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ABSTRACT: This work presents a control strategy for mobile robots navigating in corridors, using the 
fusion of the control signals from vision based controllers. To this aim two controllers are proposed to 
generate the control signals to be fused: one is based on the optical flow calculation and the other is based on 
the perspective lines in the corridor. Both controllers generate angular velocity commands to keep the robot 
navigating along the corridor, and compensate for the dynamics of the robot. The fusion of both control 
signals is made by using a Kalman filter. Stability of the resulting control system in analyzed. Experiments on 
a laboratory robot are presented to show the feasibility and performance of the proposed controller. 

 
 

 

1 INTRODUCTION 

Mobile robots are mechanical devices which are 
capable of operating in an environment with a 
certain degree of autonomy. The environment can 
be classified as structured when it is perfectly 
known and motion can be planned in advance, or 
as partially structured when there are 
uncertainties that imply some on-line planning of 
motions. Autonomous navigation is related to the 
capability of capturing environment information 
through external sensors, such as vision, distance 
or proximity sensors. Although distance sensors 
(e.g., ultrasound and laser types), which allow to 
detect obstacles and measure distance to walls  

 
near the robot, are the most usual sensors, at 
present the tendency is towards vision sensors 
which supply better and a larger amount of 
information from images. 
  When autonomous mobile robots navigate 

within indoor environments (e.g., in public 
buildings or industrial facilities) they should 
be endowed the capability to move along 
corridors, to turn at corners and to come into 
rooms. As regards motion along corridors, 
some control algorithms have been proposed 
based on artificial vision. In [9], image 
processing is used to detect perspective lines 
and to guide the robot following the corridor 
centerline. This work assumes an elementary 
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control law and does not prove control 
stability. In [16], ceiling perspective lines are 
employed for robot guidance, but it also lacks 
a demonstration on system stability. Other 
authors have proposed to use the technique of 
optical flow for corridor centerline guidance. 
Some approaches incorporate two video 
cameras on the robot sides, and the optical 
flow is computed to compare the apparent 
velocity of image patterns from both cameras 
[14]. In [5], a camera is used to guide a robot 
along a corridor centerline or to follow a 
wall. In [15] perspective lines are used to find 
the absolute orientation within a corridor. 

  In general, these works do not present a 
stability analysis for the control system. On 
the other hand, the performance of the control 
system depends on  environment conditions 
such as illumination, surface textures, 
perturbations from image quality loss, and 
other factors, all of which making that each 
individual controller not reach acceptable 
robust properties. A solution for this problem 
is to consider multiple controllers, based on 
different sensing information, which operate 
simultaneously. Although having the same 
control objectives, the controllers can be 
coordinated using the concept of behavior 
coordination [11]. Within this concept, the 
command fusion schemes accept a set of 
behavior instances that share the control of 
the whole system at all times.  

Command fusion schemes can be classified into 
four categories: voting (e.g. DAMN [12], 
superposition (e.g. AuRA [1], Multiple Objective 
(e.g. Multiple Decision-Making Control [11]) and 
fuzzy logic (e.g. Multivaluated Logic Approach 
[13]).  Another example of a command fusion 
strategy is the dynamic approach to behaviour-
based robotics [3].  In this  paper we consider the 
command fusion structure  previously proposed 
in [8]. 

In the present work, two vision-based control 
algorithms for corridor navigation are presented. 
The first one uses the optical flow measured from 
the corridor's lateral walls to generate an angular 
velocity command for the mobile robot. The 
second scheme finds the perspective lines of the 
walls meeting the floor to generate the angular 
velocity command for the robot. The linear speed 
of the robot may either be kept constant or be 

controlled, in order to achieve a smooth and 
cautious navigation. Both controllers are 
redundant, because they have the same control 
objective. They are based, however, in different 
principles, which turn difficult their fusion at 
sensorial level. Here, we propose a fusion of both 
commands to attain a control signal that allows a 
robust navigation along corridors. For the fusion, 
the control architecture via control output fusion 
is used, as proposed in [8], employing a Kalman 
filter that minimizes the uncertainty level in both 
controllers. This uncertainty is evaluated in terms 
of the sensing error and the environment 
conditions by means of a covariance function for 
each controller. A stability analysis of the 
resulting control system is done as well. The 
work also presents experimental results on a 
Pioneer 2 DX laboratory robot navigating at the 
Institute of Automatics, National University of 
San Juan, Argentina. 
 
 

2 ROBOT AND CAMERA MODELS 

 

A. Robot Model 
 

 
 
Figure 1. Coordinate systems. 
 
Figure 1 represents the coordinate systems 
associated to the robot and the environment: a 
world system [W], a system [R] fixed to the robot 
and a system [C] fixed to the vision camera. 
Regarding Figure 1, the kinematic model of a 
unicycle type robot can be expressed as [7], 
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where ω  is the angular velocity and v the linear 
velocity of the robot, or

W xx≡ , or
W yy≡ . 

In order to compensate for vehicle dynamics, 
the dynamics model of the robot was obtained 
experimentally by step command response 
analysis. Of particular interest is the model 
relating yR ωω → , where Rω  is the reference 
angular velocity generated by the controller and 
sent to the robot, and yω  is the measured angular 
velocity of the robot. The identified model is 
approximately represented by a second order 
linear model, 
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ωω
ωω

ωω

++
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  (2) 

 
with  45.0=ωk , 6.104=ωa , 21.9=ωb .  
 

B. Camera Model. 
 

 
 
Fig, 2. Perspective projection camera model. 
 
A pinhole model for the camera is considered. 
The following relationship can be immediately 
obtained from Figure 2, 
 

zpc
pr λα=            (3) 

 
where r is the projection of a point p  on the 
image plane,  λ is the focal length of the camera 
and α  is a scale factor. 
 

C. Differential Camera-Robot Model 
 
This subsection presents the kinematic 
relationship of the camera mounted on the 

moving robot evolving with linear velocity v and 
angular velocity ω . The Coriolis equation 
renders the motion of a point P in a coordinate 
system with translational and rotational motion V 
and Ω , 
 

PVP ×Ω−−=!               (4) 
 
By time-deriving (3) and using both (4) and (3), 
the components of r! on the image plane are 
found as, 
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For the camera mounted on the robot´s center and 
pointing forward, 0== yx VV  and 0== zx ωω . 
Besides, by calling zVv = , yωω = , (5) and (6) 
can be written as, 
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which represent the differential kinematic 
equations for the camera mounted on the robot. 
 

D. Model for the perspective lines. 
 
For the design of one of the controllers, it is 
necessary to obtain the relation between the 
position and orientation of the robot and the 
projection of the perspective lines in the corridor 
on the image plane. The parallel lines resulting 
from the intersection of corridor walls and floor, 
are projected onto the image plane as two lines 
intersecting in the so-called vanishing point.  

A point p  in the global frame [W] can be 
expressed in the camera frame [C] as, 
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and 
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with γ  the camera tilt angle and θ  the robot 
heading. 

Considering the component-wise expressions 
for the pinhole camera model (3), 
 

z
C

y
C

yy
z

C
x

C

xx p

p
r

p
pr λαλα == ,                            (8) 

 
any point in the global coordinate system is 
represented in the image plane as a projection 
point with coordinates 
 

 
Figure 3. Guide lines in the corridor. 
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Now consider the points [ ]Tu 0001 = , 
[ ]Tu 0102 = , [ ]Tdu 003 = , [ ]Tdu 014 =  that 

define the intersection lines ),( 211 uur = and 
),( 432 uur =  between corridor walls and floor, as 

illustrated in Figure 3. Based on (9) and (10), the 
following relationships are obtained for the slope 
of the perspective lines, the vanishing point 

coordinates and the intersection of both lines with 
the horizontal axis in the image plane, Figure 4. 
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3 VISION BASED CONTROLLERS 

A. Controller Based on the Optical Flow 
 
The control proposal for navigation along the 
corridor is based on the calculation of optical 
flow [2] in two symmetric lateral regions on the 
image plane 21 xx rr −= , Figure 5. From (7), the 
horizontal optical flow in these points is given by 
 

 
 
Figure 4.  Perspective lines. 
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To navigate along the corridor centerline, the 
control objective on the image plane is to equate 
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the lateral optical flows 21 xx rr !! −= . Then, from 
(17) 
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Figure 5. Schematics of the control proposal. 
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In addition, if robot rotation 0=ω , 
then 21 z

c
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c pp = , which means that the robot is 
navigating along the corridor centerline. From 
(17), the vision model for the lateral optical flow 
measured at 21 xx rr −=  is 
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where J is called the Jacobian of the robot-
camera system. 
Now, by considering the dynamic model of the 
robot (2), 
 

Rakab ωωωω ωωωω =++ !!!                        (20) 
 
an inverse dynamics control law is regarded 
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where η  is a variable defined as, 
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In (22), dω  is interpreted as the desired angular 
velocity, which is set to zero in order to comply 
with the control objective of maintaining a stable 
navigation along the corridor. Besides, ωω dp kk ,  
are design gains. In order to include the 
exteroceptive information of optical flow, the 
inverse of relation (19), 
  

{ }
2

1
221

1
21

1
,

11 ,

rjrj

jJrJ
v

ji

!!

!

−−

−−−

+=

==








ω

ω                        (23) 

 
is substituted in the term of angular velocity error 
in (22), 
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By combining (21) and (20) the closed-loop 
equation is obtained as, 
 

0=++ ωωω ωω pd kk !!!  
 
which implies 0)( →tω  as ∞→t . From (17) with 

0=ω , 21 xx rr !! −= . Then, the unique navigation 
condition is verified at the centerline of the 
corridor. 
 

B. Controller Based on Perspective Lines 
 
It is important to express the control objective of 
navigating along the corridor centerline in terms 
of the image features from perspective lines. The 
control objective is achieved when the slope of 
both perspective lines become equal, that is when 

vx  -the vanishing point- and xδ  -the middle point 
between the intersection of both perspective lines 
with the horizontal axis- are equal to zero, Figure 
4. In the workspace, orientation robot error θ  and 
position robot error relative to the center of the 
corridor 2

~ d
xor

W px −=  are defined. These errors 
can be expressed in terms of the image 
features vx  and xδ . Equation (13) can be written 
as, 
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from which, 
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By substituting (15) and (16), 
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Equations (25) and (26) render the orientation and 
position errors as a function of vx  and xδ . The 
design objective is to obtain a controller which, 
based on calculated values of errors θ  and x~ , 
attains 
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that is, the control navigation objective is 
asymptotically obtained. To this aim, the 
following control law is proposed 
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where )(θθsK  and )~(~ xK xs  are variables designed 
to avoid saturation of control signals, as it will be 
explained later. 

By considering  (1) and (27) with state 
variables θ  and x~ , the unique equilibrium point 
of the closed loop equation is [ ]T00 . Asymptotic 
stability of the control system can be proved by 
regarding the following Lyapunov function 
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and by applying the Krasovskii-Lasalle [10] 
theorem.  

Saturation gains in (27) can be defined as 
follows [4], 
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The constants are selected such that the terms in 
(27) do not saturate the control signal rω . 
Finally, an inverse dynamics controller is 
regarded, like that of  (21) and (22) with Rω  
stated by (27).  
 
 

4 FUSION OF CONTROL SIGNALS 

 
The controllers described in Section 3 are 
redundant, because they have the same control 
objective: to guide the robot along the corridor 
centerline. They are based, however, in different 
principles, which turns difficult their fusion at 
sensorial level. Here, the fusion of both control 
commands is proposed, in order to attain a 
control signal that allows a robust navigation 
along the corridor.  The fusion is made by using  
a Kalman filter, thus minimizing the uncertainty 
on calculating both control signals. This 
uncertainty is evaluated in terms of the sensing 
error and the environment conditions by 
introducing a time-varying covariance function 
for each controller [8]. 
 

A. Stability of the Control System  
 
Let us consider that, like in Figure 6, n 
controllers with the same control objective are 
used. Then, the following set of control signals 
from the inverse dynamics controllers (21) are 
obtained, 
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Figure 6. Output fusion of different controllers. 
 
Then, the fused control signal is 
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For an ideal control command ωd = ωdi + ∆ωdi  it 
corresponds an ideal η such that 
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or in terms of the fused signal η̂ , 
ηηη ˆˆ ∆+=              (29) 

By equating (20) and (28) and taking (29) into 
account 
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Now, from (22) and (30) it is possible to write the 
following dynamics for the angular velocity error 
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Defining the state vector [ ]Tx ωω !~~= , equation 
(31) can be written as 
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Now, it can be proved that the system described 
by (32) has an ultimately bounded solution [10]. 
This means that there exist b, c>0 such that for 
each α ∈  (0,c) there is a positive constant T = 
T(α) so that 
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where b is the ultimate bound. By regarding the 
following Lyapunov candidate 
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where QPAPAT −=+ . Also, considering bounds on 
both terms of (33) 
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Since a Kalman filter is being used to fuse the 
control signals, the ultimate bound on the 
standard deviation of ultimate error is smaller 
than that corresponding to the errors produced by 
each controller. 
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5 EXPERIMENTAL RESULTS 

 
In order to evaluate the performance of the 
proposed control system, many experiences were 
done on a Pioneer 2DX mobile robot with an on-
board Sony PTZ CCD camera. The images are 
transmitted via RF to the image processing units: 
one PC for optical flow calculation, and a second 
one for the corridor perspective lines calculation. 
There is a third PC to calculate the control actions 
and to perform their fusion. The resulting control 
action is sent to the robot via RF.  

The optical flow calculus was realized using 
the Least-Mean-Square Method [6]. The corridor 
perspective lines are calculated using the Hough 
transform. The information of the image 
processing is updated each 200 msec. The camera 
constants values are: xα = yα =166000 
pixeles/m, λ =0.0054m, γ =-5º, h =0.31m. The 
robot navigates with linear velocity v =0.2 m/s.   
The controllers design parameters, for the optical 
flow controller are set to: 20=ωpk , 1=ωdk ; and for 
the perspective line controller to: 10=ωpk , 6=ωdk , 

24.01 =sK rad/s, 48.02 =sK r2/m, 2.01 =a  rad, 
1.02 =a m. 

Figure 7 shows the trajectory of the robot 
navigating along a corridor at the Instituto de 
Automática, National University of San Juan, 
Argentina. The experiment is designed such that 
the robot finds different sensing and environment 
conditions during the navigation. This varying 
condition produces changes in the estimated 
variance for each controller. For the optical flow 
based controller, the variance represents the 
uncertainty of the optical flow determination. For 
the perspective lines based controller, the 
variance is proportional to the change of lines 
features when this change exceeds a certain 
bound, otherwise it is set to a minimum value. 
These variances evolution are shown in Figure 8. 
The experiment shows a good performance of the 
robot when navigating along the corridor 
centerline, independently of the varying 
environment conditions.   
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Figure 8 Time evolution of the variance of both 
controllers.  (a) Optical flow controller variance, 
(b) Perspective lines controller variance. 
 
 

6 CONCLUSIONS 

 
This work has presented a control strategy for 
mobile robots navigating in corridors, using the 
fusion of control signals from vision based 
controllers. To this aim two controllers have been 
proposed: one based on the optical flow 
calculation and the other based on the perspective 
lines in the corridor. Both controllers generate 
angular velocity commands to keep the robot 
navigating along the corridor, and they 
compensate for the dynamics of the robot. The 
fusion of both control signals is made by using a 
Kalman filter. Stability of the resulting control 
system in analyzed and experiments on a 
laboratory robot are presented that show a good 
performance of the proposed controller. Future 
work includes the fusion of controllers based on 
different type of external sensors as ultrasonic 
and laser range sensors.  
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Figure 7. Trajectory of the robot in the corridor. 
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