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Abstract. In order to exploit the full-earth viewing potential depth measurements at 470, 550 and 660 nm, plus the colum-
of satellite instruments to globally characterise aerosols, newar water vapour (from MODIS) and the modelled absorp-
algorithms are required to deduce key microphysical paramtion aerosol optical depth at 500 nm (from OMI), was able to
eters like the particle size distribution and optical parameterssimultaneously retrieve the daily averaged size distribution,
associated with scattering and absorption from space remotiéhe coarse mode volume, the imaginary part of the complex
sensing data. Here, a methodology based on neural networkefractive index, and the spectral single scattering albedo —
is developed to retrieve such parameters from satellite inputsvith moderate precision: correlation coefficients in the range
and to validate them with ground-based remote sensing dat&.368< R < 0.514. The network failed to recover the spec-
For key combinations of input variables available from the tral behaviour of the real part of the complex refractive index.
MODerate resolution Imaging Spectro-radiometer (MODIS) This new methodological approach appears to offer some po-
and the Ozone Measuring Instrument (OMI) Level 3 datatential for moderately accurate daily retrieval of the total vol-
sets, a grid of 100 feed-forward neural network architecturesume concentration of the coarse mode of aerosol at the Saha-
is produced, each having a different number of neurons andan dust peak in the area of Northern Africa.
training proportion. The networks are trained with principal
components accounting for 98 % of the variance of the inputs
together with principal components formed from 38 AErosol
RObotic NETwork (AERONET) Level 2.0 (Version 2) re- 1 Introduction
trieved parameters as outputs. Daily averaged, co-located and
synchronous data drawn from a cluster of AERONET sitesAerosol particles reflect and absorb solar radiation in the at-
centred on the peak of dust extinction in Northern Africa mosphere shading the earth’s surface. They also reduce visi-
is used for network training and validation, and the optimal bility and can have a direct effect on human health (Samet et
network architecture for each input parameter combinatioral., 2000). Moreover, they are used to determine the earth’s
is identified with reference to the lowest mean squared erhydrological cycle (Remer et al., 2005). However, because
ror. The trained networks are then fed with unseen data aof inadequate quantitative knowledge of the global spatial
the coastal dust site Dakar to test their simulation perfor-and temporal variation of aerosol optical properties (Hansen
mance. A neural network (NN), trained with co-located andet al., 2005), there is uncertainty in the magnitude of their
synchronous satellite inputs comprising three aerosol opticatontribution to the earth’s climate and planetary radiative-
forcing (IPCC, 2007, 2013). With the expansion of the global
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AErosol RObotic NETwork (AERONET) of high-quality re- measurements. We assess the potential for achieving this
mote sensing measurement instruments (Holben et al., 1998)y constructing neural network (NN) models and applying
and the development of advanced and robust inversion algathem to data from the region of Northern Africa — where the
rithms for the retrieval of aerosol parameters (Dubovik anddust’s global aerosol optical depth (AOD) peaks (Chin et al.,
King, 2000), our understanding of aerosol microphysics and2002). This work is motivated then by the potential offered
optical properties has improved greatly. However, the sizeby capitalizing on the full-earth coverage of AOD,® and

of the uncertainty associated with the aerosol contributionabsorption aerosol optical depth AAOD provided by satel-
is known to be unacceptably large, and must be reduced blite remote sensing instruments together with AERONET-
at least a factor of 3 (Schwartz, 2004). An attempt to ad-quality retrievals of the aerosol volume size distribution
dress this uncertainty has been outlined in a recent reportAVSD), complex refractive index (CRI), single scattering
of Mishchenko et al. (2007), which provides the aerosol pa-albedo (SSA) and the particle asymmetry factor (ASYM).
rameter retrieval accuracy requirements for climate studiesThe key to building the required bridge between ground and
Retrieval of aerosol microphysical properties from inversion satellite retrievals is to train NNs on AERONET ground-truth
of direct sun and sky radiance measurements is provided bgata so as to learn the relationship between combinations of
AERONET (Dubovik and King, 2000; Dubovik et al., 2002). satellite AOD, BO and AAOD inputs and AERONET mi-
Unfortunately, these retrievals have low and inhomogeneousrophysical and optical parameters as outputs. The potential
spatial resolution (AERONET’s ground-based remote sensof the NNs to extrapolate is then tested by feeding them with
ing instruments are densely situated in and around citiesinseen satellite inputs and comparing the outputs against co-
and sparsely located elsewhere). Furthermore, AERONETocated and synchronous ground-based AERONET data. In
stations are largely absent from vast uninhabited areas likeur study, we use the latest AERONET Level 2.0 Version
deserts, oceans and the ice-caps which are the largest sourc2énversion products that are cloud-screened and quality as-
of planetary aerosol. Marine aerosol retrievals, in particu-sured (AERONET, 2012).

lar, are only available at island sites or in coastal regions.

In contrast, space-bound satellite instruments like the Mod-1.2 Contemporary studies

erate Resolution Imaging Spectroradiometer (MODIS) in-

strument on board the satellites Terra and Aqua, sample thin the last 5 years or so, multivariate fitting techniques
vertical atmospheric column of the whole earth, but theirincluding function-approximating NNs have been brought
retrieval algorithms are not currently able to provide reli- to bear on problems in the field of aerosol science. Of
able proxies containing information on the mean particleparamount importance is the finding that a characteristic
size of fine and coarse aerosol, the complex refractive indexaerosol fine mode volume and effective radius can be derived
and particle shape — all necessary for a full understandingrom measurements of the AOD, the Angstrém Exponent (8)
of aerosol microphysics (Remer et al., 2005) and for glob-and its curvature using a multi-functional approach (Gobbi et
ally characterizing different types of aerosols and sourcesl., 2007). A further study constructed a multiple-input single
(Tanré et al., 1996). Importantly, a statistically optimized in- output NN that took radiances, solar viewing angles, and ter-
version algorithm applied to multi-angle photo-polarimetric rain elevation from MODIS as input, and predicted the values
measurements has recently demonstrated that aerosol propf co-located AERONET AOD values as output (Radosavl-
erties are obtainable from the POLarization and Directional-jevic et al., 2010). The study used data from 221 AERONET
ity of the Earth’s Reflectances (POLDER) instrument on thesites and demonstrated that AERONET AOD could be suc-
platforms Advanced Earth Observing Satellite-1 (ADEOS- cessfully estimated from satellite inputs. Taking this further,
1) (Deuzé et al., 2000, 2001) and Polarization & Anisotropy Ristovski et al. (2012) trained an NN-based estimator of re-
of Reflectances for Atmospheric Sciences coupled with Ob-rieval accuracy which was globally validated on a large sam-
servations from a Lidar (PARASOL) (Dubovik et al., 2011; ple of co-located MODIS and AERONET AOD retrievals.
Hasekamp et al., 2011; Waquet et al., 2014) satellites, buComplementing this work, Albayrak et al. (2013) used an
these methods have not yet been independently validateMN-based approach to perform a global bias adjustment of
with long data records. In this work, gridded x11 de-  the MODIS-retrieved AOD relative to co-located AERONET
gree) data from operational MODerate resolution Imagingdata. NN models were also applied in a very recent study
Spectro-radiometer (MODIS) and the Ozone Measuring In-designed to detect and retrieve volcanic-ash-cloud proper-
strument (OMI) instruments was used in order to exploit aties from multi-spectral infrared MODIS measurements over
long 9-year period of data overlap with AERONET measure-Mount Etna during recent volcanic eruptions (Picchiani et al.,

ments. 2011). In the context of the retrieval of vertical aerosol pro-
files, Sellitto et al. (2012) used an NN to invert SCanning
1.1 Motivation Imaging Absorption SpectroMeter for Atmospheric CHar-

tographY (SCIAMACHY) data and demonstrated that in-
This paper focuses on the question of how to retrieveclusion of visual radiation could reduce biases and increase
daily estimates of all aerosol parameters from satellitethe accuracy of ozone profiles at tropospheric levels. These
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studies are a sign that the aerosol community is starting td-inally, we conclude in Sect. 6 by assessing the overall po-

embrace such methods. tential offered by the NN methodology for retrieving aerosol
AERONET’s latest Level 2.0 Version 2 inversion algo- microphysical and optical parameters from space.

rithm retrieves all of the aforementioned aerosol microphys-

ical and optical parameters from ground-based sensors by

performing a numerical inversion of the observations, whichp  Methodology

must be performed for each case. On the contrary, the NNs

are potentially able to simultaneously retrieve the AVSD, Aerosol particles from different sources have different sizes,
CRI, SSA, and ASYM for the entire data sample in a single absorption properties, and shape. They are typically classi-
step. NN retrieval schemes therefore (potentially) have thefied into a small number of types-(5—10) including for ex-
capacity to produce real-time retrievals for large data sets. T&@mple: desert or soil dust, smoke or organic and black carbon
be more specific, the NN calculates a nonlinear regressiofirom biomass burning, urban sulphates, marine sea salt, vol-
function yielding an estimate for the atmospheric state givencanic ash as well as their mixtures. Researchers in the field
by the measurement vector (applying to all cases covered byave found that different aerosol types correlate strongly with
the training space), whereas other methods (like look-up tapairs of different aerosol parameters, but no consensus has
ble and optimal estimator methods) match aerosol propertieget been reached on a single method to disambiguate and uni-
to the corresponding measurement vector. The calculation ofersally distinguish them. Therefore, in this work, in order to
this function may require considerable time since, dependintavoid as much as possible such potential sources of data in-
on the size of the training data set, NN training can be long,nomogeneity or inconsistency, we adopted an independent

but, once complete, the retrieval using the trained optimalgualitative approach to aerosol typing which is described in
NN is instantaneous. The theoretical basis underpinning th&ect. 2.1.3.

NN function approximation scheme is presented in Sect. 3.1.

o 2.1 Data selection
1.3 Objectives

. This work draws on 4 differen rces: llite in-
Motivated by the need to develop a methodology to produce s work draws o different data sources: satellite

d . . . . puts from MODIS and the OMI, ground-based remote sens-
global satellite ret.rlevz_als of aerosol microphysical and opt|caling data from AERONET, and global chemical model output
parameters, and inspired by the success of recent NN model

this paper reports on the initial phase of AEROMARt: Qata from the Georgia Institute of Technology’'s GOCART

apcg. meteo.noa.gr/aeromag2-year EU-funded project that model (Chin et al., 2000, 2002; Ginoux et al., 2001). MODIS

. ; i . and OMI provide satellite inputs and co-located and syn-
began n March 20.12‘ This, our first major study, has the f°|'chronous values of these inputs as well as output parame-
lowing main objectives:

ters at the ground are provided by AERONET. The GOCART
1. to assess the potential of performing aerosol typing bydata is used for aerosol typing.

using Global Ozone Chemistry Aerosol Radiation and

Transport (GOCART) model outputs to select suitable2.1.1  Satellite inputs

desert dust sites at the peak of dust extinction in North-
ern Africa, MODIS on board the Terra Earth Observation Satellite
(EOS) (EOS-AM) and Aqua (EOS-PM) satellites has been
2. to seeifitis possible to standardize and optimize NN ar-capturing data in 36 spectral bands from 400 to 1440 nm
chitectures capable of learning the relationship betweersjnce 1999 with a spatial resolution ranging from 250 m—
the inputs and outputs for this region (i.e. for this aerosol 1 km. Collectively, the instruments image the entire earth’s
type), surface every 1-2 days. Daily averaged data was down-

3. to validate the trained NNs with unseen data at a distan{02d€d In hierarchical data format from the MODIS Level
geolocation in the same region (i.e. aerosol type) and to> COllection 5.1 Product (MODIS, 2012). From these files,
assess their performance using statistical regression ar@PD(470), AOD(550), AOD(660) time series provided at

timescale analysis. 1x 1 degree spatial resolution were extracte_d. In addition,
co-located and synchronous, Level 2, near-infrared, mean
1.4 Structure of the paper total columnar water vapour @g@) from the Aqua satel-

lite (data set MYDO5_L2) was also downloaded. Finally,
The data used and an outline of the NN model are presentethe daily estimate of near-ultraviolet (UV) AAOD(500) was
in Sect. 2. Section 3 then presents the theory involved indownloaded from the OMI Level 3 Near-UV Aerosol Data
training and validating such NNs. In Sect. 4, the results ofProduct (OMAERUV) Product (OMI, 2012) for co-located
NN training and testing for different input configurations are and synchronous data (with MODIS) to test the impact of
presented and key findings, major impacts, as well as prosbsorption on NN retrieval quality. As a result, daily aver-
and cons of the method are noted and analyzed in Sect. mges of these parameters were obtained for the entire global
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Figure 1. Schematic showingn) the Northern African (NAF) AERONET sites used for NN training (red) and the coastal AERONET site at
Dakar (green) used for simulation with data sei®),the NAF study region in the context of the global distribution of TOMS dust sources
(Prospero et al., 2002]¢) an overlay of the AERONET sites on the peak of dust AOD extinction for the study region extracted from the
mean global GOCART model output in shown(@) (Chin et al., 2000, 2002).

domain, spanning the full temporal record of available data:satellite-driven NN simulated outputs with AERONET) is

4 July 2002 to 4 July 2012. described briefly in Appendix A. Furthermore, it has been
found that there is a (small) difference between AODs ob-
2.1.2 AERONET products tained by MODIS and AERONET which is important and

non-negligible (Remer et al., 2005; Albayrak et al., 2013)
The AERONET Level 2.0 Version 2 inversion products con- Hence, the Angstrém Exponent & (6750 nm) was cal-
tain retrievals for 116 different aerosol parameters includingculated and used to extrapolate AERONET AODs to match
the AVSD: dV (r)/dIns (in um?®pm—2) retrieved in 22 loga-  those available from space at MODIS wavelengths with the
rithmically equidistant radial bins spanning the range of par-following rearrangement:
ticle radii: 0.05 pm< r < 15 pum, the real and imaginary parts 1\ 402
of the refractive index: CRI-R(, CRI-I(%), and the opti- AOD ().2) = AOD (A1) (_2) ) 1)
cal parameters: AODj, SSAQ), and ASYM@) centered Al

at 4 Wavelengthsx=440, 675, 870 and 1020 nm. Daily  These interpolated AERONET AOD(470), AOD(550),

averaged retrievals were downloaded for the entire gIoba!A\OD(%O) values were also appended to the AERONET data
AERONET record (comprising 809 sites) and spanning theget Thjs data set therefore contains both ground retrievals of
period: 1 March 1996 to 7 April 2012. For each site, its el'_the satellite inputs (aligned to the central wavelengths pro-

evation (height above sea level in metres), its Eastern Iong'Vided by MODIS) plus the output parameters which the NN
tude and Northern latitude were extracted. In addition, al'model is built to retrieve.

though AERONET’s Level 2.0 Version 2 inversion prod-

ucts also provide the mean geometric radii of the fine and2.1.3  Aerosol typing

coarse modes(f) andr(c), their standard deviations(f)

ando (c), and their volume concentrations( /) andV (¢); In order to isolate suitable desert dust data for this study,
the fine fractionn which is not provided was also calcu- we developed a qualitative two-step approach. In the first
lated and appended to the AERONET data record. All ofstep, the AERONET data set was ranked by the number of
these parameters are calculated from the AVSD by speceomplete records available at each site (without data gaps
ifying a mode separation points, and, in what follows, in the input parameters AODs,,8, AAOD, and the out-

we will refer to them collectively as secondary microphys- put parameters AVSD, CRI-R, CRI-I, SSA and ASYM). The
ical parameters. Their calculation (required for comparingrequirement for records to be complete caused the number
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of sites to drop from 807 to 623 sites. It was found, for ex- the value furthest from the sample mean (usually applied to
ample, that the top-ranked site in the study region (Northermormally distributed data). Since the median is more sta-
Africa) is Banizoumbou (Niger) which contains 2283 com- tistically robust when analyzing data that is skew-normal,
plete data records. The second step of our approach aimGrubb’s Test was applied with reference to the sample me-
to answer the question: how many of these daily averagedlian rather than the sample mean. This procedure was ap-
records are dust dominated? For this, the GOCART modeplied iteratively to data sets A and B (used to train the NNs)
AOD extinction per aerosol type was used. GOCART pro- until outliers were removed at the 68 % confidence level of
vides 3-hourly measurements of the total extinction AOD asthe entire two-tailed data distribution. Outliers were delib-
well as the contribution to total extinction AOD of sulphate erately not removed from the inputs used in testing the NN
(SO), organic carbon (OC), black carbon (BC), desert (min- so that the ability of the NNs to extrapolate on raw, unseen
eral) dust and sea salt. GOCART data was downloaded fodata could be properly tested. The data selection scheme pro-
the first 155 AERONET sites ranked in step 1 by the numberduced dust-typed input output data that (a) is homogeneous
of complete records. This list accounts for 75 % of all avail- (does not contain parameter data gaps), (b) is wavelength-
able Level 2.0 Version 2 inversions. GOCART provides eightmatched and (c) is free of biasing values (at the 68 % level of
3-hourly measurements per day, which were averaged to proconfidence).
duce daily averages and expressed as a percentage of the total
extinction AOD for each aerosol type. The percentage of dusR.2 The NN model
was then used as a basis for re-ranking the list of high data
volume sites. Table 1 shows the AERONET complete-record~eed-forward NNs having at least one layer of hidden neu-
ranked-sites, ranked by dust contribution (according to GO+ons whose activation functions, are nonlinear hyperbolic
CART data) for the study region (Northern Africa). tangent (Tanh) functions (or other general nonlinear sig-
In Table 1, data set A comprises AERONET sites that op-moidal functions), are able to operate as universal function
erate the older CIMEL model | sun photometers which lie approximators (Cybenko, 1989; Hornik et al., 1989). This
on the peak of dust AOD extinction as extracted from themeans that, given enough hidden neurons and training data,
mean global GOCART model output, and which are verified such networks are capable, in principle, of learning the math-
via cross reference with the strongest TOMS dust sourcegmatical relation between inputs and outputs. The input and
(shown in Fig. 1). Data set B comprises those sites that opeutput parameters used in this work were connected via two
erate the newer CIMEL model Il sun photometers which, in network layers — the first layer containing hidden neurons
addition, also contribute measurements of near-UV AOD atwith Tanh activation functions and the second layer contain-
380 and 500 nm. This separation of the Northern Africa dataing output neurons having linear activation functions. We
was made so as to investigate the possible effect of UV AODalso tested three-layer models that used two layers of hid-
inputs on NN model performance. Dakar was selected as thden neurons but the results were worse than those obtained
testing site since: (i) it has the largest number of days of co-here. The relation between input and output parameters for
located synchronous satellite measurements, (i) it is also lothe type of NN used in this study is presented in Sect. 3.1,
cated on the peak of dust AOD extinction, and (iii) it operatestogether with details of the methodology adopted for eval-

the newer model Il CIMEL sun photometer. uating network training (Sect. 3.2) and network validation
(Sect. 3.3). Here, we describe the operation of the NN model
2.1.4 Handling of outliers which was coded using MATLAB’s object-oriented script-

ing language in conjunction with its neural network toolbox
While it is generally not good practice to remove outliers (Demuth and Beale, 2004).
since they often correspond to interesting phenomena, in re- NN models require specification of (1) how the perfor-
lation to NNs, it is important that infrequently occurring, ex- mance error associated with the network model is to be mea-
treme data that can significantly bias the data-fitting proce-sured and (2) the architecture used. We measure the per-
dure is removed. This led us to investigate various method$ormance error of the network using the mean squared er-
of outlier detection and to study the distribution of the dataror (MSE) calculated from the difference between its outputs
for each of the input and output parameters. Histograms werand target output data. The details of the macro-statistical ap-
produced that partitioned the data into 20 bins and it wasproach we adopt are presented in Sect. 3.2 in the context of
found that many of the parameters presented near-normailN training. The NN architecture is a more complex entity. It
distributions in quantile—quantile plots (thex®, the vol-  involves not only the number of hidden neurons and their ac-
ume concentration in each radial bin, the CRI-R and thetivation functions, but also the proportion of data used to train
ASYM), but that AODs and the CRI-I presented positive and validate the NN as well as the learning algorithm used.
skew-normal distributions, and the SSA presented negativd he perception that NN models are somewhat subjective is
skew-normal distributions. We elected to apply the Grubbs’due to what is often seen as an arbitrary choice of some or
test (Grubbs, 1969) to remove outliers. Grubb’s Test consistall of these elements. In order to try to make the choice of ar-
of testing one data point at a time and finding and removingchitecture more objective, we developed a new procedure to
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Table 1. Selection of desert-dust dominated AERONET sites for this wdrks the number of complete AERONET daily averaged Level
2.0 Version 2 inversion records available (up to 7 April 2012). For each site, the total mean extinction AOD and the percentage composition
of the total is given for GOCART-modelled aerosol types.

AEROSOL SITE N GOCART Mean AOD & aerosol composition
TYPING <AOD> %SO %OC %BC %SeaSalt % Dust
TRAINING Tamanrasset INM 407 0.793 454% 1.39% 0.63% 0.13% 93.44%
(Data set A) Agoufou 1028 0973 3.70% 247% 0.82% 0.10% 92.91%
Banizoumbou 2283 0.920 457% 3.48% 1.09% 0.11% 90.76%
DMN Maine Soroa 680 0.967 527% 352% 1.14% 0.10% 90.07%
IER Cinzana 1469 0.823 486% 4.62% 1.22% 0.12% 89.19%
Ouagadougou 966 0.776 6.06% 7.47% 1.93% 0.13% 84.41%
TRAINING Niamey 310 0.920 457% 3.48% 1.09% 0.11% 90.76%
(Data set B) IER Cinzana 1469 0.823 486% 4.62% 1.22% 0.12% 89.19%
Dahkla 299 0.629 843% 191% 0.79% 0.95% 88.08%
Santa Cruz Tenerife 660 0.405 15.06% 2.96% 1.23% 420% 76.79%
Izana 563 0.358 17.32% 3.07% 1.40% 559% 72.63%
SIMULATION  Dakar 1583 0.705 7.38% 553% 1.42% 0.71% 84.82%

detect optimal NN architectures. We began by creating a listavailable in our training data set, and as characteristic of dust
of candidate input—output combinations (see below). Thenjn the Northern Africa region. The application of PCA in our
we trained the corresponding NNs by following these four study was done to reduce the redundancy in the input and
steps: output variables. PCA is an effective procedure for remov-
ing this redundancy and has two effects: it orthogonalizes
the components of the data vectors (so that they are uncor-

2. apply principal components analysis (PCA) to inputs related with each ot_he_r), and it orders the resulting orthogo-
and outputs separately so as to exclude redundant varir-'al components (principal components or PCs) so that those

ability (it is required that the PCs account for 98 % of with the largest variation come first — allowing us to elimi-
the total variance) nate the components that contribute the least to the variation

in the data set. The application of PCA requires normaliza-

3. loop through a grid of 100 NNs of varying numbers of tion of the variables prior to application of the method due

hidden neurons (4-24 in steps of 2) and proportions ofto the fact that different variables have very different value
training data (40-90 % in steps of 5 %), ranges and bias the measurement of the variance (Abdi and

Williams, 2010). PCA was applied separately to the input and
4. select the NN that has the minimum total training and output variables and the extracted PCs were ordered. Best re-
validation MSE. sults were obtained by retaining the top ranked PCs that ac-

. .counted for 98 % of the total variation in the input and output
This procedure can be automated and was found to avo'(iata. The components calculated from PCA are a mixture of

the bias and underfitting that can result from having too few L : . : .
neurons on the one hand, and the high variance and ovthe original variables. We also did some trials applying PCA

e . on groups of variables of the same type (e.g. AVSD bins
Egtéggstgg; csag) r?tsglts:)roar?/oihdasvgrgbiE[(r):r maarllr}:itioonnitnhe :ftrtf; and spectral parameters separately) so as to retain physical
data int 'tr i.nir.1 nd validation or yrtip n ndgth characteristics within variable clusters — but the results were

?SCIR% Ia glad ad ado b opob_lp S’h"’.‘ h N u;’_eworse than those presented here. We wish to emphasize that
0 €ips exclude redun ant variapl ity whic can ad- o methodology presented here is a first attempt at objec-
versely affect training efficiency (Jolliffe, 2002). Normaliza-

tion of the input and outout variables was achieved as fol_tivizing the choice of NN architecture, and is not ideal. For
put P i example, the discrete steps in (neuron, proportion of train-
lows. For each input and output variable data vedfome

- ing data [%]) space could be made finer (i.e. instead of steps
calculated the megny and standard deviatiany . The vec- of 5% in the training proportion (in what follows, we de-

t(())rr rsnh?f?nasngn:lc;rgn?haerdindi\?e:;?jnf)uvtvelz'? (;2,[6; Vuescigréooma\ﬁ)ote the proportion of training and validation data used as
( ) P P Q‘training %" and “validation %", respectively) we could have

their z score valueszx = (X —uy)/ox (i.e. standard nor- 042" o step size). In addition, a bootstrapping approach

mal yalues having a m(_eaﬁo and qstandard deviatieal). could be adopted that would allow several different instances
In this study, we consider the min—-max values to be those

1. normalize all input and output variables,
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6 NAF sites 5 NAF sites 6 NAF sites
AERONET inputs (no UV) AERONET inputs (with UV) SATELLITE inputs (no UV)
AERONET outputs AERONET outputs AERONET outputs
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CASES1&2 CASE 3 CASE 4

TRAINED NN
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Figure 2. Schematic of the NN model used in this work. Principal components obtained from PCA applied to the case 1-4 data are formed
and used to train the central engine NN shown in the centre. The training cycle is repeated for the grid of NNs and the optimal trained NN is
found. The outputs of the trained NN are then transformed back to the full parameter space using the reverse principal components (un-PCA).
The outputs from the trained NN are used to validate the interpolation potential of the optimal NN. Principal components obtained during the
data pre-processing step of network training are used to transform new case 1—4 inputs at Dakar which are fed to the trained NN to simulate
case 1-4 outputs at Dakar.

at the same training %ovalidation % ratio to be evaluated. It it was decided that this effect would be studied separately by
should also be noted that it is customary to optimize an NNconstructing an input combination that depended on the near-
on the validation data rather than the training data (Bishop UV AOD at 380 and 500 nm —which are provided by the new
1995). This was also our initial approach. However we foundCIMEL (model 1) AERONET sun photometers comprising
that the performance of the resultant NN on unseen data adata set B. Note that the AAOD(500) provided by OMI is
the test site (see Sect. 4) was maximized when we coupled modelled parameter obtained by using a look-up table of
the training and validation MSE. We recognize that the NN expected SSA values that depend on the aerosol type and
is not built to work in the general case (i.e. to retrieve dustthe geographical location (Torres et al., 2007). Conversely,
properties worldwide), but it works well for the Northern in the case of AERONET, the value of AAOD (at the cen-
Africa region where we performed our study. We hope to ad-tral wavelengths: 440, 675, 870 and 1020 nm) is calculated
dress the generalization problem in a future publication. Forfrom retrieved aerosol microphysical properties (Dubovik et
a thorough description of data handling in the context of con-al., 2000). In all, the following four distinct scenarios were
structing and testing function approximating NNs, we refer identified and used in this study:
the reader to Bishop (1995).

Aiming to perform an empirical sensitivity analysis with ~— Case 1 inputss AERONET: AOD(470), AOD(550),
respect to candidate input combinations, we drew up a listof ~ AOD(660)
aerosol parameters which are prowd_ed by the_z two satellites Case 2 inputs: AERONET: AOD(470), AOD(550).
globally at 1x 1 degree spatial resolution, leading to the fol- AOD(660)+ H20
lowing set: AOD(470), AOD(550), AOD(660) anc,® from 2
MODIS, and AOD(380), AOD(500) and AAOD (500) from  _ Case 3 inputss AERONET: AOD(470), AOD(550),

OMI. Since it has been suggested that there is high sensitiv-  AOD(660)+ H,0 + AOD(380), AOD(500)
ity to particle absorption in the near-UV (Torres et al., 2002),
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Inputs Layer 1 Layer 2 Outputs
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Figure 3. Schematic showing the neural connectivity between input and output parameters.

— Case 4 inputs=MODIS: AOD(470), AOD(550), 3 Theory

AOD(660)+ H>0 and OMI: AAOD(500).
3.1 The NN input—output function approximation

This approach is essentially a form of empirical sensitiv-
ity analysis applied to the input data. In each case, the sefis we discussed in Sect. 2.2, the motor behind the NN model
of output variables comprises: the AERONET microphysical is the multiple input, multiple output two-layer feed-forward
AVSD (calculated at 22 equidistant logarithmic radial bins NN at the centre of Fig. 2. The NN has the following input—
spanning the range 0.05 to 15 um), the spectral refractive inhidden layer—output layer connectivity shown in detail in
dex and the optical parameters SSA and ASYM centred afig. 3. .
440, 675, 870 and 1020nm. Cases 1 and 2 use daily aver- The NN has a vectok of R-input PCs and a vectdf of
aged records drawn from data set A, case 3 uses daily aw?-output PCs (grey circles). For case 4 for example, PCA
eraged records drawn from data set B and case 4 uses c@Pplied to the inputs generaté&d= 3 PCs, and PCA applied
located satellite data synchronous with data set A (see Tato the outputs produced = 7 PCs (see Sect. 2.2 for details).
ble 1). The NN model then proceeds as follows. PCA is ap-The NN has 2 layers of neurons connecting the inputs to
plied to the input and output data separately for each of théhe outputs. The first layer (the hidden layer) hasneu-
cases 1-4 and a gnd of 100 NNs of differing (h|dden neuron,rons with nonlinear activation fUnCtionﬁl = Tanh and the
training %) architecture is produced, trained and validated 0utput layer has? neurons with linear activation functions
The optimal NN is then identified using the minimum total /% Each neuron has a single big 1] and so the hidden
training and validation MSE between the NN outputs and tar-layer has a vectas' of s* biases while the output layer has
get AERONET data. The PCA is inverted back to parameter@ vectorb? of s? biases. The vector oR-inputs X is con-
space and comparative (linear regression) statistics are caected to the'-neurons of the hidden layer via a matrix of
culated for the outputs of the optimal trained NN in relation [s*x R] input weightsiw - while the vectou* of s*-outputs
to the AERONET training output data. In order to test eachis connected to the?-output neurons via a matrix offxs*]
optimally trained NN, new and unseen case 1-4 data at thédyer weightslW %1, Finally, the vectow? of s*-outputs is
coastal dust site Dakar is transformed into PCA space and fethe vectorY” of NN outputs. The exact mathematical equation
to the corresponding NNs. In each case, the network’s outrelating the NN outputs to the NN inputs is then the matrix
put is transformed back from PCA space to parameter spacgguation:
where comparative statistics are again applied to the NN out-
puts in relation to AERONET ground-truth data. Y = f? (LW 21yt ('W Lix + bl) + bz) : (2)

A schematic of the overall NN model is shown in Fig. 2.
In Sect. 3, the functional relation between network outputs The multiplication of the matri¥w > and the vectoX is
and inputs is presented together with details of the methods dot product equivalent to the summation of all input con-
used to train and validate the performance of the NNs. nections to each neuron in the hidden layer. Equat®n (
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above is the nonlinear functional approximatidéinthat re-  the MSE obtained from the validation data were summed for

lates the output parameters to the input parameters: each NN in the grid. The optimal NN was identified as the
one whose architecture had the smallest total MSE.
Y = NX). ©) Table 2 shows the results of applying this optimisation pro-

cess to cases 1-4. One thing to note from Table 2 is that the

As we described in Sect. 2.2, the input vecXocontains a traini . 14 bstantiallv | than th I
combination of the satellite input parameters while the outputramlng errorin cases 1-41s substantially larger than e vai-

vectorY contains the sought-after retrievals. Traditionally, an idation error (having percentage fractional errorsidfs.8,

0 : X

NN is assessed by dividing available data into 3 proportions::rﬂ'fl’. +27.'8tﬁndJ12'l {0 rli,\hspec::vely). t:—hls fadn tbe' dule

a training set, a validation set, and a testing set. However,0 outliers in the data set, alfhough we attempted 1o imple-
ent a strict quality filter via aerosol typing and the exclu-

since the data reduction scheme described in Sect. 2 led to'g

) 0 , : ;
substantial loss of available data records, it was decided th lon of ogtllers atthe 68% level C.)f confidence with Grubb’s
all available data should be put to use in NN training and est. While the percentage fractional error does not appear

validation, with none reserved for testing. During the testingtO depend on the size of the sample (the case 1-4NNs have

phase, the NNs therefore are presented with unseen (not usé%i = 3808, 3808, 353 and 213 tra|n|_ng _data recqrds, respec-
for the NN training) input data at a new site (Dakar) in the tively), we cannot exclude the possibility (even in cases 2—

same region (Northern Africa), and used to simulate the out—.4) that there may be data vectors that are associated with

puts —i.e. they are blind to the expected outputs. In this Waylt?]put;outputtvlalues ghat ?IcgurtLesst'ileq_ll_f ntly and thT]'.C h a;re
all available aerosol-typed data for the region of interest is erelore not learned well by the - 'he second thing to

used (apart from Dakar) in the training and validation pro- note is that for the case 1 NN, convergence was achieved

cess and testing is able to shine light on the potential of the’"Y rapidly (2 epochs), suggesting, as expected, that the in-

trained and validated NNs to work properly with unseen data put vector is clearly not containing the information needed to
- L recover the target vector.
The results of the NN training and validation phase are pre- . . . .
9 b b The optimal case 4 NN, trained with data from satellite

sented below. In Sect. 4 the results of the NN testing phase : -
are presented. inputs and outputs from the AERONET stations comprising

data set A, has 22 neurons in the hidden layer, 7 neurons
3.2 NN training in the output layer, and used 90 % of data set A for train-

ing and 10 % for validation. This NN has three inputs: the
In the training phase batch runs are performed on a gridhree principal components (PCs) of AOD(470), AOD(550),
of 100NNs permuting through a range of architecturesAOD(660), H,O and AAOD(500). It also has seven outputs:
such that the number of hidden neurons ranged from 4-24 PCs of the 22 logarithmically equidistant radial bins of the
(in steps of 2) and so that the training proportion rangedAVSD and the CRI-R, CRI-l, SSA and ASYM spectral pa-
from 40 to 90% (in steps of 5%). The NN connection rameters centred at 440, 675, 870 and 1020 nm. The evolu-
weights and biases are updated (i.e. trained) using an ogion of the optimization process as well as the statistics asso-
timization learning algorithm. Initial tests were made with ciated with this optimal case 4 NN found are shown in Fig. 4.
both a single layer of hidden neurons and also with two Figure 4a shows, as expected, that the training MSE tends
layers of hidden neurons. For each of these tests, 4 diffo decrease as the number of hidden neurons is increased.
ferent optimization learning algorithms were also investi- Furthermore, it shows that as the number of neurons in-
gated: (i) the Levenberg—Marquardt (LM) back-propagationcreases, a positive gradient emerges in the training MSE with
optimisation learning algorithm (Levenberg, 1944; Mar- training % (most clearly visible in the lower panel of Fig. 4a
quardt, 1963) (MATLAB flag “trainlm”), (ii) Bayesian reg- when the number of neurons is greater than about 12 neu-
ularization (MATLAB flag “trainbr”), (iii) resilient back- rons) —i.e. for a fixed number of neurons the training MSE
propagation (MATLAB flag “trainrp”), and (iv) scaled is increasing with training %. While this may be somewhat
conjugate-gradient back-propagation (MATLAB flag “train- counter-intuitive, it is possible that by increasing the training
scg”). The best results were obtained with the LM algorithm data sample, we increase the likelihood of including a couple
applied to a single layer of hidden Tanh neurons. During eaclof records from the long tail of the parameter distributions
iteration of the learning process, the weights and biases ar@/hich are not easily retrieved, resulting in larger MSEs. Fig-

tuned so as to minimize the MSE cost function: ure 4b shows that the validation MSE increases slowly with
1 N the number of hidden Tanh neurons. Figure 4b shows that
MSE = v Zi:l (ti —vi)2. 4) the validation MSE increases slowly with the number of hid-

den Tanh neurons. Two sharp peaks at (10, 60 %) and (20,
Note that the MSE is calculated from output vectors 45 9%) are probably due to the fact that over-fitting is occur-
y; againstN AERONET target vectors. Training proceeds ring at these points due to the small size of the data set. The
through a number of epochs until the MSE between NN out-total training time is seen in Fig. 4c to increase sharply and

puts and AERONET targets (expected outputs) is minimisednon-linearly when the number of neurons-i22. In relation
In particular, the MSE obtained from the training data andto the evolution of NN performance with epoch in Fig. 4d,
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Table 2. In this study, four distinct optimal NN architectures were constructed corresponding to cases 1-4.

4 is trained on satellite inputs and AERONET outputs.

NNs for cases 1-3 are trained on AERONET-only inputs and out

NN OPTIMISATION PARAMETER AERONET SATELLITE
Case 1 Case 2 Case 3 Case 4
INPUTS AOD (Visible) AERONET AOD(470) AERONET AOD(470) AERONET AOD(470) MODIS AOD(470)
AERONET AOD(550) AERONET AOD(550) AERONET AOD(550) MODIS AOD(550)
AERONET AOD(660) AERONET AOD(660) AERONET AOD(660) MODIS AOD(660)
Columnar Water Vapour AERONET 4D AERONET H,O MODIS H,O
Absorption AOD OMI AAOD(500)
AOD (UV) AERONET AOD(380)
AERONET AOD(500)
OUTPUTS Microphysics AVSD(22 bins): 0.05-15um  AVSD(22 bins): 0.05-15um  AVSD(22 bins): 0.05-15 um AVSD(22 bins): 0.05-15 um

CRI-R(440 675870, 1020)
CRI-1(440,675,870,1020)

CRI-R(440675,870,1020)
CRI-1(440675 870, 1020)

CRI-R(440675,870,1020)
CRI-1(440675 870, 1020)

CRI-R(440675,870,1020)
CRI-1(440675,870,1020)

Optics SSA(440675,870,1020) SSA(440675 870, 1020) SSA(440675,870,1020) SSA(440675,870,1020)
ASYM(440,675870,1020) ASYM(440675870,1020) ASYM(440675 870 1020) ASYM(440675 870,1020)
Training data set A A B A
X =PCA (inputs); 98 % variance 1 2 2 3
Y = PCA (outputs): 98 % variance 7 7 6 7
ARCHITECTURE Number of Layers 2 2 2 2
Back-propagation Method LM LM LM LM
Cost Function MSE MSE MSE MSE
Activation Functions (Layer ALayer 2) TantiLinear TanhLinear TanhLinear TanhLinear
Optimal Neurons (Layer/Layer 2) 107 14/7 10/6 22/7
Optimal Train % 90 % 85% 85% 90 %
N (samples) 3808 3808 353 213
N (training) 3427 3237 300 181
N (validation) 381 571 53 32
Train time [s] 539 1079 86 100
OUTCOME Best Epoch 2 13 24 10
Best training MSE 0.848 0.760 0.765 0.818
Best validation MSE 0.714 0.629 0.552 0.719
PearsoR (Y =aX +b) 0.998 0.998 0.998 0.992
a 0.994 0.995 0.994 0.985
b 0.000 0.000 0.000 0.005
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Figure 4. Optimization of the NN for case 4. The upper panels show the training MSE surface (left), the validation MSE surface (middle),
and the total training time surface [s] (right) for the grid of 100 NNs. The MSE of the training data and validation data (100-training %)
with back-propagation iteration (epoch) is shown for the optimal NN (22, 90 %) in the lower left panel, while the errors calculated from the
difference between the NN PC outputs and the AERONET PC outputs for the same NN together with the value of their regression coefficient
R, is shown in the lower right panel.

convergence has clearly been reached after 10 epochs (iter&8:3 NN validation

tions) at the horizontal asymptote where the best validation

MSE=0.719. For all NNs, the goal for the back-propagation The results of NN training along with the training data size
cost function is set to1100th of the variance of the targets for each of the cases 1-4, are shown in Table 3. The columns
(for the optimal case 4 NN this is equal to 0.12). In this case, Target” and “NN output” present the mean value of each
the goal is very stringent and is unlikely to be reached withparameter. In Table 3, the daily averaged coarse mode peak
an increase in the number of iterations — suggesting that & measured by the volume concentration in “Radial Bin
much larger and uniform training data set is required to im-15" (*2.241 um), the entryx AVSD > is the mean value
prove the training performance further. We base our inter-0f all correlations between the NN-derived AVSD and the
pretations in this work mostly on macro-scale statistics so aAERONET target AVSD, and AAOD(440 V 500) represents
not to distract from the main goal of the study. We will con- the regression of the satellite (from OMI) AAOD at 500 nm
sider intrinsic NN errors and uncertainty in more detail in a against the AERONET AAOD at 440 nm.

future paper. The Pearson product—-moment correlation coef- ) .

ficient calculated from NN PC outputs and AERONET train- 3-3-1 Microphysical outputs

ing PC targets for the optimal case 4 NNRs= 0.992 (see
Fig. 4e) and is suggestive of an excellent NN fit. This is fur-
ther backed up by the histogram of the differences betwee _ . . .
NN PC outputs and AERONET training PC targets (Fig. 4€) rom the AOD information. In particular, cases 1-3 retr_leved
which presents a sharply peaked Gaussian having a near-zepae daily aver:ilged coarse vo”Iume concent.ramm) and its
mean erroe= 0.0006 and a standard deviation (SB).0627. ”.‘O.da' peak (‘Radial bin 15) to a very high level of pre-
These macro-statistics suggest that the optimal NN is genelc-'s'on_: 0.967= R(d) 5.0'970 and 0.956 R(d) 5.0'983’ re-
ally well trained and properly performs the function approx- spectively. The satellite input case 4 also retneyed the daily
imation between inputs and outputs. More transparency cafi‘verag'Ed coarse volume concentratiog) and its modal

be gained by performing comparative macro-statistics on th%en?;’cgustewzilthvfa(g)azlggf?e?r?ﬁéi%j&ir?si :izzichlmyetric
output parameters separately, as described in the next sectioh. - . .
putp P y radiusr(c) with R(d) = 0.346. The AERONET input cases

The training of all NN cases showed that only the AVSD
elated to the coarse mode of dust is accurately retrieved
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Table 3. Training results obtained for the optimal NN found for each of the cases 1-4. The mean AERONET “Target” values are presented
along with the mean NN outputs and the Pearson product—-moment correlation coefficient obtained at the daily #a&scEte outputs
are divided into microphysical parameters derived from the AVSD and the CRI, and the optical parameters SSA and ASYM.

Training AERONET Satellite
Case 1 Case 2 Case 3 Case 4
Target NN output R(d) Target NN output R(d) Target NN output R(d) Target NN output R(d)

N (samples) 2099 1985 353 134

AOD(470) 0.721 0.695 0.624 0.609

AOD(550) 0.704 0.678 0.604 0.583

AOD(660) 0.684 0.659 0.582 0.556

H>0 2.265 2.357 2.289

AAOD(440 V 500) 0.061

AOD(380) 0.621

AOD(500) 0.650

Microphysics  V(f) 0.022 0.022 -0.119 0.022 0.023 0.177 0.023 0.026  0.290 0.029 0.030 0.461
V(e) 0.434 0.432 0.969 0.420 0.417 0.967 0.328 0.320 0.970 0.383 0.342 0.365
n 0.058 0.058 0.473 0.059 0.061 0.520 0.079 0.087 0.387 0.090 0.085 0.404
r(f) 0.109 0.109 0.031 0.109 0.110 0.209 0.118 0.120 0.288 0.111 0.112 0.243
r(c) 2.051 2.028 0.007 2.055 2.046 0.114 1.855 1.871 0.255 2.018 1.994 0.385
var(f) 1.139 1.135 —0.007 1.139 1.136 0.053 1.153 1.178 0.046 1.137 1.1350.194
var(c) 1.560 1.562 0.158 1.563 1.569 0.166 1.584 1.572 0.346 1.534 1.560 0.268
Radial Bin 15 0.982 0.983 0.956 0.375
<AVSD > 0.958 0.961 0.964 0.944
CRI-R(440) 1.472 1.466 0.068 1.472 1.467 0.447 1.475 1.472 0.476 1.448 1.446 0.532
CRI-R(675) 1.487 1.482 0.204 1.488 1.484 0.512 1.492 1.490 0.480 1.472 1.472 0.528
CRI-R(870) 1.471 1.467 0.276 1.473 1.470 0.546 1.481 1.481 0.484 1.464 1.465 0.521
CRI-R(1020) 1.458 1.453 0.326 1.459 1.457 0.565 1.469 1.469 0.493 1.452 1.454 0.521
CRI-1(440) 0.005 0.005 0.426 0.005 0.005 0.437 0.006 0.007 0.292 0.006 0.006 0.338
CRI-I(675) 0.003 0.003 0.450 0.003 0.003 0.461 0.004 0.006 0.258 0.004 0.004 0.354
CRI-I(870) 0.003 0.003 0.461 0.003 0.003 0.465 0.003 0.006 0.230 0.003 0.004 0.346
CRI-1(1020) 0.003 0.003 0.473 0.003 0.003 0.473 0.003 0.006 0.220 0.003 0.004 0.331

Optics SSA(440) 0.900 0.900 0.404 0.899 0.898 0.409 0.898 0.895 0.363 0.900 0.896 0.262
SSA(675) 0.948 0.945 0.509 0.947 0.944 0.511 0.939 0.931 0.387 0.938 0.934 0.347
SSA(870) 0.954 0.951 0.508 0.953 0.950 0.508 0.950 0.940 0.381 0.949 0.945 0.354
SSA(1020) 0.957 0.954 0.512 0.956 0.952 0.510 0.953 0.942 0.379 0.952 0.948 0.351
ASYM(440) 0.770 0.770 0.435 0.769 0.768 0.643 0.761 0.756  0.530 0.763 0.761 0.322
ASYM(675) 0.742 0.742 0.456 0.741 0.740 0.657 0.735 0.726  0.422 0.736 0.733 0.335
ASYM(870) 0.743 0.743 0.399 0.743 0.741 0.630 0.733 0.723 0.382 0.736 0.733 0.370
ASYM(1020) 0.748 0.748 0.386 0.747 0.746 0.627 0.737 0.727 0.384 0.742 0.739 0.410

1-3 failed here. As described in Appendix A, this is most The NN trained with satellite inputs in case 4, re-
likely due to the fact that the AVSD of desert dust does nottrieved CRI-R with 0.52k R(d) < 0.532, excelling over the
have a clearly defined minimum to separate the coarse andERONET-input NNs. This is likely to be due to the inclu-
fine modes. This leads to a lot of variation in the location of sion of the modelled AAOD from OMI in the NN inputs.
the mode separation point. A lack of correlation inrs then
translates into a lack of correlation in the secondary micro-3 32 Optical outputs
physical parameters like the modal geometric radii and vari-
ances that depend sensitively on it. For AVSD outputs relateqn case 1, all optical parameters (SSA and ASYM) are re-
to the f|n_e mode, Fhe NN performances were moderately ACrieved with regression coefficients in the range: 0.386
curate with a maximun® (d) = 0.461 for the daily averaged R(d) <0512, with the best result being obtained for
fiqe mode volumé/ () (case 4 NN). The lack of correlation SSA(IOZO). 1"he addition of columnar water vapoupQ
with t_he AERONET targets for both(f) and var(f) for. all in case 2, while hardly impacting on the retrieval accuracy of
NNs is due to_ the fact that for desert dust AVS“W) IS a the SSA, led to a significant improvement in the retrieval of
small proportion of the total volume concentratiogng %). the asymmetry factor (ASYM) at all wavelengths: 0.630
The pre-dominance of the coarse mode in this region meank(d) <0.657. Once again, the case 3 training results. de-
that all four models retrieved the fine fractiop ¢o asimilar spite Flaving four inputs in’ common with case 2 under’per-
(p_oor to moderate) degree: .O'4§4R(d) = O'.SGO' The Varn- — torms even the case 1 optics outputs (with the exception of
ation of R(d) across the e”“fe AVS[.) (not just at rlad|a| bin ASYM at 440 nm which is slightly better than the case 1 re-
.15) and the daily averaged F'me series of the retrieiféd sult but still worse than the case 2 retrieval). The addition
In case 4 are presented in Fig. 5. of the 2 UV AODs in case 3 does not appear then to offer
an improvement for dust in Northern Africa. The optical pa-
rameter retrievals of SSA and ASYM from the case 4 NN
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2) the behaviour of the NN results at other timescales. It is im-
N [15]: R=0.375 portant, at this point, to make a comment about NN gener-
alization and the potential for extrapolation. While Dakar
has a distinct spatial geolocation with respect to the train-
ing sites used in the Northern Africa region, Fig. S1 of the
Supplement, shows clearly that the range of values of the
05 1 15 AERONET targets at Dakar (with the exception of the min-
ERONEY imum value of the spectral SSA) can be seen to fall within
. the range of values of the AERONET targets used to train
N SN N the NN. As such, the trained case 4 NN is not expected to
ossf- ¥ be able to extrapolate outside this range and to have general

- ° extrapolation potential.
1 2 3 4 5 6 7 8 9 wra;ia”;zin 13 14 15 16 17 18 19 B 21 22

H
L]

AV(Edin() [umum?)

Regression Coefficient (R)

b 4.1 Inputs
- . V)
toff ~, AERONET Meaoss3 D028z ' ' ' As for the training inputs described in Sect. 3.3, for cases
14 ' 1-2 the number of AERONET Level 2.0 Version 2 inver-
bl sion products daily averages at Dakar is substantially larger
0_;' I L ] (862—942 records) than the 149 records available in case 3,
o |l [\ o | « Il o ang the 1:]57 records (()t;tained indcas)e ;1 due to the Cdo-locatir(])n
0 9K X K Ak *og 1 ikl X ) A and synchronization (the same day) of AERONET data wit
[&)‘%* Xxl%x&(x W&&%‘*M ;&V x”‘yé&‘xxx%& XX**‘,*%%‘X’% the satellite data. The fewer records for case 3 is due to the
® “ SR o % fact that relatively fewer UV measurements of AOD(380)
and AOD(500) exist at Dakar. Another thing to be noted
Figure 5. Aerosol microphysical parameter training results ob- gyt the input data for case 1-4 is that outliers were de-
tained for case 4(a) regression per radial bin of the AVSD (Inset: |inerately not removed in the testing data sets so as to pro-
Sg:ilng:ﬂii)o??&blgﬂi ?T\]’gézgid time series for the volume vide. a more stringent test of the NN retrieval. In pgrticu—
lar, it is important to compare the CASE 4 satellite inputs

with their co-located and synchronous AERONET counter-
are, in general in the range: 0.322R (d) < 0.410 (with the parts. This is especially important for the AAOD which is

exception of SSA(440) wherg(d) = 0.262). There appears modelled from OMI, whereas from AERONET is calculated
to be a play-off between the ability of the NN to recover all (see discussion in Sect. 3.3.2). With reference to Table 4, the

microphysical parameters and simultaneously all optical pal€dression of satellite values for AOD(470), AOD(550) and

rameters. This is expected, since the information content of OP(660) on their AERONET co-located and synchronous

the input parameters is low for retrieval of the complete setCOUNterparts spans the narrow range: 042(d) < 0.442.

of aerosol parameters. The best training and validation re£* Similar level of correlation is found for the AAOD(500):
0.450. However a strong positive correlation is evi-

sults are associated with case 2 NN. In the next section wet(@) =

report on the performance of the case 1-4 trained NNs b ent in the case of columr_larzEb: I?(d) =0.834. Figure 6
feeding them with unseen input data, i.e. NN testing. shows the daily averaged time series of AOD(660) (as a rep-
resentative measure of the aerosol optical thicknesg) H

and AAOD(500) satellite inputs overlaid on the time se-
4 Results ries of co-located and synchronous AERONET counterparts

(note that the AERONET AAOD used for comparison is at
The performance of the trained NNs was tested by feedingt40 nm).
them with unseen case 1-4 input data at the coastal dust The MODIS and OMI data appear to be systematically
site Dakar in Northern Africa (or in the pixel containing lower than AERONET, particularly at higher values. This
the site in the case of satellite inputs). The test outputs arés explainable by the difference in the way AERONET'’s
compared with the daily averaged target AERONET micro-ground-based and MODIS’s space-based remote sensing in-
physical AVSD, the CRI and the optical parameters SSA andstruments measure the AOD. AERONET's sun photometers
ASYM at 440, 675, 870 and 1020 nm. The test results areperform almucantar scans of light radiation based around
collected in Table 4 following the same general format as thethe pointing direction to the sun (zenith angle) whereas
training results of Table 3. MODIS'’s spectro-radiometers measure the intensity of solar

In addition to the regression coefficient for daily averagesradiation reflected vertically by the earth’s system (the plan-

R(d), regression coefficients are also calculated for weeklyetary surface and the atmosphere). As a result, the light paths
averagesk(w) and monthly averageR(m) so as to assess are usually different and sample different angular variations

value
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Table 4. Test results obtained from the optimised trained NNs for cases 1-4 using inputs from the Dakar AERONET site and satellite inputs
from MODIS and OMI over Dakar.

Testing (Dakar) AERONET
Case 1 Case 2 Case 3

Target NN output R(d) R(w) R(m) Target NN output R(d) R(w) R(m) Target NN output R(d) R(w) R(m)

N (samples) 942 931 149

AOD(470) 0.649 0.640 0.674

AOD(550) 0.626 0.618 0.650

AOD(660) 0.603 0.594 0.626

H20 2.698 2.244

AAOD(440 V 500)

AOD(380) 0.710

AOD(500) 0.669

MICROPHYSICS  V(f) 0.026 0.026 0.115 0.279 0.581 0.026 0.026 0.209 0.290 0.504 0.033 0.627016 0.063 0.390
Vie) 0.357 0.360 0.965 0.950 0.959 0.353 0.355 0.967 0.950 0.961 0.344 0.361 0.969 0.940 0.949
n 0.092 0.079 0.474 0.599 0.762 0.093 0.085 0.491 0.600 0.812 0.115 0.082 0.400 0.446 0.706
r(f) 0.115 0.118 0.043 0.227 0.344 0.115 0.117 0.029 0.1520.048 0.127 0.115 —0.060 —0.237 —0.703
r(c) 1.928 1.909 -0.028 -0.257 0.000 1.929 1.923 0.009 0.103 0.098 1.934 1.8880.035 —0.151 0.151
var(f) 1.529 1514 -0.041 0.065 0.067 1.142 1.171-0.065 0.018 -0.146 1.165 1.175 0.227 0.248 0.601
var(c) 3.056 2.650 0.239 0.312 0.049 1.529 1.530 0.176 0.273 0.125 1514 1.501 0.102 0.460 0.466
Radial Bin 15 0.956 0.943 0.963
<AVSD > 0.912 0.913 0.906
CRI-R(440) 1.472 1.457 0.209 0.235 0.375 1.457 1.458 0.374 0.370 0.542 1.462 1.463 0.307 0.289 0.368
CRI-R(675) 1.488 1.479 0.048 —0.058 —0.240 1.480 1.481 0.335 0.347 0.473 1.482 1.482 0.318 0.337 0.303
CRI-R(870) 1.472 1.471 0.175 0.120 0.034 1471 1.473 0.383 0.396 0.491 1.471 1.471 0.350 0.396 0.300
CRI-R(1020) 1.459 1.460 0.244 0.220 0.176 1.460 1.461 0.410 0.432 0.529 1.457 1.457 0.379 0.390 0.264
CRI-1(440) 0.005 0.006 0.406 0.437 0.651 0.006 0.006 0.395 0.427 0.585 0.007 0.007 0.208 0-21648
CRI-I(675) 0.003 0.003 0.436 0.464 0.675 0.003 0.003 0.427 0.458 0.617 0.004 0.004 0.169 0-R0004
CRI-1(870) 0.003 0.003 0.445 0.466 0.665 0.003 0.003 0.433 0.461 0.613 0.004 0.003 0.154 0-09801
CRI-1(1020) 0.003 0.003 0.453 0.473 0.661 0.003 0.003 0.439 0.465 0.608 0.004 0.003 0.147 6-0995

OPTICS SSA(440) 0.901 0.897 0.336 0.360 0.559 0.896 0.895 0.314 0.291 0.462 0.883 0.885 0.203  -0@335
SSA(675) 0.948 0.947 0.472 0.519 0.708 0.947 0.946 0.463 0.506 0.665 0.938 0.941 0.263 0.282 0.035
SSA(870) 0.954 0.957 0.477 0.509 0.698 0.956 0.956 0.464 0.499 0.655 0.948 0.951 0.275 0.280 0.024
SSA(1020) 0.956 0.959 0.481 0.507 0.692 0.959 0.958 0.466 0.493 0.643 0.952 0.955 0.277 0.276 0.004
ASYM(440) 0.769 0.764 0.425 0.555 0.734 0.764 0.763 0.504 0.525 0.489 0.763 0.764 0.544 0.547 0.557
ASYM(675) 0.742 0.731 0.440 0.507 0.680 0.731 0.730 0.512 0.479 0.452 0.731 0.732 0.451 0.496 0.399
ASYM(870) 0.744 0.731 0.405 0.471 0.648 0.731 0.730 0.504 0.454 0.425 0.732 0.733 0.395 0.453 0.305
ASYM(1020) 0.748 0.736 0.393 0.445 0.610 0.736 0.736 0.516 0.446 0.409 0.738 0.740 0.382 0.446 0.276

of aerosol (this effect is likely to be minimized when the the daily averaged coarse mode geometric radig3 or

sun is overhead but tends to increase close to sunrise arits variance vakf) for reasons described in Sect. 3.3.1 re-
sunset). Furthermore, in the case of measurements from ogarding the problematic determination of the mode separa-
bit, the separation of the effect of surface reflectance andion point for dust AVSDs. The same is true for the daily
the effect of aerosol extinction on the total measured radi-averaged fine mode volumé(f). The satellite case 4 NN
ance is a much more difficult task, especially over desertould only retrieveV (1) with R(d) = 0.261 (with some im-
which can have bright surface pixels. AOD data from 132 provement at the monthly timescalR(m) = 0.388). Cases
global AERONET stations over a two-year period were re-1-4 present unacceptable correlations #6f) and var(f)
gressed against MODIS-derived AOD values, and revealedvhich, as described in Sect. 3.3.2, is explained by the fact
MODIS values to be systematically lower than AERONET that for desert dust fine particles contribute only a small pro-

values (Remer et al., 2005). portion to the total volume concentration. Future work will
present results of an NN retrieval scheme for regions dom-
4.2 Microphysical outputs inated by other aerosol types such as urban pollution or the

products of biomass burning that have a more clearly defined
For AVSD outputs related to the coarse mode, thefine mode. With respect to the fine fraction),the domi-
AERONET input cases 1-3 were able to retrieve the daily av-nance of the coarse mode meant that cases 1-4 were able
eraged coarse volume concentratiogr) at Dakar to a very 1o retrieve this daily averaged parameter with an accuracy:
high level of precision: 0.965 R(d) <0.969, and also the 0.400< R(d) < 0.491 with the satellite case 4 NN retrieving
location of the coarse mode peak (“Radial bin 15”): 0.943 7 with R(d) = 0.413. Much stronger correlations for this pa-
R(d) <0.963. This level of accuracy is also maintained at therameter are evident at the monthly timescé#lén) > 0.541.
weekly and monthly timescales. The case 4 NN with satel-Satellite retrievals fo (c), its peak at radial bin 15 angl
lite inputs was able to retrieve the daily averaged coarse volall show some correlation with co-located and synchronous
ume concentratio (¢) and its modal peak with the degree AERONET outputs at the daily timescal®(d) = 0.514,
of correlation:R(d) = 0.514 andr (d) = 0.486 respectively. 0.486 and 0.413, respectively. Finally, with respect to the
The other aerosol parameters are not retrieved accurateVSD, in this section the effect of increasing aerosol load
enough, as shown also in the NN training/validation perfor-(using AOD(470) as a proxy), on the AVSD regression is
mance. More specifically, none of the NNs could retrieve also briefly investigated. Low values of AOD correspond to
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Table 4. Continued.

TESTING (Dakar) Satellite
Case 4

Target NNoutput R(d)  Rw)  R(m)

N (samples) 167 167

AOD(470) 0.590 0.357 0.421

AOD(550) 0.562 0.316 0.442

AOD(660) 0.532 0.301 0.439

Ho0 2.419 2.779 0.834

AAOD(440 V 500) 0.067 0.048 0.450

AOD(380)

AOD(500)

MICROPHYSICS V(f) 0.030 0.030 0.261 0.214 0.388
V(c) 0.305 0.315 0.514 0.438 0.487
n 0.112 0.093 0.413 0.329 0.541
r(f) 0.115 0.112 -0.117 -0.296 -0.117
r(c) 1.906 1.891 0.105 —0.060 0.042
var(f) 1.137 1.134 -0.115 -0.076 —0.096
var(c) 1.529 1.525 0.114 0.092 0.000
Radial Bin 15 0.486
<AVSD > 0.918
CRI-R(440) 1.449 1.450 0.344 0.228 0.294
CRI-R(675) 1.474 1.475 0.228 0.104 0.162
CRI-R(870) 1.469 1.470 0.153 0.057 0.179
CRI-R(1020) 1.460 1.461 0.139 0.036 0.162
CRI-1(440) 0.007 0.007 0.381 0.347 0.550
CRI-1(675) 0.004 0.004 0.372 0.288 0.482
CRI-1(870) 0.004 0.004 0.373 0.274 0.486
CRI-1(1020) 0.004 0.004 0.368 0.249 0.469

OPTICS SSA(440) 0.887 0.887 0.440 0.506 0.710
SSA(675) 0.936 0.935 0.395 0.347 0.562
SSA(870) 0.947 0.947 0.383 0.314 0.546
SSA(1020) 0.951 0.950 0.373 0.283 0.521
ASYM(440) 0.757 0.756 0.159 0.120 0.331
ASYM(675) 0.725 0.723 0.149 0.084 0.348
ASYM(870) 0.726 0.724 0.094 0.010 0.304
ASYM(1020) 0.732 0.731 0.067 —0.031 0.261

small volume concentrations and are important to inspect due In the left panel of Fig. 7 showing the variation of the
to the fact that spurious retrieval effects are known to ex-regression coefficientR) with AOD(470), it is clear that

ist at low number densities (Dubovik and King, 2000). The the variation in the value oRdecreases with increasing
reason for this is that AERONET's Level 2.0 Version 2 in- AOD(470). There is much greater variance in the value of
version products are obtained following certain constraints:R when AOD(470) 0.4. This is expected since, as men-
(i) aerosol loads should be moderate (AGD.4), (ii) the  tioned above, AERONET retrievals are not as reliable for low
sky should not have strong cloud contamination, (iii) solar aerosol loads. In the right panels of Fig. 7, the mean AVSD
zenith angles should be higl- 60 degrees) so that the air is calculated at 20, 40, 60 and 80 % of the min—-max range
mass factor is high, and (iv) simultaneous measurements of0.01 to 1.43) of AOD(470) values. The mean NN-derived
AOD(440), AOD(675), AOD(870) and AOD(1020) should and AERONET AVSD at each quantile is calculated from a
be available withint15 min of the almucantar measurement. 20 % sample (10 % above and below) in the AOD(470) do-
When these conditions are not satisfied, inversions are lessiain. It can be seen that for the satellite NN of case 4, a
reliable or absent from the AERONET data record. Assesssubstantial difference is observable at the 60 % quantile level
ment of the dependence of AVSD on AOD(470) is done aswhere AOD(470)}= 0.865 and also at the 80 % level where
follows: (1) the NN-derived AVSDs were individually re- AOD(470)=1.15. However, the number of AVSDs used to
gressed on co-located and synchronous AERONET AVSDcalculate the mean AVSD at these quantile points is small
targets for days sorted by AOD(470), and (2) the 20 % quan{N = 7 andN = 3, respectively) and are not likely to be sta-
tiles of AOD(470) were identified and used to calculate thetistically representative. There is a strong resemblance be-
mean AVSD from a sample of AVSDs corresponding to daystween the mean AVSD obtained at the more populated 20
where the AOD(470) is 10 % above and below the quantileand 40 % AOD(470) quantiles. Figure 8 shows a visual com-
point. Figure 7 looks into this behaviour in more analytical parison of the entire record of daily averaged NN versus
detail. AERONET retrievals at Dakar.
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parameters: AOD(660), #0 and AAOD(500). Mean values and standard deviations are shown for each time series together with the results
of performing a linear regression.
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Figure 7. Test results for the dependence of the AVSD regression on aerosol load using AOD(470) as a proxy are shown for the satellite
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is the AOD= 0.4 suggested limit for the validity of the results of the AERONET Level 2.0 Version 2 inversion products. (Right panels): the
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Figure 8. Test results for the daily averaged AVSD at Dakar. The panels at left show the AERONET target distributions (upper) and their
corresponding contour plot (lower). The panels at right show the NN output distributions (upper) with their corresponding contour plot
(lower).

For more detail, we refer the reader to Sect. S2 of theshorter wavelengths: 0.469 R(m) < 0.550. The maximum
Supplement where the NN retrieval of the daily averagedcorrelation observed for CRI-R(440) at the daily timescale is
AVSD is compared with the AERONET AVSD for each of R(d) =0.344.
the test days at Dakar individually. The results suggest that
for the most cases, the case 4 NN appears to return an AVSD
close to the climatological mean of the training data set. With4-3 ~ Optical outputs
regard to the complex refractive index, Table 4 shows that
none of the NNs were able to retrieve the CRI-R. The ré-potaqing to Table 4, for the absorption-related parame-
SfUItS for CRI- from Fhe case 1 NN are improved SuF)Stan'ter SSA (as noted above for the CRI-I), the retrieval im-
tially at the monthly timescale: 0.65L R(m) < 0.675 With 1 15yeq with increasing wavelength and also substantially
QRI-R(440) having th'e. valu® (m) = 0.375). As desc_:rlbed at the monthly timescale: 0.559 R(m) < 0.734. The ad-
in Sect. 3.3, the addition of 4D (i.e. the case 2 simula-  gition of H,0 (i.e. the case 2 simulation) leads to a mi-
tion) improves the regression for CRI-R: 0.33%R(d) = 5 improvement in the retrieval of the asymmetry fac-
0.410 (with even more pronounced positive correlations ator (ASYM): 0.504< R(d) < 0.516. The correlations for

the monthly timescale). The retrieval of CRI-I is relatively SSA are relatively unaffected by the addition of® Once
unaffected by the addition of 4D to the inputs. These test re- again, the further addition of UV AOD inputs in case 3

sults validate our claim that3® is indeed an importantinput ,,,qieqd the waters and failed to improve the retrieval of
parameter and should be added to _the base set:_AOD(47OQhe optical parameters (with the exception of ASYM(440)
AOD(550) and AOD(660) for satellite-based retrievals. Inypioh showed a slight improvement over the case 1-2 NNs
particular, BO is required for moderate retrieval of CRI-R. at the daily timescale. For the case 4 NN (satellite in-

This effect is shown in Fig. 9. , _ _ puts), the retrievals of the absorption-related SSA are in
The further addition of UV AOD inputs in case 3 did o range: 0.373 R(d) < 0.440. The correlation strength-
not lead to an increase in the ability of the NN to retrieve oo o pstantially at the monthly timescale and especially at

the complex refractive index. To the contrary, the correla-shOrter wavelengths: 0.524 R(m) < 0.710. A positive cor-
tions were systematically worse. For the satellite inputs Cas€g|ation is also observed for ASYM_(440—870) at the monthly
4 NN, the retrievals of the absorption-related CRI-I are in timescale: 0.304 R(m) < 0.348. A visual overview of the
the range: 0.368 R(d) < 0.381. The correlation strength- oyieyal performance of the spectrally dependent microphys-
ens substantially at the monthly timescale and especially alq) (CRI) and optical parameters (SSA and ASYM) at the
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Figure 9. Test results for the daily averaged CRI-R illustrating the effect of adding columnar water vapgDii¢kh]) as a input (case
1— case 2).

4.4 Evaluation of the results with respect to AERONET
Monthy |- data variability and errors

In this section, we investigate the ability of the NN to capture
the variability of the target data. Also, we evaluate the infor-
mation content of the NN results taking into account the un-
certainties in the AERONET data. Figure 12 shows the case 4
NN retrieval of the coarse mode volume concentrafiti)

at the daily and seasonal (3-monthly) timescales compared
with AERONET data at Dakar.

While the mean values are almost indistinguishable, the
Figure 10. Test results obtained for all spectrally dependant micro- standard deviation of the NN retrieval is approximately 50 %
physical and optical parameters with the satellite input case 4 NNof the standard deviation of the AERONET data at both
at the daily, weekly and monthly timescale. timescales. This suggests that, while the input information

used to train the NN is enough for retrieval of the climatolog-

. . ) ically expected value, it is not sufficient to fully retrieve the
.da”y’ Wegkly_and monthly timescale for the satellite case 4variability in the target data at the daily timescale. In order
is shown in Fig. 10. to test this, we checked to see whether or not the median

When tabulated in this micro-array format, one can S€€,psolute error (MAE) for each NN output (NN-AERONET)
at a glance that the satellite input trained NN of case 4 re

i th tral behavi t the ab i lated SS‘S significantly lower than the MAE of the difference
rieves the spectral behaviour of the absorption-relate etween the AERONET target values of that parameter
and CRI-I parameters better than the shape-related CRI-

d ASYM I ti I M detail i nd their mean value over the training set (AERONET-
an parameters at all imescales. More detall IS 1€-,0 ) ot Dakar. The percentage fractional error (PFE)

vealed by looking at the time series of the daily averagedy . eqn, the two MAEs was found to be negative but small

retrievals. For example, in Fig. 11, daily averaged retrievalsfOr the maijority of the parameters—9.2 %< PFE(CRI-

of SSA(440) at Dakar are shown for the case 4 NN. R)<—17.0% _8.3%< PFE(SSA)K 1320 and
Figure 11 shows that the satellite retrieval at Dakar, WhiIe_16_4%< PFiE(ASYM)< :12_3%)_ Two  exceptions

insufficiently fitting the magnitude of peaks and troughs in to this were the coarse mode volume which was strongly

the SSA(440) time series, does echo them to some degree. negative (321.9%) and the CRI-I(440) which was very

weakly positive {-1.0%). This tends to support the view
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Figure 11. Test results at Dakar for SSA(440) with the case 4 NN.
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Figure 12. Test results at Dakar for the volume concentration of the coarse Mageat the seasonal (3-monthly) timescale (upper panels)
and the daily timescale (lower panels). Note that while the mean value of the NN retrieval and the AERONET target data are almost equal,
the standard deviation of the NN retrieval is approximately half of that associated with the AERONET target data.

that the NN is capturing only the daily variability for the AERONET values themselves are not error-free. AERONET
coarse mode. For all other output parameters, the NNs onlaerosol parameters themselves also often have non-negligible
learn to return the average value of the parameter over thencertainties (Dubovik et al., 2000). A formal evaluation of
training set or, in other words, the climatological mean. Thisthe uncertainty of the NN with respect to true values is be-
can be seen for the case 4NN in Figs. S3.1 and S3.2 of thgond the scope of this paper and we refer the reader to recent
Supplement. work on NN uncertainty in the retrieval of AOD by Ristovski
Finally, in this section, in Table 5 we present the values ofet al. (2012). Itis hoped that further validation studies using a
the MAE and the MARE (the median absolute relative error cohort of larger data sets will be able to provide a more clear
expressed as a percentage)War) as a proxy for the AVSD, assessment of NN performance.
the spectral CRI and the spectral optical parameters SSA and
ASYM at the daily, weekly and monthly timescales.
Figures S4.1-S4.4 of the Supplement show the trend inthg Discussion
MAE as a function of timescale for case 4 NN at Dakar over
the range of scales: 1-dy to 1-yr. It should be borne in mindA new methodology has been developed, based on an NN
that, while the MAE and the MARE are a measure of the model, with the aim of retrieving aerosol microphysical and
NN retrieval with respect to the AERONET target values, the optical parameters from satellite remote sensing data at the
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Table 5. Test results at Dakar obtained for cases 14 for the median absolute difference (MAE) and median absolute relative error (MARE)
of output parameters at the daily, weekly and monthly timesd&e) is the volume concentration of the coarse mode calculated from the
AVSD.

Timescale Case 1 Case 2
Analysis Daily (d) Weekly (w) Monthly (m) Daily (d) Weekly (w) Monthly (m)

MAE MARE % MAE MARE % MAE MARE % MAE MARE % MAE MARE % MAE MARE %
V(c) 0.081 11.6 0.093 15.6 0.072 11.5 0.079 11.6 0.090 15.2 0.062 12.0
CRI-R(440) 0.022 15 0.022 1.6 0.021 15 0.021 1.4 0.020 1.4 0.018 1.2
CRI-R(675) 0.018 1.2 0.019 1.3 0.017 11 0.018 1.2 0.016 1.1 0.013 0.9
CRI-R(870) 0.018 1.2 0.018 1.3 0.018 1.2 0.016 11 0.017 1.1 0.013 0.9
CRI-R(1020) 0.018 1.3 0.017 1.2 0.015 1.1 0.017 1.1 0.017 1.2 0.014 0.9
CRI-1(440) 0.002 34.4 0.002 35.1 0.002 36.7 0.002 42.2 0.002 42.2 0.002 40.6
CRI-I(675) 0.001 53.2 0.001 49.4 0.001 50.4 0.002 67.7 0.002 55.5 0.001 50.9
CRI-1(870) 0.001 49.1 0.001 455 0.001 46.9 0.001 62.9 0.001 50.2 0.001 47.7
CRI-1(1020) 0.001 47.0 0.001 44.2 0.001 39.8 0.001 59.2 0.001 49.9 0.001 44.8
SSA(440) 0.014 1.6 0.022 2.4 0.019 2.1 0.017 1.9 0.023 2.6 0.023 2.6
SSA(675) 0.014 15 0.017 1.8 0.017 1.8 0.017 1.8 0.020 2.0 0.019 2.0
SSA(870) 0.012 1.3 0.014 15 0.015 15 0.016 1.6 0.017 1.7 0.016 1.6
SSA(1020) 0.012 1.2 0.013 14 0.015 15 0.015 1.6 0.016 1.6 0.015 15
ASYM(440) 0.011 1.4 0.010 1.3 0.007 1.0 0.011 1.4 0.012 15 0.010 1.3
ASYM(675) 0.013 1.8 0.011 15 0.008 1.0 0.013 1.8 0.012 1.7 0.010 14
ASYM(870) 0.013 1.8 0.011 15 0.008 11 0.013 17 0.012 1.7 0.010 14
ASYM(1020) 0.012 1.6 0.011 15 0.007 1.0 0.011 15 0.011 15 0.010 1.3
Timescale Case 3 Case 4
Analysis Daily (d) Weekly (w) Monthly (m) Daily (d) Weekly (w) Monthly (m)

MAE MARE % MAE MARE % MAE MARE % MAE MARE % MAE MARE % MAE MARE %
V(c) 0.131 13.4 0.165 23.8 0.127 11.6 0.268 27.6 0.265 325 0.255 24.8
CRI-R(440) 0.022 1.5 0.026 1.8 0.024 1.7 0.031 2.2 0.028 2.0 0.028 1.9
CRI-R(675) 0.017 1.2 0.024 1.6 0.018 1.2 0.022 15 0.022 15 0.023 15
CRI-R(870) 0.019 1.3 0.027 1.8 0.020 1.3 0.022 15 0.024 1.7 0.022 15
CRI-R(1020) 0.019 14 0.027 1.9 0.021 1.4 0.024 1.6 0.024 1.6 0.022 15
CRI-1(440) 0.002 38.7 0.002 28.0 0.003 419 0.002 40.8 0.002 42.1 0.002 34.6
CRI-I(675) 0.002 52.8 0.002 46.1 0.002 55.4 0.002 60.0 0.002 63.3 0.002 52.9
CRI-I(870) 0.001 42.9 0.001 44.4 0.002 52.6 0.002 60.2 0.002 63.7 0.001 59.5
CRI-1(1020) 0.001 40.8 0.001 48.8 0.002 54.5 0.002 57.0 0.002 64.1 0.001 58.2
SSA(440) 0.013 1.4 0.018 2.1 0.022 2.4 0.018 2.0 0.020 2.2 0.021 2.3
SSA(675) 0.017 1.8 0.019 1.9 0.033 34 0.021 2.2 0.022 2.3 0.023 2.4
SSA(870) 0.017 1.8 0.017 1.7 0.024 2.7 0.020 2.1 0.018 1.9 0.021 2.2
SSA(1020) 0.018 1.8 0.015 15 0.023 2.4 0.020 2.1 0.018 1.9 0.017 1.8
ASYM(440) 0.013 1.7 0.017 2.2 0.011 15 0.020 2.6 0.017 2.3 0.017 2.2
ASYM(675) 0.016 2.2 0.016 2.2 0.013 1.8 0.024 3.2 0.021 2.8 0.020 2.7
ASYM(870) 0.016 2.1 0.017 2.3 0.013 1.8 0.022 3.0 0.022 3.0 0.019 2.6
ASYM(1020) 0.013 1.7 0.016 2.2 0.013 17 0.020 2.6 0.020 2.8 0.016 2.2

daily timescale and to an acceptable degree of accuracyost function over a grid of runs. While such an approach is
Through the use of different input scenarios we performedwell established in the scientific literature (Gorr et al., 1994;
an empirical sensitivity analysis of the available measure-Lawrence et al., 1996; Curry and Morgan, 2006; Stathakis,
ments from satellite sensors for retrieving the properties 0f2009), this is the first time it has been applied in the devel-
dust aerosol in the Northern Africa region. The NNs were opment of an atmospheric measurement technique. Since, in
regularised and trained with AERONET Level 2.0 Version 2 regression schemes like NN models, possible redundancies
inversion products at sites centred on the peak of dust extincin both the data and the NN model space can lead to ill-posed
tion (according to the GOCART model averaged over a 10-problems, we have tried to eliminate these problems by care-
year period) in Northern Africa, and have been shown to befully selecting data of the same aerosol type (predominantly
capable to some degree of learning the relationship betweedust as flagged up by the GOCART model global average),
satellite inputs and the desired output parameters. The traineldy constructing representative test scenarios, and by remov-
NNs have the added benefit that they retrieve the entire timéng missing values and outliers. Furthermore, PCA was used
series of all output parameters simultaneously. We were alsto extract components from the variables in the NN model
able to demonstrate a technique for objectively deducing opspace, to eliminate redundancies and to increase the perfor-
timal NN architectures by minimizing the back-propagation mance of the NN-based retrievals.
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Table 6. Overall assessment of the simulation performance of trained NNs fed with AERONET inputs (cases 1-3) and satellite inputs (case
4) at the daily timescale.

ASSESSMENT AERONET SATELLITE
Casel Case 2 Case 3 Case 4
V(f) Very Poor  Poor Very Poor Poor
V(c) Very Good Very Good Very Good Moderate
n Moderate Moderate Moderate Moderate
Radial Bin 15 Very Good Very Good Very Good Moderate
CRI-R(440) Poor Poor Poor Poor
CRI-R(675) Very Poor  Poor Poor Poor
CRI-R(870) Very Poor  Poor Poor Very Poor
CRI-R(1020) Poor Moderate Poor Very Poor
CRI-I(440) Moderate Poor Poor Poor
CRI-I(675) Moderate Moderate Very Poor Poor
CRI-I(870) Moderate Moderate Very Poor Poor
CRI-1(1020) Moderate Moderate Very Poor Poor
SSA(440) Poor Poor Poor Moderate
SSA(675) Moderate Moderate Poor Poor
SSA(870) Moderate Moderate Poor Poor
SSA(1020) Moderate Moderate Poor Poor
ASYM(440) Moderate Moderate Moderate Very Poor
ASYM(675) Moderate Moderate Moderate Very Poor
ASYM(870) Moderate Moderate Poor Very Poor
ASYM(1020) Poor Moderate Poor Very Poor
Very Poor R(d)<0.2
Poor 0.2< R(d) <04
Moderate 0.4 R(d) < 0.6
Good 0.6< R(d) <0.8
Very Good R(d)>0.8

With regard to testing the ability of the NNs to perform 2. The inclusion of AERONET HO in the inputs im-
well on unseen data at Dakar, it is important to bear in mind proves the retrieval potential of the NN, especially with
that while an estimate of output uncertainties is provided respect to the daily spectral behaviour of CRI-R and
with reference to known a priori target values, the test re- ASYM.
sults presented in Sect. 4 incorporate also a network-induced
error and are therefore only approximate. Having said this, 3. The further inclusion of AERONET UV AOD (380
the histogram of the differences between NN PC outputsand ~ and 500nm) in the inputs led to a deterioration
PC targets at the training stage was found to presentasharply  in the performance particularly with respect to the
peaked Gaussian having a near-zero mean error. The NN test  absorption-related parameters SSA and CRI-I at the
results at the daily timescale are presented in a qualitative ~ daily timescale.
way in Table 6 with a categorization based on a linear scale

of values of the regression coefficient. 4. The NN trained with MODIS AOD (470, 550 and
More specifically, assessing the performance of NNs ~ 660nm)and HO, and OMI-modelled AAOD(500 nm)

trained on different combinations of inputs in the context of was able to retrieve with a good to very good degree of

Northern African desert dust data revealed the following. accuracy the daily averaged coarse mode of the AVSD

at the daily timescale.
1. AERONET-measured AOD inputs (470, 550 and

600 nm) alone (case 1) are insufficient to retrieve the

daily spectral behaviour of the CRI-R simultaneously 6 Conclusions

with the AVSD, CRI-I and secondary microphysical pa-

rameters, together with the optical parameters SSA and he results show that it is possible to deduce an optimal NN

ASYM. architecture and to train it to retrieve the daily averaged vol-
ume concentration of the coarse mode of dust aerosol to a
high degree of accuracy from satellite inputs. The potential
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of the NN for retrieving size distribution information isinter-  The results presented here are appropriate to dust-
esting as this may open up the possibly of adding size distridominated data over Northern Africa and further studies will
bution data to the arsenal of satellite products currently avail-assess whether or not the same methodology can be applied
able. The climatological mean retrieval of the complex re-to other dust regions, as well as to regions dominated by other
fractive index and the optical parameters, although unable tdey aerosol types such as marine aerosol and the products of
provide information regarding daily variability, nevertheless biomass burning and urban pollution. The NN model devel-
can provide important information on these key parameteroped appears to offer some potential for obtaining daily re-
over regions where no ground-truth data exists. In essencdrievals from satellite data, and it is hoped, will contribute to
the NN model applied to satellite inputs, may allow for the efforts currently under way for globally monitoring aerosols
creation of a virtual space-based AERONET climatology from space and hence improving assessments of global cli-
centred at & 1 degree resolution grid points over the earth’s mate forcing.

surface.
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Appendix A: Calculation of secondary microphysical atmospheric column sampled, and is given by the following:
parameters from the AVSD o

T r
frlz |n VW d|nr

r2 dV(r)
frl dinr dinr

As mentioned in Sect. 2.1.2, the secondary microphysical paln7v = (A2)
rametersr(f), r(c), var(f), varlc), V(f) andV(c) need to
be calculated so as to compare NN outputs with AERONET The geometric radius of the fine modef) is obtained
outputs. In AERONET's retrieval algorithm, all of these pa- by settingry = 0.05 um and- = r in this expression and
. =0. =rs
rameter_s are galculated_ f_rom the A\./SD by sp_eufylng a mOdethen exponentiating, while the geometric radius of the coarse
separation points that divides the distribution into 2 volume moder (c) is obtained by settings = rs andr» = 15 um and
1 H . —Is -

concentrations/ (f) and v (c). From the retrieved AVSD: then exponentiating. The geometric standard deviation which

dV(r)/dlnri the volume conceqtratlpw occqpled by parti- measures the spread of particle modes is given by the follow-
cles spanning the range of radial sizes [»] is then calcu- ing:

lated by integrating over the distribution,

Fdvir | S Onr— Inry)? O diny -
dinr. (A1) oy = v . (A3)

d|nr j;l W d|nr
ry

In principle, the aerosol number size distribution (ANSD): ~ The geometric variance of the fine mode y3ris obtained
dN (r)/dInr or dN (r)/dr, could equally well be used instead Py settingry = 0.05um and-; = rs in this expression and
of the AVSD (King et al., 1978), since the conversion be- then squaring, while the geometric variance of the coarse
tween the AVSD and ANSD parameters is straight-forwardmode var{) is obtained by setting, = rs andrz =15pum
(see for example Appendix A of Sayer et al., 2012). Noteand then squaring. From the above, it is clear that all sec-
that the AVSD is preferable to the ANSD as it is more accu-Ondary microphysical parameters depend on a precise deter-
rate when inverting scattering properties that are more sensihination of the fine mode/coarse mode separation paint
tive to aerosol particle volume, than number (Dubovik et al., At present, AERONET estimates this by finding the mini-
2011). The AERONET inversion algorithm estimateste- ~ mum within the size interval 0.439 r <0.992 pm (Dubovik
gration by means of the trapezium rule (Dubovik and King, €t al., 2000). The same approach was used in this study al-
2000), and the same approach was adopted in this work. Théough there are signs (see Sects. 3.3.2 and 4) that this is
volume concentration of the fine mod f) is obtained by perhaps problematic for aerosol distributions like those for
settingr1 = 0.05 pum ana, = rs while the volume concentra- desert dust that do not have clearly separated fine and coarse
tion of the coarse mod® (c) is obtained by setting; = rs modes.
and ro = 15um. The ratio of the area of the AVSD con-
tributed to by the fine mode to the total area over the whole
distribution constitutes the fine fraction The logarithmic
volume geometric radius (mean logarithm of radius) mea-
sures the characteristic size of typical aerosol particles in the

V=

Table Al1. Acronyms.

AERONET aerosol robotic network

AAOD absorption aerosol optical depth

AOD aerosol optical depth

ASYM asymmetry factor

AVSD aerosol volume size distribution

CRI-R complex refractive index-real part

CRI-I complex refractive index-imaginary part
GOCART global ozone chemistry aerosol radiation and transport model
MAE median absolute error

MARE median absolute relative error

MODIS moderate-resolution imaging spectro-radiometer
MSE mean squared error

NN neural network

oMl 0zone measuring instrument

PCA principal components analysis

SSA single scattering albedo
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