axis. Hence, these functions are not extremal in the problems concerning univalence.

The classes $C V R, C V R(i), S T R\left(\frac{1}{2}\right)$ (where $A R$ denotes the subclass of a class A consisting of functions having real coefficients) and the class $T R\left(\frac{1}{2}\right)$ are connected by the following inclusions, namely

$$
\begin{equation*}
C V R \subset S T R\left(\frac{1}{2}\right) \subset T R\left(\frac{1}{2}\right) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
C V R \subset C V R(i) \subset T R\left(\frac{1}{2}\right) \tag{3}
\end{equation*}
$$

The relations (2) result from the equality $\overline{c o} S T R\left(\frac{1}{2}\right)=T R\left(\frac{1}{2}\right)$ given by Hallenbeck [1], where $\overline{c o} A$ denotes the closed convex hull of A, and the well known theorem of Marx and Strohhäcker .

The fact $\overline{c o} C V R=C V R(i)$ (compare [5]), the relation (2) and convexity of the class $T R\left(\frac{1}{2}\right)$ (see [6]) give us (3).

Now, we are going to prove that the class $T R\left(\frac{1}{2}\right)$ is the essential superclass of $C V R, C V R(i)$ and $S T R\left(\frac{1}{2}\right)$. In order to do this we shall find functions belonging to $T R\left(\frac{1}{2}\right)$ which are not univalent.

Let us consider the functions

$$
F_{t}(z)=\left[f_{t}(z)+f_{-t}(z)\right] / 2, \quad t \in[0,1] .
$$

Theorem 1. For all $t \in(0,1)$ there exist $r_{t} \in(0,1)$ such that functions F_{t} are not locally univalent in $\Delta_{r}, r \geq r_{t}$.

Proof. Let $t \in(0,1)$.
We have $F_{t}^{\prime}(z)=\frac{1}{2}\left[\frac{1-t z}{\left(1-2 t z+z^{2}\right)^{\frac{3}{2}}}+\frac{1+t z}{\left(1+2 t z+z^{2}\right)^{\frac{3}{2}}}\right]$. Hence, the equality $F_{t}^{\prime}(i r)=0$ is equivalent to

$$
\begin{equation*}
\Re(1-i t r)\left(1-r^{2}+2 t i r\right)^{\frac{3}{2}}=0 . \tag{4}
\end{equation*}
$$

Using

$$
\begin{align*}
& \sqrt{1-r^{2}+2 t i r}=\sqrt{\frac{1}{2}\left(1-r^{2}+\sqrt{\left(1-r^{2}\right)^{2}+4 t^{2} r^{2}}\right)}+ \\
& \quad+i \sqrt{\frac{1}{2}\left(-1+r^{2}+\sqrt{\left(1-r^{2}\right)^{2}+4 t^{2} r^{2}}\right)} \tag{5}
\end{align*}
$$

the condition (4) could be written as

$$
\begin{gathered}
{\left[1-r^{2}-\operatorname{tr}\left(1-2 t r+r^{2}\right)\right]\left[1-r^{2}+\operatorname{tr}\left(1+2 t r+r^{2}\right)\right]+} \\
\quad\left(1-r^{2}\right)\left(1+t^{2} r^{2}\right) \sqrt{\left(1-r^{2}\right)^{2}+4 t^{2} r^{2}}=0 .
\end{gathered}
$$

Let us denote the left hand side of (5) by $G(t, r)$. The function G is continuous with respect to both variables. Moreover, $G(t, 0)=2$ and $G(t, 1)=-4 t^{2}\left(1-t^{2}\right)<0$ for $t \in(0,1)$. We conclude that there exist $r_{t} \in(0,1)$ such that $G\left(t, r_{t}\right)=0$.

Now, we determine the smallest number r_{t}, which was described above. Solving the system of equations

$$
\left\{\begin{array}{l}
G(t, r)=0 \\
\frac{\partial G}{\partial t}(t, r)=0
\end{array}\right.
$$

we obtain

$$
\left\{\begin{array}{l}
G(t, r)=0 \\
t^{2}=\frac{-5+6 r^{2}+3 r^{4}}{8 r^{2}}
\end{array}\right.
$$

Hence $\left(1+r^{2}\right)^{3}\left(7-9 r^{2}\right)=0$ and consequently $r=\frac{\sqrt{7}}{3}=0,88 \ldots$. We have proved that

Corolary. The radius of locally univalence $r_{L U}$ of $T R\left(\frac{1}{2}\right)$ satisfies the condition $r_{L U} \leq \frac{\sqrt{7}}{3}$.

This means that there are the functions of the class $T R\left(\frac{1}{2}\right)$ which are not univalent in each disk $\Delta_{r}, r>\frac{\sqrt{7}}{3}$.

In the proof of the following theorems we will apply the Krein-Milman Theorem. This theorem concerns the extremalization of linear and continuous functionals in a given $A \subset \mathcal{A}$. By this theorem, such real functionals attain the lowest and the greatest values on the extreme points of A.
Theorem 2. If $f \in T R\left(\frac{1}{2}\right)$ then $\Re \frac{f(z)}{z}>\frac{1}{2}$ for $z \in \Delta$.
In the proof of Theorem 2 we use the following lemma.
Lemma 1. Let $\frac{f(z)}{z}=\left(\frac{g(z)}{z}\right)^{2}$. Then $f \in S T \Longleftrightarrow g \in S T\left(\frac{1}{2}\right)$.
Proof of Theorem 2.: The functional $\Re \frac{f(z)}{z}$ is linear and continuous so

$$
\min \left\{\Re \frac{f(z)}{z}, f \in T R\left(\frac{1}{2}\right)\right\}=\min \left\{\Re \frac{f_{t}(z)}{z}, t \in[-1,1]\right\} .
$$

Let f_{t} be given by (1). From Lemma 1 it follows that there exists the function $g_{t} \in S T\left(\frac{1}{2}\right)$ which satisfies $\frac{f_{t}(z)}{z}=\sqrt{\frac{g_{t}(z)}{z}}$. Using the known inequality $\Re \sqrt{\frac{h(z)}{z}}>\frac{1}{2}$ for $h \in S T$ we obtain the conclusion of this theorem.
THEOREM 3. The radius of bounded rotation $r_{P^{\prime}}$ of $T R\left(\frac{1}{2}\right)$ is equal to $r_{P^{\prime}}=\frac{\sqrt{2}}{2}=0,707 \ldots$

Proof. From the Krein-Milman Theorem we have

$$
\begin{aligned}
\min & \left\{\Re f^{\prime}(z), f \in T R\left(\frac{1}{2}\right),|z|=r\right\}>0 \Longleftrightarrow \\
& \min \left\{\Re f_{t}^{\prime}(z), t \in[-1,1],|z|=r\right\}>0 .
\end{aligned}
$$

Let f_{t} be given by (1). Since $f_{t} \in S T\left(\frac{1}{2}\right)$, there is

$$
\frac{z f_{t}^{\prime}(z)}{f_{t}(z)} \prec \frac{1}{1-z} .
$$

It means that there exists a function ω_{1} of the class $B=\{\omega \in \mathcal{A}: \omega(0)=$ $0,|\omega(z)|<1, z \in \Delta\}$ such that

$$
\frac{z f_{t}^{\prime}(z)}{f_{t}(z)}=\frac{1}{1-\omega_{1}(z)} .
$$

Hence, we have

$$
\begin{equation*}
f_{t}^{\prime}(z)=\frac{f_{t}(z)}{z} \cdot \frac{1}{1-\omega_{1}(z)} . \tag{6}
\end{equation*}
$$

From Theorem 1 it follows that

$$
\Re \frac{f_{t}(z)}{z}>\frac{1}{2}, z \in \Delta,
$$

and consequently

$$
\frac{f_{t}(z)}{z} \prec \frac{1}{1-z} .
$$

Therefore, there exists a function $\omega_{2} \in B$ such that

$$
\begin{equation*}
\frac{f_{t}(z)}{z}=\frac{1}{1-\omega_{2}(z)} . \tag{7}
\end{equation*}
$$

Finally, the function f_{t}^{\prime} can be written in the form

$$
\begin{equation*}
f_{t}^{\prime}(z)=\frac{1}{1-\omega_{2}(z)} \cdot \frac{1}{1-\omega_{1}(z)} \tag{8}
\end{equation*}
$$

The condition $\Re f_{t}^{\prime}(z)>0$ is equivalent to the condition $\left|\operatorname{Arg} f_{t}^{\prime}(z)\right|<\frac{\pi}{2}$. Using (8) and simple estimation we have
$\left|\operatorname{Arg} f_{t}^{\prime}(z)\right|=\left|\operatorname{Arg} \frac{1}{1-\omega_{2}(z)} \cdot \frac{1}{1-\omega_{1}(z)}\right| \leq \max _{\omega \in B} 2\left|\operatorname{Arg} \frac{1}{1-\omega(z)}\right| \leq 2 \arcsin |z|$

Hence, if $2 \arcsin |z|<\frac{\pi}{2}$ or equivalently $|z|<\sin \frac{\pi}{4}$ then $\Re f_{t}^{\prime}(z)>0$.
The equality in (??) appears for $\omega_{1}(z) \equiv z, \omega_{2}(z) \equiv z$. Hence, from (7) we get the function $f_{t}(z)=\frac{z}{1-z}$ for which $\Re f^{\prime}(z)$ has negative values while $|z|>\frac{\sqrt{2}}{2}$.
THEOREM 4. The radius of convexity in the direction of the imaginary axis $r_{C V(i)}$ of $T R\left(\frac{1}{2}\right)$ is equal to $r_{C V(i)}=\sqrt{2 \sqrt{3}-3}=0,68 \ldots$

Proof. It is known that, if $f \in \mathcal{A}$ then

$$
f \in C V R(i) \Longleftrightarrow z f^{\prime}(z) \in T R .
$$

Hence

$$
f \in C V R(i) \Longleftrightarrow \Im z \Im z f^{\prime}(z) \geq 0, \quad z \in \Delta
$$

Let $z \in \Delta, \Im z>0$ and $f \in T R\left(\frac{1}{2}\right)$.
From the Krein-Milman Theorem
$\min \left\{\Im z f^{\prime}(z), f \in T R\left(\frac{1}{2}\right), z \in \Delta\right\}=\min \left\{\Im z f_{t}^{\prime}(z), t \in[-1,1], z \in \Delta\right\}$, where f_{t} is given by (1).

Now we use the theorem established by MacGregor in [3]
Theorem A. If $f \in S T\left(\frac{1}{2}\right)$ then $f\left(\Delta_{r}\right)$ is convex for $r \leq \sqrt{2 \sqrt{3}-3}$.
Since $f_{t} \in S T\left(\frac{1}{2}\right)$, from Theorem A in particular it follows that the set $f_{t}\left(\Delta_{r}\right)$ is convex in the direction of the imaginary axis for $r \leq \sqrt{2 \sqrt{3}-3}$.

We are going to prove that for $r>\sqrt{2 \sqrt{3}-3}$ there exists a function $f_{t_{0}}$ of the form (1) such that $\Im z \Im z f_{t_{0}}^{\prime}(z)<0$ for some $z \in \Delta_{r}$.
Let $G_{t}(z) \equiv z f_{t}^{\prime}(z)$. We have $G_{t}\left(r e^{i \varphi}\right)=r e^{i \varphi} \frac{1-t r e^{i \varphi}}{\left(1-2 \text { tre } e^{i \varphi}+r^{2} e^{2 i \varphi}\right)^{\frac{3}{2}}}$. The argument of the tangent vector to the curve $\Gamma=\partial G_{t}\left(\Delta_{r}\right)$ in the point $G_{t}(r)$ is equal to

$$
\arg \left(\frac{\partial G_{t}}{\partial \varphi}(r)\right)=\arg \left(i \cdot w_{t}(r)\right)=\frac{\pi}{2}+\arg w_{t}(r)
$$

where $w_{t}(r)=\frac{r\left(1-t r-2 r^{2}+t^{2} r^{2}+t r^{3}\right)}{\left(1-2 t r+r^{2}\right)^{\frac{5}{2}}}$.
The inequality $w_{t}(r) \geq 0$ is true for all $t \in[-1,1]$ if $r \leq \sqrt{2 \sqrt{3}-3}$. For $r>\sqrt{2 \sqrt{3}-3}$ and $t_{0}=\frac{1-r^{2}}{2 r}$ the inequality $w_{t_{0}}(r)<0$ holds.

It means that for $r>\sqrt{2 \sqrt{3}-3}$ the argument of the tangent vector to Γ in $G_{t_{0}}(r)$ is equal to $\frac{-\pi}{2}$. Hence, there exists φ_{0} such that

$$
\Im G_{t_{0}}<0 \quad \text { for } \quad \varphi \in\left[0, \varphi_{0}\right) .
$$

Furthermore, $f\left(\Delta_{r}\right)$ is convex in the direction of the imaginary axis in the disk $|z|<\sqrt{2 \sqrt{3}-3}$ and this number is best possible. The extremal function is

$$
f_{t_{0}}(z)=\frac{z}{\sqrt{1-\frac{1-r^{2}}{r} z+z^{2}}}
$$

Using the similar method to that from the proof of Theorem 2, we estimate the radius of convexity in the direction of the real axis in $T R\left(\frac{1}{2}\right)$. Koczan in [2] determined the representation formula for the class $C V R(1)$. Namely
Theorem B. The function f belongs to $C V R(1)$ if and only if $f \in \mathcal{A}$, f is real on $(-1,1)$, and there exists $\beta \in[0, \pi]$ such that

$$
\Re\left[\left(1-2 z \cos \beta+z^{2}\right) f^{\prime}(z)\right]>0, \quad z \in \Delta .
$$

We make use of the following fact

$$
\begin{equation*}
\max \left\{\operatorname{Arg} \frac{1-z}{1-\zeta}:|\zeta| \leq|z|<1\right\}=2 \arcsin |r| \tag{9}
\end{equation*}
$$

Indeed, from the maximum principle for analytic functions we have

$$
\max \left\{\operatorname{Arg} \frac{1-z}{1-\zeta}:|\zeta| \leq|z|<1\right\}=\max \left\{\operatorname{Arg} \frac{1-z}{1-\zeta}:|z|=|\zeta|<1\right\}
$$

Using twice the inequality $\operatorname{Arg}(1-w) \leq \arcsin |w|$ for $w \in \Delta$ we obtain (9) .

Theorem 5. The radius of convexity in the direction of the real axis $r_{C V(1)}$ of $T R\left(\frac{1}{2}\right)$ satisfies the inequality $\sin \frac{\pi}{8}=0.38 \ldots<r_{C V(1)} \leq \sqrt{2}-1$. Proof. Let $f \in T R\left(\frac{1}{2}\right)$. Then

$$
\Re\left[\left(1-2 z \cos \beta+z^{2}\right) f^{\prime}(z)\right]=\int_{-1}^{1} \Re\left[\left(1-2 z \cos \beta+z^{2}\right) f_{t}^{\prime}(z)\right] d \mu(t) .
$$

From (8) we have

$$
\left(1-2 z \cos \beta+z^{2}\right) f_{t}^{\prime}(z)=\frac{1-2 z \cos \beta+z^{2}}{\left(1-\omega_{1}(z)\right)\left(1-\omega_{2}(z)\right)},
$$

where $\omega_{1}, \omega_{2} \in B$.
Let us consider the inequality

$$
\left|\operatorname{Arg} \frac{1-2 z \cos \beta+z^{2}}{\left(1-\omega_{1}(z)\right)\left(1-\omega_{2}(z)\right)}\right|<\frac{\pi}{2},
$$

or equivalently

$$
\begin{equation*}
\left|\operatorname{Arg} \frac{1-z e^{-i \beta}}{1-\omega_{1}(z)} \cdot \frac{1-z e^{i \beta}}{1-\omega_{2}(z)}\right|<\frac{\pi}{2} \tag{10}
\end{equation*}
$$

We have $\left|\omega_{k}(z)\right| \leq|z|, k=1,2$. From (9) it follows now that if $4 \arcsin |z|<\frac{\pi}{2}$ then the inequality (10) is satisfied. Consequently, if $|z|<\sin \frac{\pi}{8}$ then

$$
\begin{equation*}
\Re\left[\left(1-2 z \cos \beta+z^{2}\right) f_{t}^{\prime}(z)\right]>0 . \tag{11}
\end{equation*}
$$

This and Theorem B leads to $r_{C V(1)} \geq \sin \frac{\pi}{8}$. The extremal function in the inequality (11) does not have real coefficients so

$$
r_{C V(1)}>\sin \frac{\pi}{8} .
$$

Moreover, for the function

$$
\begin{equation*}
f(z)=\frac{z}{1-z^{2}}=\frac{1}{2}\left(\frac{z}{1+z}+\frac{z}{1-z}\right) \in T R\left(\frac{1}{2}\right) \tag{12}
\end{equation*}
$$

the set $f\left(\Delta_{r_{0}}\right), r_{0}=\sqrt{2}-1$ is convex in the direction of the real axis and the number r_{0} is best possible. It results from the fact that the function

$$
\frac{f(i z)}{i}=\frac{z}{1+z^{2}}
$$

is convex in the direction of the imaginary axis in the set $i \cdot H=\left\{r e^{i \theta}\right.$: $\left.1-r^{2}>2 r|\cos \theta|\right\}$. Hence, the function (12) is convex in the direction of the real axis in the set H of the form $\left\{r e^{i \theta}: 1-r^{2}>2 r|\sin \theta|\right\}$. Therefore $r_{C V R(1)} \leq \sqrt{2}-1$.

From given above theorems we obtain the corollaries concerning starlikeness and convexity of functions from $T R\left(\frac{1}{2}\right)$.
Corolary. The radius of starlikeness $r_{S T}$ of $T R\left(\frac{1}{2}\right)$ satisfies the inequality $\frac{\sqrt{2}}{2} \leq r_{S T} \leq \frac{\sqrt{7}}{3}$.

The left hand side inequality results from the fact that the functions of the class $\left\{f \in \mathcal{A}: \Re \frac{f(z)}{z}>\frac{1}{2}, z \in \Delta\right\}$ are starlike in the disk $\Delta_{\frac{\sqrt{2}}{2}}$, (see [7]) and from Theorem 2. The upper estimation is the consequence of the inequality proved in Theorem 1.
From Theorem 4 we obtain
Corolary. The radius of convexity $r_{C V}$ of $T R\left(\frac{1}{2}\right)$ satisfies the inequality $r_{C V} \leq \sqrt{2}-1$.

Bibliography

[1] Hallenbeck D. J. Convex hulls and extreme points of families of starlike and close-to-convex mappings / D. J. Hallenbeck // Pacific J. Math. 57. (1975). 167-176.
[2] Koczan L. Typically real functions convex in the direction of the real axis / L. Koczan // Annales UMCS 43. (1989). 23-29.
[3] McGregor M. T. On three classes of univalent functions with real coefficients / M. T. McGregor // J. London Math. Soc. 39. (1964). 43-50.
[4] Rogosinski W. W. Über positive harmonische Entwicklungen und typischreele Potenzreihen / W. W. Rogosinski // Math. Z. 35. (1932). 93-121.
[5] Sobczak-Kneć M. Covering domains for classes of functions with real coefficients / M. Sobczak-Kneć, P. Zaprawa // Complex Variables and Elliptic Equations 52. No. 6. (2007). 519-535.
[6] Szynal J. An extension of typically real functions, Annales / J. Szynal // UMCS 48. (1994). 193-201.
[7] Tuan P.D. Radii of starlikeness and convexity for certain classes of analytic functions / P. D. Tuan, V. V. Anh // J. Math. Anal. Appl. 64. (1978). 146-158.

Department of Applied Mathematics
Lublin University of Technology
ul. Nadbystrzycka 38D
20-618 Lublin, Poland
Email: m.sobczak-knec@pollub.pl
Email: p.zaprawa@pollub.pl

