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Abstract. We herein report the results of some numerical a complex earthquake pattern may occur when the properties
simulations of complex earthquake cycles using a three-of the material are uniform. Using the two-block system with
degree-of-freedom spring-block model with a rate- and statevelocity-weakening friction and the appropriate model pa-
dependent friction law. The model consists of three blocksrameters, Huang and Turcotte (1990) successfully simulated
on a conveyor belt that is moving at a steady rate. Observe@arthquake cycles similar to those found along the south-
complex slip behaviour in the simulations is classified into central San Andreas Fault, California, and in the Nankai
five slip patterns, and for each of these the parameter deperfrough, southwestern Japan. Through a systematic examina-
dence of the slip patterns is demonstrated by means of phad®n of the same model, Huang and Turcotte (1992) found a
diagrams. Aperiodic slip patterns occur for wider ranges oftransition in slip behaviour from periodic to chaotic through
the parameter space in the three-block system than in theepeated period-doubling bifurcations.
two-block system. Chaotic slip behaviour known here as “in-  Various aseismic slip events have recently been observed
termittency” is found in the three-block system, in which two (Schwartz and Rokosky, 2007). These events cause pertur-
different slip patterns occur alternately with variable dura- bances to the stresses, possibly affecting earthquake oc-
tions. By calculating Lyapunov exponents, we quantify the currence. However, aseismic slip cannot be reproduced by
dependence of slip evolution on the initial conditions for eachsimple friction in terms of constant static and dynamic
slip pattern. For cases where intermittent slip patterns occurr velocity-weakening friction. In contrast, rate- and state-
the time evolution of the Lyapunov exponent is correlateddependent friction laws (Dieterich, 1979; Ruina, 1983) can
with changes in slip behaviour. be used to simulate both seismic and aseismic sliding. Using
a two-degree-of-freedom spring-block model with a rate- and
state-dependent friction law, Ma and He (2001) examined
complex sliding processes and found that period-doubling
1 Introduction bifurcation occurred for some friction parameters, in which
large events and small events occurred alternately. Using a
The accurate forecasting of earthquakes requires an undegmilar two-block system, Yoshida and Kato (2003) exam-
standing of the complexity of patterns of earthquake occurned the interactions between a block with unstable frictional
rence; in particular, the interaction between fault segmentsyroperties and a block with stable or conditionally stable fric-
is one of the key factors that determine the complexity oftiona| properties in order to explain the occurrence of slow
an earthquake cycle. A two-degree-of-freedom spring-blockaarthquakes.
model, which consists of two rigid blocks connected by an  Ape and Kato (2012; hereafter Paper 1) conducted a
elastic spring and loaded at a constant rate, is the simplesystematic parameter study using a two-degree-of-freedom
model of stick-slip and earthquake cycles and is used tapring-block model assuming a rate- and state-dependent
study the effects of fault interaction. Nussbaum and Ruinagiction law, and produced phase diagrams of slip patterns in-

(1987) conducted simulations using the two-block systeme|yding the periodic recurrence of seismic and aseismic slip
with constant static and dynamic friction, and suggested that
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events and aperiodic earthquake cycles. Aseismic slip eventgittency. Several types of intermittency have been reported
occur when the spring stiffness is close to the critical valuein numerical simulations of earthquake cycles. Ben-Zion et
for the occurrence of unstable slip. Aperiodic slip patternsal. (1999) examined two different continuum fault systems
resulting from interactions were not observed when the stiff-and showed that each alternately exhibits two types of earth-
ness of the coupling spring between the two blocks was rel-quake occurrence pattern (Lyakhovsky et al., 1999; Dahmen
atively weak. When both seismic and aseismic slip eventset al., 1998). The first is a pattern of clustering of large
occurred at a block, aseismic slip events were found to comearthquakes with fewer intermediate-size earthquakes; the
plicate the recurrence pattern of earthquakes in some casedrequency—magnitude relationship of the large earthquakes

The two-degree-of-freedom spring-block models may beis compatible with that of characteristic earthquake models
too simplistic to allow the reproduction of observed seismic- (e.g. Wesnousky, 1994). The second is a pattern that includes
ity, and complexity in synthetic seismicity is expected to in- earthquakes of various magnitudes, in which the frequency—
crease with the number of degrees of freedom. Nomanbhoynagnitude relationship obeys a power law compatible with
and Ruff (1996) used a spring-block system consisting ofthe Gutenberg—Richter relationship. Sandor et al. (2013) in-
three blocks, in which aseismic sliding is assumed to occur avestigated the dynamics of a spring-block model proposed
one of the blocks, to simulate complex earthquake sequencdsy Burridge and Knopoff (1967) and observed intermittency
including earthquake doublets. Mitsui and Hirahara (2004)in both the experiments and computer simulations. Using a
used a model consisting of five blocks with rate- and statefive-block system with a rate- and state-dependent friction
dependent friction to simulate earthquake sequences alonigw, Mitsui and Hirahara (2004) also found that the simulated
the Nankai Trough in southwestern Japan. Although thesesarthquake occurrence pattern can spontaneously vary even
studies succeeded in simulating earthquake sequences simnder steady loading. Intermittent behaviour is important in
ilar to the observed ones, they did not conduct systematiearthquake occurrence patterns because it affects long-term
studies of parameters nor did they examine the statisticaforecasting of earthquakes using the statistical properties of
properties of simulated earthquakes. Moreover, the differ-earthquake recurrence. Geological studies suggest that large
ence in the complexity of the synthetic seismicity betweenearthquakes on a fault are clustered within a short space of
the two-block and larger systems may be particularly inter-time (Weldon et al., 2004), implying that intermittency exists
esting. Erickson et al. (2011) investigated the slip behaviourin natural earthquake sequences. Here, we analyse two types
of a multi-block system with rate- and state-dependent fric-of slip pattern with intermittency observed in the present
tion and found that chaotic slip patterns occur in some caseghree-block system by examining the iteration maps for the
The slip velocities simulated in Erickson et al. (2011) were recurrence interval, the time evolution of the Lyapunov ex-
much smaller than seismic slip velocities {t ms1). Slip ponents, and the probability distributions of the recurrence
behaviour at high slip rates must be properly taken into con-dinterval.
sideration in order to understand the complexity of earth-
quake sequences.

In this study, we conduct numerical simulations using a2 Model
three-degree-of-freedom spring-block model with a rate- anqn our three-d f-freed ing-block model
state-dependent friction law. We examine the slip behaviour . 01" [fe€-cegree-ot-ireedom spring-block modet, we con-
of the three-block system and compare it with the results ob-Slder three ngld bIock; on a conveyor belt that is moving at
tained from the two-block system described in Paper 1. In? speed ob n thex dlrgct|on (Fig. 1). The blocks are con-

; . nected by springs of stiffness, andky3 between Blocks 1
particular, we focus on complex slip patterns that are not ob- . .
served in the two-block system, and give statistical and dy-and 2and BI(.)CkS 2and 3, resp_ectlvely, _and each block is con-

) nected to a fixed wall by a spring of stiffneks The equa-
namical analyses of these. The parameter dependence of SI{Pons of motion are written as
behaviour is organized using phase diagrams for the period-
icity of slip events through a wide and systematic parametricmldz X1 /dt2
study. The parameter ranges where complex slip patterns or )
aseismic slip events are observed are expected to change withid x2/di“ = —koxa+k12 (x1—x2) +k23(x3—x2) — Fnuz,
:hetr:ncrease in the number of degrees of freedom from tway30°x3/dr? = —koxa+ko3 (x2—x3) — Fapa, @

o three.

While the patterns of earthquake occurrence are statiswherem;, x;, and u; (i =1,2,3) are the mass, the posi-
tically stationary in the two-block model (Paper 1), we tion coordinate from the each reference point, and the coef-
find that the behaviour of the three-block system spontaficient of friction of theith block, respectively. We note that
neously switches between two earthquake occurrence patf the ith block is stuck on the conveyor belt, it follows that
terns with random durations. This behaviour is known asdx;/dt = Vp. The same normal forcg, is applied to each
“intermittency”. Pomeau and Manneville (1980) used the block.

Lorenz model, which is a simple dynamical system that ex- The frictional stress at the base of each block is assumed
hibits complex behaviour, and found three types of inter-to obey a rate- and state-dependent friction law (Dieterich,

= —kox1+kio (xo—x1) —Fnp1,
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As discussed above;o/ ko, ko3/ ko, (ko + k12)/ kc1, (ko +
k12+k23)/ kc2, and(ko+k23) / kcz may be regarded as control
parameters in the present three-block system. In our numeri-
cal simulation, we assunig, = k23 for simplicity and define
K =ki2/ ko, P1 = (ko+k12)/kc1, P2 = (ko+k12+k23)/ ke2,
and P3 = (ko + k23) / kc13. We fix the values of the load-
| Block 1 | | Block 2 | | Block 3 | ing spring stiffnesskg, the normal forceF,, the masses
of blocksm1, m2, andms, and the frictional parameters

°

Figure 1. Schematic diagram of a three-degree-of-freedom spring- . . . . .
block model. Blocks 1, 2, and 3 are connected to a fixed wall with andb, while varying the coupling spring stiffneds, and

springs of stiffnes&g, and connected to each other with springs of the characteristic slip dlstgndg We assumd.y, > LS’_ and
stiffnesskq2 andko3 between Blocks 1 and 2 and Blocks 2 and 3, consequentlykey < kcs, which indicates that the slip mo-

respectively. The three blocks are driven by a belt conveyor movingtion Of Block 3 is always less stable. The fixed values in
ata rate ofV. the simulations presented herein are as follofs= 5.0 x

10'8N, ko =1.0x 10'Nm™2, a3 =ap = a3 =1.0x 1073,
b1=by=b3=12x10"3 m1 =mp=m3=6.0x 10" kg,
1979; Ruina, 1983). The friction coefficient; at theith  andVy = 4.0 cmyears?. These values are the same as those
block is given by assumed in Paper 1, where the parameters were set such that
the simulated slip would be similar to those of the earthquake

P = In(V;/ V. b;In(6;/6,), 2 . . o :
Hi = px+ai N (Vi/ Vi) + bi In(0: /6,) (2a) cycles along the Nankai Trough, following Mitsui and Hira-
dg;/dt =1—-V;6;/L;, (2b)  hara (2004).
whereV (= Vp — dx/dr) is the velocity relative to the con- We conducted simulations systematically for= 0.2 and

veyor beltg is a state variabld, is a characteristic slip dis- 1.0; in Paper 1 we used a similar systematic parameter study
tance, and: andb are constants that represent the rate andUsing K = 0.05, 0.2, and 1.0. We did not apply = 0.05
time dependence of friction, respectively, andé, are the here because no chaotic slip pattern was observed in the
steady state values at a reference velokijtywhich is chosen ~ two-block system fok' = 0.05, as reported in Paper 1. The
asVj in the present study. We use the “ageing” type of statemodel parameter®; and P; ranged from 0.05 to 1.25 at in-
evolution law for the differential equation 6f(2b). We inte-  tervals of 0.05, and’,; was taken as 0.1 for the case of a
grate Egs. (1), (2a), and (2b) using a fifth-order Runge—Kutta‘Strongly unstable frictional property, 0.5 for an unstable fric-
method with adaptive time step control (Press et al., 1992). tional property, and 1.0 for a frictional property at the bound-
In a single-degree-of-freedom spring-block model with ary between stable and unstable.

spring stiffnesg, stick—slip motion occurs far — b < 0 and The initial conditions wereVinit = 0.001Vp and init =

k < ke (Ruina, 1983), where the critical stiffnefgsis defined L/ Vinit for all three blocks. In order to avoid transient char-

as acteristics in the results because of the initial conditions used,
(b—a) Fy we employed the results obtained after running the model for

ke 3) 40000 years.

L

When a — b > 0, the friction shows steady-state velocity

strengthening, leading to stable sliding. Because we are in3  pasyits

terested in the interaction between the oscillating blocks, we

seta — b < 0 for the three blocks in this study. When some 3 1 parameter dependency of slip behaviour

blocks are connected with springs, the slip motion of a block

is controlled not only by the spring between the block and|n order to understand the dependence of slip behaviour on
the driver but also by the springs connected to the neighbourthe model parameters, we plotted the periodicity of the slip
ing blocks, as discussed by Yoshida and Kato (2003) and inevents and the relative frequency of the aseismic slip events
Paper 1. For example, when Block 1 is locked, it is draggedon the parameter plan—Ps. Periodicity was examined as
by Block 2 and the driver; this is equivalent to Block 1 be- follows: slip events at each block were identified when the
ing dragged by a spring of stiffnesg+ k12. Whenko > kei,  slip velocity exceeded/p and the time intervals between
wherek; is the critical stiffness of théth block, stable slip  successive slip events were known. Histograms of the times
is expected to occur at thah block, whether or not the petween events were constructed using a bin size.dfar
other block is locked. Both stable and unstable slip couldinstance, when slip events repeatedly occurred at a constant
occur forko < kci < ko + ka2 as found in the simulation de- interval of 7o, only the frequency at the bin including
scribed in Paper 1. Faio + k12 < kci, unstable slip usually  was nonzero. When a periadeycle of slip events occurred
occurs. When the interaction with the neighbouring block is (Where a periodfl. Cyc|e denotes that S||p events with dif-
strong, creep-like behaviour may sometimes occur even foferent recurrence intervals were included in a single period),
ko + k12 < kci as shown in Paper 1. the frequencies at bins were the same and zero at the other
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bins. We thus measured the numiéy of bins of nonzero
frequencies, an@, was then used to represent the period- »
icity. The bin size d was 0.01 year, which is smaller than
0.1% of the average recurrence interval of slip events (50- “
200 years). Whew, > 64, we regard the slip pattern as hav-
ing no periodicity (hereafter: aperiodic).

Figure 2 shows the periodicity of slip events in Block 2 on
the parameter plang;—P3, where the periodicity is shown
by a binary logarithmic colour scale ranging from 1 to 64.
The periodicities of Blocks 1 and 3 are almost the same a¢..
that of Block 2. The results indicate that: (1) aperiodic slip
patterns appear for broader ranges of parameter space for tl
case ofK = 1.0 than forK = 0.2, and (2) aperiodic slip pat- - : E ; E
terns tend to occur foP ~ 1.00, which is in the neighbour- mm m
hood of the stable—unstable boundary of frictional behaviour. T
Both observations are consistent with the results of the two+igure 2. Parameter dependency of periodicity of slip events in
block system (Paper 1). Block 2 onP; and P3 coordinates fok = 0.20 (a—c)andK = 1.00

We then calculated the rati®, of the number of aperiodic (d—f) and P, = 0.100, 0.500, and 1.000. The periodicities for pa-
cases to the total number of cases for each phase diagrarfﬁmeter_sets are discretely plotted using seven colours_, which indi-
The R, values obtained are shown in Fig. R, tends to in- gate pe”?d'lﬁ 253%.4._.7’ 8;&15’ 16-31, 32-63, and aperiodédl.
crease withK or P». In order to compare the present three- ee text for the definition aka.
block system with the two-block system, we conducted sim-
ulations of the two-block system using the same model as Pa g
per 1 for the parametersd® < (kg+k12)/kc1 < 1.25, 005 <
(ko+k12)/ kc2 < 1.25, andk12/ ko = 0.2 and 1.0, whergg; is
the critical stiffness of théth block in the two-block system.
The values ofR, are 19.1% fork12/ ko = 0.2 and 66.8 %
for k12/ ko = 1.0 for the two-block system, while the, val-
ues are 15.4-70.4% fdno/ko = 0.2 and 69.5-85.2% for
k12/ko = 1.0 for the three-block systenk, in the three-
block system is generally larger than in the two-block sys-
tem, indicating an increase in complexity with the increase * -
in the number of degrees of freedom from 2 to 3. “

In most cases, the maximum slip velocity at e block
decreases a#; increases. Here we define “seismic slip”
to be slip with logV/Vp)) > 8, which corresponds t& 2>
0.13mst. A slip event with the maximum slip velocity
lower than this value is regarded as an “aseismic slip” event "
Changes in the ratio of the number of aseismic slip events t¢
the total number of slip events fégf = 0.2 andK = 1.0 are
shown in Figs. 3 and 4, respectively. When the interaction is .,
strong K = 1.0), aseismic slip events occur for wider ranges
of P; andPs for P, < 0.5. A similar tendency is observed in
the two-block system, as discussed in Paper 1. In additionFigure 3. The ratio of aseismic slip events to total slip events for
the ratio of aseismic slip events is always less than 100 %he case ok = 0.20.
for K = 1.0, indicating that seismic slip events occur for the
overall range tested. Even wh&pand Ps are larger than 1.0,
seismic slip events occur at Blocks 1 and 3, triggered by a In order to examine the effect of the initial conditions on
seismic slip event at Block 2 because of strong coupling. Thethe simulation results, we conducted a parameter study with
parameter study for the two-block system (Paper 1) showedandom initial conditions, where the differeft,; for the
that the occurrence of aseismic slip events complicated thé¢hree blocks were varied within a range of 10 % for each run.
slip behaviour of the blocks. This finding is consistent with We confirmed that the periodicities of slip events (Fig. 2) for
the result from the three-block system that an aperiodic slipvarious initial conditions were unchanged for simulated slip
pattern is common foP; > 1.0 (Fig. 2). histories after running the simulation for 40 000 years. This

is because slip behaviour for periodic slip patterns finally

7
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(a)

©

=Py )

:|,B(;m,g,:mm .
Py 1’)‘ P,‘
o o v Py P, P,
=F@ = . O ; G . Lr®
o 1 K=1.00, ,=0.500 2o | K=1.00, £,=0.500 py 7 =100 =050
Blockl Block3 (11 o o 10 o
P‘;( 7, P, :
) v Py Py P,
P, 06 5 2 2 06 0 2 5
Py n P
)] 0}
o[ B0 Figure 5. Phase diagrams of slip patterns for the three-block sys-
= tem. Periodic patterns are plotted with grey points and the others,
P . . . . epe . .
o which correspond to red points in Fig. 2, are classified into five
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3.2.1 Patternl

Figure 4. The ratio of aseismic slip events to total slip events for

the case ok = 1.00. Pattern 1 is a complex slip pattern that contains only seis-
mic slip events. The slip events seem to occur randomly and
the variation in the recurrence interval is relatively large. The

becomes the same after a transitional period independent afrder of the slip events in the three blocks is not constant.

the initial conditions. The ratio of the aseismic slip events toFigure 6a and b show example historiesiofand p — .

the total slip events was changed by about 5% at most fofor pattern 1. The bifurcation diagram of recurrence intervals

each aperiodic case, and the patterns in Figs. 3—4 were onlgf slip events fork = 1.00, P; = 0.450, P, = 0.100, and

slightly dependent on the initial conditions. 0.15< P3 <0.35is shown in Fig. 7, in which the recurrence
intervals of slip events at Block 1 are plotted agaist
3.2 Complex slip pattern Figure 7 shows that a period-2 slip pattern occursAgp

0.243, a period-6 pattern occurs fo238< P3 < 0.243 and
The complex slip patterns observed in the present three-block period-12 pattern occurs foraZ29< P3 < 0.238, indicat-
system are classified into five types according to the sliping an increase in complexity with decreasiig. Finally,
mode, the variability of the recurrence interval of slip events,the slip pattern becomes aperiodic.
and the intermittency. Figure 5 shows the parameter regions
where the five complex slip patterns occur in phase diagrams3.2.2 Pattern 2
showing that the occurrence of a slip pattern depends on the
parameters used. For each parameter set, we calculated tRattern 2 is an aperiodic pattern with only seismic slip events.
average valudyye and the standard deviatidT of the re-  Example histories o¥/ andu — u, for pattern 2 are shown
currence intervals of the seismic slip events in Block 2, andin Fig. 8a and b, respectively. The order of slip events in the
took the coefficient of variation CO¥ 8T/ Tave Then we  three blocks is the same in each case. For example, in the case
obtained the averages 0§, and COV from all the samples shown in Fig. 8, Block 3 always slips first, Block 2 second,
for each complex slip pattern. The valuBge andCOV are  and Block 1 third in each sequence. The delay times between
shown in Table 1 together with the order of the slip eventsthe slip events at Blocks 3 and 2 are shorter than 1 year and
in the three blocks and the intermittency of the slip patternsthose between Blocks 2 and 1 vary from 3 to 15 years. Al-
To obtainTaeandCOV, we used data for seismic slip events though this behaviour is apparently periodic, it is regarded as
in Block 2. This is because many aseismic slip events occuaperiodic from the analysis of recurrence intervals (Fig. 2).
in Blocks 1 and 3 in some cases, and the time interval be-The COVs of recurrence intervals of slip events for pattern 2
tween seismic slip events is sometimes too long to be usedre about one sixth of those for pattern 1 (Table 1). This
for statistical analysis. We examine the characteristics of thébehaviour is called “quasiperiodic”, in which the trajectory
five complex slip patterns described below by showing exam-winds around endlessly on the torus, never intersecting with
ple time histories of slip velocity and frictional coefficient itself and yet never quite closing (Strogatz, 1994). The bifur-
L= s cation diagram of recurrence intervals for pattern 2 (Fig. 9)
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(@) K=1.00, P;=0.450, P,=0.100, P3=0.200 (b) Blockl —  Block2 Block3 —
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Figure 6. Example histories ofa) V and(b) n — u« for pattern 1. The model parameters are set te: 1.00, P; = 0.450, P, = 0.100, and

P3 = 0.200.

Table 1. The slip mode, the average value of the recurrence int@yaland the coefficient of variatioBOV, the order of slip events in the
three blocks, and the intermittency of the slip pattern for the five slip patterns. Data for seismic slip events in Block 2 for all cases categorized
into each complex slip pattern are used faye andCOV. See text for details of calculation.

Pattern  Slip mode Tave cov Order of Intermittency
slip events
1 Seismic 70+8.6 0.210+0.098 Variable No
2 Seismic T7+6.7 0.0344+0.018 Invariable  No
3 Seismic 115+54 0.246+0.016 Variable Yes
4 Seismic/aseismic 10Pp+490 0462+0.238 Variable No
5 Seismic/aseismic 58+ 8.0 0.390+0.086 Variable Yes
3.2.3 Pattern 3
(O]
E Example histories o¥/ andu — u, for pattern 3 are shown
o in Fig. 10; here only seismic slip events occur and the order
§ of slip events in the three blocks is variable. The average re-
§ """"""""" q currence intervals of the slip events at the three blocks differ,
g and a slip event at a block may be skipped in a sequence. For
. instance, four seismic slip events occur in Block 1 and three
0.3 seismic slip events occur in Blocks 2 and 3 during the time in-

terval between 100 and 600 years in Fig. 10. Pattern 3 occurs
for K = 0.20 (Fig. 5b), in contrast to the result for the two-
Figure 7. Bifurcation dlagram of recurrence intervals of Sllp events block System, |n Wh|Ch an ape”od'C pattern Of Se|sm|c S“p
?t B'Odel near rhe tratrt13itioln k%%””daré’ kl’et""ee” ;"”gperiog(i)c Pat-events is not observed fdf = 0.20 (Paper 1). Two different
€rns and complex pattern 1. The model parameteriase.. vo, recurrence patterns occur alternately with irregular durations,
P =0450, andP, =0.100, andPg ranges from 0.15 to 0.35. showing intgrmittent behaviour as di);cussed i?ﬂ Sect. 4.1. The
transition from a periodic pattern to pattern 3 happens sud-

is typically found to show a bifurcating to quasiperiodic pat- 4€nly, & shown in a bifurcation diagram of the recurrence
tern (Albers and Sprott, 2006). AB; decreases, the recur- interval for pattern 3 (Fig. 11). A multiperiodic recurrence

rence pattern changes from period-1 to pattern 2 through pattern suddenly changes to a complex recurrence pattern at

period-adding sequence, in which the number of periods in-P3=0.0395. Similar sudden bifurcations occur at the transi-

creases monotonically. Ag; further decreases, the recur- 10N Points of patterns 4 and 5.
rence pattern changes to become more complex with seismic

and aseismic slip events, which is defined as pattern 4. Thé.2.4 Pattern 4

sensitivity of the trajectory to small perturbations of initial
conditions for pattern 2 is discussed in Sect. 4.2.

Pattern 4 is an aperiodic slip pattern with seismic and aseis-
mic slip events as shown in Fig. 12, which shows example
histories ofV andu — .. The order of the slip events in the

blocks is highly variable. In most cases of pattern 4, the COV
of the recurrence intervals of seismic slip events is larger than
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(a) K=1.00, P1=0.650, P,=0.500, P;=0.200 (b) Blockl —  Block?2 Block3 —
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Figure 8. Example histories ofa) V and(b) nu — u« for pattern 2. The model parameters are sekt te: 1.00, P; = 0.650, P, = 0.500, and
P53 = 0.200.

80 —m——————————— time intervals between seismic slip events. The order of seis-
mic slip events in the three blocks changes randomly.
i ';5 iI

II . ! 1
Ill i‘ll!ilhﬂﬂ&wn 1 4 Discussion
i Il " k

4.1 Temporal evolution of recurrence interval

Recurrence Time

— ' ' — We examine the variation of the recurrence inteffjalvith
0.23 0.24 P, 0.25 0.26 time, whereT,, is the time interval between the £ 1)th and
thenth seismic slip events. Figure 14 shows examples of the
Figure 9. Bifurcation diagram of recurrence intervals of slip events Variation of7,, at the three blocks for patterns 3 and 5. The
at Block 1 near the transition to pattern 2. The model parameters arg10del parameters for the examples in Fig. 14a—f are the same
K =1.00,P; =0.650, andP, = 0.500, and 0.23= P3<0.26. as those for Figs. 10 and 13.
In the case shown in Fig. 14a (pattern 3), two different re-
currence patterns alternate intermittently at Block 1. In the
those of patterns 1-3 with only seismic slip events (Table 1)first pattern, the recurrence interval monotonically increases
Pattern 4 is the most common complex slip pattern and itfrom about 110 to about 160 years, and then decreases to
tends to occur when the frictional property of at least one ofabout 110 years. In the other pattern, the recurrence inter-
the blocks is close to the stable—unstable transition boundaryal oscillates between about 110 and 130 years. We call the

i.e. P, ~ 1.0 (Fig. 5). former pattern 3A and the latter 3B, and the time intervals
of the two patterns are indicated by bars in Figs. 14a—c. The
3.25 Pattern5 slip patterns at Blocks 2 and 3 also change intermittently and

the time intervals of the two recurrence patterns almost coin-
Pattern 5 is also an aperiodic slip pattern that includes botttide with those of Block 1. The durations of pattern 3A are
seismic and aseismic slip events. Figure 13 shows examplaearly constant, while those of pattern 3B are not constant.
histories ofV andu — u,. Pattern 5 is characterized by two Figure 15a shows the iteration maps Bf of seismic slip
different slip behaviours that appear alternately: one is aperievents at the three blocks for the case shown in Figs. 14a—
odic behaviour with little variation in the recurrence interval c. Two orbits, which correspond to patterns 3A and 3B, are
and the other is aperiodic behaviour with greater variation inobserved for Block 1 (Fig. 14a).
the recurrence interval. In the period from 0 to 1000 years, for Two different recurrence patterns are also observed for
which simulated histories are enlarged in Fig. 13c and d, onlypattern 5, as shown in Fig. 14d—f (see also Fig. 13). The first
seismic slip events occur. The recurrence interval of seismigs an aperiodic pattern with little variation in the recurrence
slip events at Block 2 during this period is.8% 3.3 years. interval (pattern 5A), wherg, varies within a narrow range,
The order of slip events in the three blocks is constant inand the second is an aperiodic pattern with greater varia-
this period. In the period from 1500 to 2200 years, for which tion in the recurrence interval (pattern 5B). Aseismic slip
simulated histories are enlarged in Fig. 13e and f, both seisevents are included only in the time intervals of pattern 5B
mic and aseismic slip events occur. The recurrence interval ofFig. 13e and f). To distinguish patterns 5A and 5B quan-
seismic slip events at Block 2 during this period is#218.3 titatively, we measure7,, — 7,,_1| for Block 1. We regard
years. This large variation in recurrence interval is caused by 7,, — T,—1| < 10 years as pattern 5A. In contrast, pattern 5B
the frequent and random occurrence of aseismic slip eventss assigned fot7,, — T,—1| > 10 years. The durations of pat-
which partially release stress and significantly prolong theterns 5A and 5B are not constant. In each time interval of
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(a) K=0.20, P=0.500, P,=0.500, Py=0.050 (b) Blockl —  Block2 Block3 —
;la- 10 T T T 001 T T T T T T T T T T
a 5 0 i
g o l =4

,_} :IL | i
g 5 ¢ z 001 ¢
g -10 FP——— L 002 ——m—— 1 e
0 1000 2000 3000 0 1000 2000 3000
Time [year] Time [year]

Figure 10.Example histories ofa) V and(b) u — i« for pattern 3. The model parameters are s&t te: 0.20, P, = 0.500, P» = 0.500, and
P3 =0.050.

180 tiglieri and Godano (2007) obtained a power law distribu-
) - tion for the duration of laminar phases from the Southern
-E 160 California Catalogue. For pattern 3B, the frequencies of
o - of multiples of 120 years, and af ~ 1440 years in partic-
% 140 | ular, are high (Fig. 16a). This is because the recurrence in-
= - ! tervals of slip events during pattern 3B fluctuate around 120
§ 120 EIITIIT i : years. In contrast, the distribution functions of duration for
x - e A T patterns 5A and 5B are more continuous than that of 3B.

100 :

0.036 4.2 Lyapunov exponent

In order to quantify the complexity of aperiodic slip patterns

e et o i he present tree-block system, we calcuated the Lya-
and complex pattern 3. The model parameterskare 0.20, Py — punov exponent, which is a quantity representing the sen-

0.500, andP, = 0.500, andPs ranges from 0.036 to 0.05 sitivity of a system to small perturbations (Drazin, 1992).
’ ' In particular we are interested in patterns 3 and 5 because

apparently they are “intermittent chaos”, in which irregular

pattern 5A, the fluctuation df, is small at first before grad- ~ alternation of phases of different complex behaviour occurs
ually increasing. Finally7,, suddenly jumps and the pattern (Paladin and Vulpiani, 1987). Nakanishi (1991) conducted a
changes to 5B. The time intervals for patterns A and B athumerical simulation of an earthquake cycle using a cellular
Blocks 2 and 3 coincide with those of Block 1. The iteration @utomaton version of a multi-spring-block model (Burridge
maps of the recurrence intervals of seismic slip events for2nd Knopoff, 1967). In his model, the Lyapunov exponent is
the periods from 200 to 1500 years and from 2500 to 320aP0sitive when the frequency—magnitude relationship obeys
years in Fig. 14d—f are shown in Fig. 15b and c, respectively@ Power law, and it is close to zero when the frequency-—
Figure 15b mostly corresponds to pattern 5A and Fig. 15¢ tgnagnitude distribution has a characteristic peak, which may
pattern 5B. In Fig. 15b and ¢, the start and end points of patcorrespond to the characteristic earthquake model. Crisanti et
terns 5A and 5B are indicated by arrows. Figure 15b clearly@l- (1992) used the same cellular automaton model as Nakan-
shows that the variation iff, increases as the system ap- ishi (1991) and examined the evolution of the Lyapunov ex-
proaches the transition point from pattern 5A to 5B for the POnent to characterize the degree of intermittency.
three blocks. The maps in Fig. 15¢ are irregular, in contrast We calculated the Lyapunov exponent using an algo-
with those in Fig. 15b. Precursory behaviour for the transition!ithm essentially the same as those of Nakanishi (1991) and
from pattern 5B to 5A cannot be found. Crisanti et al. (1992). Firstly, two trajectorigi and fg are
Figure 16 shows the cumulative frequencies of the dura<calculated from slightly different initial conditions. We de-
tions r of patterns 3B, 5A, and 5B for the cases shown in fine the distance of the trajectories from the difference in the
Figs. 10 and 13. The frequencies ofare approximately frictional coefficients as
expressed by exponential functions, rather than the power 3 ) 1/2
functions observed for “on—off intermittent earthquake oc- 5,y — (Z (M,A (an) —uB (t’?)) ) ’ (4)
currence” (Bottiglieri and Godano, 2007). On—off intermit- -
tent earthquake occurrence is characterized by periods of
clustered occurrence of earthquakes and relatively inactivavhere u* and . are the frictional coefficients of thith
periods for the times between successive clusters, which arblock for fa and fg, respectively, antf andt,f3 are the times
regarded as “burst” and “laminar” phases, respectively. Botjust after thenth seismic slip events for trajectorigi and
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(a) K=1.00, P4=0.650, P,=0.500, P3=0.050 (b) Blockl —  Block2 Block3 —

= 10¢ . — 0.01 .
> 5¢
g o : f

F =
£ o -0.01 ‘ :
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0 500 1000 1500 0 500 1000 1500

Time [year] Time [year]

Figure 12. Example histories ofa) V and(b) u—u. for pattern 4. The model parameters are sk te: 1.00, P; = 0.650, P, = 0.500, and
P3 = 0.050.

(@) K=1.00, Py=0.250, P>=0.500, P5=0.200 (b) Blockl —  Block2 Block3 —
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Figure 13.Example histories ofa) V and(b) u — u« for pattern 5. The model parameters are s te 1.00, P; = 0.250, P> = 0.500, and
P3=0.200. The sections indicated by the solid arrowgapand(b) are expanded i) and(d), and those indicated by the dashed arrows
are expanded ie) and(f).

fa, respectively. Note that in generg} # ¢ because the eachx value is calculated by setting = 5, which is suffi-
occurrence time of seismic slip events depends on the initiatiently smaller than the average numbers of slip events dur-

conditions. The Lyapunov exponents defined by ing the two patterns. Table 2 shows the average values and
the standard deviations afr) for the example cases shown
1 5t in Figs. 6, 8, 10, 12, and 13, which correspond to patterns
A= NZ'n 5 (5) 1-5, respectively. Each value is calculated for periods of
n=1

100 000 years. The negative values.dbr patterns 1 and 2
indicate that the evolution of the system is stable for small
perturbations and the complex slip behaviours in patterns 1

In order to characterize the intermittency, we examined@nd 2 are not chaotic. The positikevalues for patterns 3,
the variation ofs. with time. Because we are interested in % @nd 5 indicate chaotic behaviour, in which the evolution

the relationship between(r) and the two patterns A and B of slip is sensitive to small perturbations, and the long term

wheredg is the initial value 08. In the present study, we used
8o =107°.
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Table 2. The average values and the standard deviations of the Lya

punov exponent for the five slip patterns. The model parameters
for patterns 1-5 are the same as those for Figs. 6, 8, 10, 12, and 1. 1:3
respectively. Patterns 3 and 5 are calculated for time intervals in-

cluding both patterns A and B.

Block 1

Block 2

(a) Pattern 3: K =0.20, P, =0.500, P, = 0.500, P, = 0.050
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Figure 15. Iteration maps of recurrence intervalg,, versus7,

for (a) pattern 3,(b) pattern 5A, andc) pattern 5B. The start and

end points of mapéb) and(c) are indicated by arrows.

(a) Pattern 3B

(b) Pattern 5A
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Figure 14. Examples of the variation of recurrence inter#al of . . .

slip events at the three blocks fta)—(c) pattern 3 andd)—(f) pat- Figure 16. Frequencies of durations longer thanfor patterns
tern 5. The time intervals of the two patterns A and B are indicated(a) dSB, (0) EA’ and(c) 5hB. Tr}e rgpdellr())ara:jni;ers for pa}ttelrns 3
by blue and red bars, respectively. The model parameter sets fop" 5 are the same as those for Figs. 10 an ; respectively.
(a)—(c) and (d)—(f) are the same as those for Figs. 10 and 13, re-

spectively. A . . .
P Y bars in Fig. 17, are correlated with the changg.iburing a

period of pattern 3A) decreases from positive to negative,

. . L : , . then increases from the local minimum value, and at the same
forecasting of slip evolution is therefore practically impossi- e the slip pattern changes to pattern 3B. In patterni3B,

ble. Albers and Sprott (2006) calculated the Lyapunov expoy,creases to become positive, and is nearly constant for a cer-

nents for a simulated time series of a time-delay neural nety,in gyration. The slip pattern abruptly changes to 3A without

work model around a bifurcation point from quasiperiodic 4 hrecursor. Figure 17b indicates that pattern 5A is charac-
to chaotic behaviour, indicating that the Lyapunov exponentsaizeq by negative values af In each period of pattern 5A,

take negative values for quasiperiodic states and are positive gradually increases with time, which corresponds to the
for chaotic states. Our result is consistent with that of Albersfluctuation ofT, increasing with time (Fig. 14d). In contrast
n . . )

and_Sprott (2006). i , i the fluctuation ofs during pattern 5B is variable, as shown
Figure 17 shows the evolution of for the time inter- i, rjg 17h, and any change to pattern 5A is therefore diffi-

vals shown in Fig. 14 for the example cases of patterns %t 15 predict. Although we show only two example cases

and 5. Eachi. value is plotted at the end of the time win- of the correlation betweeh and changes in slip pattern in

dow for calculating:. because it is useful for evaluating the aiterns 3 and 5, similar correlations are observed for other
predictability of a change in slip pattern due to chang.in - 5565 with different parameter sets in patterns 3 and 5.
For both patterns 3 and 5, the boundaries between the inter-

vals A and B, which are defined in Sect. 4.1 and indicated by
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(a) Pattern 3 : K=0.20, p1 = 0.500, P2=O,500, p3=0.050 (a) Pattern 1 : K =1.00, P, = 0.450, P, = 0.100, P; = 0.200 (3-block system)
= pattern 3A Block 1 Block 2 Block 3
<2 = pattern 3B o1 ‘ ‘ ; ‘ ' ' ‘
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g. (b) Pattern F : ky,/ko = 1.00, (kyp+ko)/ke; = 0.800, (kip+ko)/ke, = 0.300 (2-block system)
:>;~'1 ) Block 1 Block 2
2 x
0 5000 10000 15000 § 0
Time (year) B ‘ ‘ ‘ ‘
(b) Pattern 5 : K=1.00, P, = 0.250, P,=0.500, P;=0.200 R N S A o
= pattern 5A
3 4 . . . . .
= pattern 5B Figure 18. Example histories of the normalized displacemgraf
2 the three blocks from the reference point fa) pattern 1 in the

three-block system anf) pattern F in the two-block system (Pa-
per 1). The model parameters for pattern 1 are the same as those
o0 | relating to Fig. 6. The upper and lower broken lines indicate the
time- and slip-predictable models, respectively.

Lyapunov Exponent A

T T 1
0 5000 10000 15000

Time (year) wherex is the displacement from the reference point (Fig. 1),

Figure 17. Examples of the variation of Lyapunov exponehtfor and xmin .and ¥max are the minimum and maximum va!-
patterns 3 and 5.(¢) is plotted at the ends of time windows where U€S Ofx in the observation period for each block. If slip
A(t) is calculated. The blue and red bars indicate the time period€£vents always occur wheki reaches the upper broken line
of patterns A and B, respectively. (X = 1), the recurrence pattern can be explained by the time-
predictable model. Meanwhile, ¥ always reaches the lower
broken line § = 0) after slip events, the recurrence pattern
Intermittent chaos is not observed in the two-block sys-can be explained by the slip-predictable model. To quantify
tem of Paper 1. Crisanti et al. (1992) found that the degreahe similarity to the two recurrence models, we examined the
of intermittency, which is expressed by the variation. piin- difference X, between the upper broken lin& & 1) and
creases with the number of interacting blocks. The fact thathe local maxima ofX before slip events, and| between
intermittent chaos is newly observed in the three-block systhe lower broken line X = 0) and the local minima of
tem is consistent with the findings of Crisanti et al. (1992). after slip events. To compare the simulated slip histories in
The existence of intermittent chaos implies that patterns othe present three-block system with those in the two-block
earthquake occurrence may change abruptly from one to arsystem, we used the simulation results reported in Paper 1
other. Similar abrupt changes in slip pattern were reportedFig. 18b). Table 3 shows the average valXgsand X, for
for a five-block system with rate- and state-dependent fric-patterns 1-5 and the periods of pattern 5A for 0-15 000 year
tion by Mitsui and Hirahara (2004), though they provided time periods, together with th€, andX| values for patterns
no quantitative analyses. Moreover, Kato et al. (2007) foundD2, E;, and F in the two-block system (Paper 1) for compar-
changes in slip pattern in their multisegmented fault modelison.

in an elastic medium. For pattern 2, bottX, andX| are small at the three blocks.
The simulated history oK for pattern 2 can be better ex-
4.3 Time- or slip-predictable model plained by the time- and slip-predictable models than by the

others, which is consistent with the small COV of the recur-
Whether the slip pattern obeys the time- or slip-predictableyence intervals (Table 1). For pattern®, is significantly
model is important for understanding the predictability of gmaller thanX, for Blocks 1 and 3, indicating that the re-
slip events (Shimazaki and Nakata, 1980). We examined thyrrence patterns for Blocks 1 and 3 are approximately ex-
histories of the displacements of the three blocks from a Sin‘plained by the time-predictable model, and bathand X;
gle point of reference for patterns 1-5. Figure 18a shows anye large at Block 2. For patterns 1, 4, and 5, b&thand
example history of normalized displaceménfor pattern 1 7 are large at the three blocks and neither the time- nor the

corresponding to the case shown in FigX6is defined by slip-predictable model can explain the simulated slip histo-
ries at the three blocks. However, for the time period of pat-
X = (x = Xmin) / (Xmax — Xmin) , (6) tern 5A, bothX, andX, are small at Blocks 1 and 3 and the
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Table 3. The average values of the displacement differefgand X, for slip patterns 1-5 and an intermittent slip pattern (pattern 5A) in

the three-block system, and patterns, Bo, and F in the two-block system (Paper 1). See main text for the definitiolg ahd X|. The

model parameters for patterns 1-5 are the same as those for Figs. 6, 8, 10, 12, and 13, respectively. The values are calculated for the tim
period 0—15 000 years. Patterns 3 and 5 are calculated for time intervals including both patterns A and B. The model parameters for patterns
Do, Ep, and F are the same as those for Figs. 6c, 7c, and 8 in Paper 1, respectively.

Pattern Block 1 Block 2 Block 3

Xu X Xu X Xu X
1 0.152 0.196 0.145 0.158 0.148 0.122
2 0.030 0.081 0.062 0.019 0.038 0.028
3 0.035 0.192 0.116 0.160 0.016 0.110
4 0.201 0.398 0.335 0.365 0.151 0.300
5 0.221 0.327 0.343 0.369 0.168 0.371
5A 0.021 0.019 0.093 0.117 0.033 0.036

D, (two-block system) 0.192 0.543 0.058 0.234 - -
E, (two-block system) 0.171  0.458 0.021 0.083 - -
F (two-block system) 0.066 0.125 0.097 0.076 - -

recurrence pattern approximately accords with both the time- Intermittent chaos can be observed in the three-block sys-
and slip-predictable models. tem, where two different recurrence patterns of slip events
In the two-block system, the simulated slip histories for occur alternately. The two different recurrence patterns of
pattern F, where only seismic slip events occur, approxi-slip events are characterized by different values of the Lya-
mately agree with the time-predictable model, as discussegunov exponent. Although a change in the recurrence pat-
in Paper 1. Figure 18b shows example histories of the nortern can be predicted in some cases by considering the Lya-
malized displacement at the two blocks in pattern F, forpunov exponent, the prediction of a change in slip pattern is
which corresponding histories of slip velocity and friction generally difficult. While intermittency has never previously
are shown in Fig. 8 in Paper 1. For patterns &nd B, been reported in studies of two-degree-of-freedom spring-
where seismic and aseismic slip events océfy,is small  block models that assume various types of friction model
at Block 2, indicating that the recurrence patterns at Block 2(Huang and Turcotte, 1992; He, 2003; Yoshida and Kato,
approximately accord with the time-predictable model. Al- 2003), it was observed for a cellular automaton version of
though the simulated histories of displacements can in mosthe three-degree-of-freedom spring-block model assuming
cases be better approximated by the time-predictable modedimple static—dynamic friction (Nakanishi, 1991). This sug-
for the two-block system, many cases cannot be explained bgests that intermittency occurs depending on multiple in-
either the time- or the slip-predictable model for the three-teractions rather than on the complexity of the friction. An
block system. The increase in the number of connectingearthquake recurrence pattern may change in real earthquake
blocks from two to three complicates the recurrence patternsfault systems quite suddenly when three or more faults inter-
leading to a reduction in predictability. act. This implies difficulty for probabilistic earthquake fore-
casting based on several recurrences of earthquakes.

5 Summary

) . The Supplement related to this article is available online
We used a three-degree-of-freedom spring-block model W'tho\t doi:10.5194/npg-21-841-2014-supplement

a rate- and state-friction law to simulate earthquake cycles.
We conducted a systematic parameter study to examine the
periodicity of slip events and the occurrence of aseismic S“pAcknowledgementsThis study was supported by the Ministry of

events. The range of parameters for which aperiodic slip pat_'Education, Culture, Sports, Science and Technology (MEXT) of

te_rns may be observed in the present three-block system I§apan, under its Observation and Research Program for Prediction
wider than that of the two-block system. An aperiodic slip of Earthquakes and Volcanic Eruptions.

pattern is observed for the condition of weak interaction

K =0.2, in contrast to the absence of an aperiodic patterredited by: I. Zaliapin

for K = 0.2 in the two-block system. The complex slip be- Reviewed by: M. Naylor and one anonymous referee
haviour observed in the present three-block system can be

classified into five slip patterns.
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