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ABSTRACT

A new extended Kalman filter (EKF)-based algorithm to assimilate lake water surface temperature (LWST)

observations into the lake model/parameterisation scheme Freshwater Lake (FLake) has been developed. The

data assimilation algorithm has been implemented into the stand-alone offline version of FLake. The mixed

and non-mixed regimes in lakes are treated separately by the EKF algorithm. The timing of the ice period is

indicated implicitly: no ice if water surface temperature is measured. Numerical experiments are performed

using operational in-situ observations for 27 lakes and merged observations (in-situ plus satellite) for 4 lakes in

Finland. Experiments are analysed, potential problems are discussed, and the role of early spring observations

is studied. In general, results of experiments are promising: (1) the impact of observations (calculated as the

normalised reduction of the LWST root mean square error comparing to the free model run) is more than 90%

and (2) in cross-validation (when observations are partly assimilated, partly used for validation) the normalised

reduction of the LWST error standard deviation is more than 65%. The new data assimilation algorithm will

allow prognostic variables in the lake parameterisation scheme to be initialised in operational numerical

weather prediction models and the effects of model errors to be corrected by using LWST observations.
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1. Introduction

In recent years, it was demonstrated that lakes affect local

weather conditions and regional climate (Krinner, 2003;

Eerola et al., 2010; Samuelsson et al., 2010). With the in-

creasing horizontal resolution of numerical weather pre-

diction (NWP) and climate models to the kilometre scale,

more and more attention is being paid to the interaction

between the atmosphere and lakes. Over lakes, turbulent

and radiative fluxes are dependent on the water surface

temperature and the presence of ice (Mironov, 2008; Rontu

et al., 2012). Their influence is essential for countries with a

high percentage of lakes, such as Finland, Sweden, Canada,

Norway and Russia.

To account for the effects of lakes in atmospheric models,

physically sound and computationally cheap lake models

(parameterisation schemes) are used. The most commonly

used lake parameterisation scheme is the lake model

Freshwater Lake (FLake) (Mironov, 2008), with a two-

layer parametric representation of the water temperature

profile. External parameters for the lake scheme are pro-

vided by the Global Lake Database (Kourzeneva et al.,

2012a; Choulga et al., 2014). For NWP initialisation at the

very first simulation, lake climatology is developed (Batrak,

2012; Kourzeneva et al., 2012b). FLake is widely used in

NWP and climate modelling for research (Salgado and Le

Moigne, 2010; Samuelsson et al., 2010; Balsamo et al., 2012;

Martynov et al., 2012). It is also included in operational

NWP model runs in some National Weather Service cen-

tres (Mironov et al., 2012; Rontu et al., 2012). However, it

has not become a standard operational practice in NWP.

There are several reasons for this, including too simplified

data assimilation (DA) methods (borrowed from ocean

surface state representation). Through initialisation of the

prognostic lake model variables, DA techniques should

provide the analysis with corrected errors which come from

an unknown initial state. Currently used DA techniques

do not fulfil this task, although model errors for the lake

surface state may be quite large in NWP (Batrak, 2012;

Kourzeneva et al., 2012b).
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Tellus A 2014. # 2014 E. Kourzeneva. This is an Open Access article distributed under the terms of the Creative Commons CC-BY 4.0 License (http://

creativecommons.org/licenses/by/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build

upon the material for any purpose, even commercially, provided the original work is properly cited and states its license.

1

Citation: Tellus A 2014, 66, 21510, http://dx.doi.org/10.3402/tellusa.v66.21510

P U B L I S H E D  B Y  T H E  I N T E R N A T I O N A L  M E T E O R O L O G I C A L  I N S T I T U T E  I N  S T O C K H O L M

SERIES A
DYNAMIC
METEOROLOGY
AND OCEANOGRAPHY

(page number not for citation purpose)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/25614936?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.tellusa.net/index.php/tellusa/article/view/21510
http://dx.doi.org/10.3402/tellusa.v66.21510


In-situ or remote-sensing observations of different water

quantities are a significant source of information about

the state of lakes. Observations of the lake water surface

temperature (LWST) and ice cover are mostly important

for NWP and climate modelling since these values control

energy and moisture exchanges between the atmosphere

and lake surface [see, e.g., Rontu et al. (2012)]. Space-borne

observations contain information about LWST and ice

cover. They cover large territories and have spatial resolu-

tions from kilometres to tens of metres and temporal resolu-

tions of several hours. However, they suffer from coverage

gaps and different errors, for example, from cloud con-

tamination or skin effects (Kheyrollah Pour et al., 2014a).

In-situ data may contain measurements of different physi-

cal characteristics of water and ice, for example, the ice

depth and the temperature profiles in water, ice and snow.

They contain fewer errors compared with satellite observa-

tions. But they are very sparse and produced mainly for

research purposes. On an operational basis, the LWST of

only about 30 lakes in Finland is measured in-situ by the

Finnish Environmental Institute (SYKE) [see Kheyrollah

Pour et al. (2014b), Rontu et al. (2012) and Eerola et al.

(2010) for details].

To combine optimally information from a model with

observations, DA methods may be used. Experiments per-

formed in Kheyrollah Pour et al. (2014b), Rontu et al.

(2012) and Eerola et al. (2010), where different LWST and

ice cover observations were treated by the NWP model in

quite a simplified way, showed that assimilation of LWST

observations may improve the description of the lake sur-

face state and the quality of a weather forecast. For example,

in a winter case study over Lake Ladoga, a better descrip-

tion of ice cover due to the assimilation of remote-sensing

data reduced the screen level temperature forecast errors

by up to 58C for several selected stations in Finland (Kalle

Eerola, personal communications 2014). DA systems are

widely used in meteorology (Kalnay, 2003), in land surface

modelling (Houser et al., 2010) and in oceanography (Haines,

2010). In hydrology or limnology, there are some studies

devoted to DA for inland water bodies (Zhang et al., 2007;

Stroud et al., 2009). However, the focus of their research

is confined to specific lakes. They concentrate mainly on

circulation characteristics in one large lake, using 3D lake

models and DA techniques used for oceanography. Un-

fortunately, 3D lake models cannot be used to parameterise

all lakes in an atmospheric model domain which differ in

size, form and depth. Hence, oceanographic techniques are

not applicable for lakes in NWP. Although lakes belong to

the hydrosphere and lake modelling is close to oceanogra-

phy, the atmosphere ‘sees’ the lake surface as part of a very

heterogeneous land surface. Since simplified 1D or even

bulk lake models are used for parameterisation purposes in

NWP, methods used to assimilate LWST observations

should be closer to those applied in the 1D aspect of land

surface DA (Mahfouf, 1991; Rhodin et al., 1999; Hess,

2001; Mahfouf et al., 2009; de Rosnay et al., 2013).

Thus, assimilation of lake observations includes two

aspects. The first aspect is to spread information in the hori-

zontal direction, that is, to interpolate data from ob-

servational points or from the satellite image grid to the

atmospheric model grid. This task is similar to the analysis

of the screen level temperature, relative humidity and snow

depth in land surface analysis, or to the 2D analysis of the

sea surface temperature (SST) [see, e.g., Donlon et al.

(2012), Homleid (2009), Brasnett (1999), Navascues (1997)

and Gustafsson (1985)]. The main method used in this kind

of analysis is optimal interpolation (OI) (Gandin, 1965).

However, in contrast with sea water surface properties, lake

water surface properties are very heterogeneous. Interpola-

tion of LWST between two neighbouring lakes differing

in size, depth and elevation is rather questionable. Perhaps

the anisotropic surface conditions may be accounted for

by using structure functions dependent not only on the

separation in the horizontal (as for SST) but also on dif-

ferences in depth and elevation. In practice this aspect also

includes data quality control, processing of very dense satellite

observations and questions of consistency between land-

water masks. These problems are discussed in detail in

Kheyrollah Pour et al. (2014b).

The second aspect is to propagate information about the

lake surface state in the vertical direction, in the lake model

space. In other words, to redistribute innovations (depar-

tures between observed and simulated values) of LWST in

the lake water vertical profile (1D aspect). Mathematically,

this task is analogous to the analysis of the soil moisture

[see, e.g., Mahfouf et al. (2009) and Hess (2001)], and the

same algorithms can be applied. In the case of soil moisture

analysis, several methods of different complexity exist, start-

ing from OI (Mahfouf, 1991) to variational methods and

extended Kalman filtering (Rhodin et al., 1999; Hess, 2001;

Mahfouf et al., 2009; de Rosnay et al., 2013). Nudging,

which is also applicable, and OI are computationally cheap.

Yet, their coefficients are dependent on an observational

dataset to derive error statistics and on partition of the

dataset according to physical situations. Also it is difficult

to account for new observations. Variational methods and

different versions of the extended Kalman filter (EKF)

are more flexible for different physical situations and can

accept new observations more readily. In Kalman filtering

algorithms, the background error covariance matrix is pro-

gnostic, dependent on the physical situation, and no pre-

liminary error statistics study is needed. However, these

methods require greater computing resources. Some of

these need additional simulations to compute Jacobians

in finite differences. Balsamo et al. (2007) showed that the

high computational cost may be reduced by running a
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surface model offline, using saved forcings from the atmo-

spheric model. In this case, variables from the lowest

atmospheric model level are used to force additional runs

(with the perturbed initial state) of the surface model. This

approach is used, for example, to assimilate satellite mea-

surements of the soil moisture (Draper et al., 2009). For

lakes, this approach also could be used. The most common

lake parameterisation scheme FLake contains a maximum

of 12 prognostic variables, depending on the lake regime.

Therefore the control vector size is small, and the EKF

technique seems a natural one to apply.

The purpose of this study is to apply the EKF approach

to assimilate LWST observations into the FLake lake

model. For these first experiments, the offline version of the

lake model was used, with forcing from the High Resolu-

tion Limited Area Model (HIRLAM) (Undén et al., 2002).

SYKE in-situ observations were assimilated, for some lakes

with added observations from the Moderate Resolution

Imaging Spectrometer (MODIS) on board of Terra and

Aqua satellites. In Section 2, the methodology of applying

EKF in FLake (mathematical formulation) is described.

Section 3 is devoted to lake observations. In Section 4,

numerical experiments are presented and discussed, focus-

ing on the role of observations in different seasons. Con-

clusions complete the paper.

2. Methodology

2.1. Lake model properties essential for DA

We assimilated observations into the lake model FLake

(Mironov, 2008). This model is used to represent lake

processes in several regional and global NWP models for

both operational and research applications (Salgado and

Le Moigne, 2010; Balsamo et al., 2012; Rontu et al., 2012

Mironov et al., 2012). It is a two-layer integral (bulk) model

with the temperature profile in the upper mixed layer and

in the underlying thermocline parameterised with the

concept of self-similarity (assumed shape). It also contains

snow-ice and bottom sediment modules using the same

concept to describe their temperature profiles. The mixed

layer depth is predicted through an equation of convective

entrainment and a relaxation-type equation during the

wind mixing. For the solar radiation transfer, the decay law

is approximated exponentially. Using atmospheric for-

cings, turbulent fluxes in the atmospheric surface layer

may also be calculated by the model. This possibility is

useful for offline experiments.

To accurately pose the DA task for lakes (and for FLake

in particular), it is important to consider different model

regimes and to study the model behaviour for each of them.

Firstly, we distinguish the ice period and the open water

period. Secondly, in the open water period, we distinguish

the mixed and non-mixed (stratified) lake regimes. Thirdly,

in the non-mixed period the convective and wind-mixing

regimes may be discriminated.

� Ice and open water periods. In our study, the lake

model runs freely during the ice period because

there are no in-situ LWST observations available.

However, we use the fact that if in-situ LWST obser-

vations exist, then there is definitely open water.

In the future, for the assimilation of remote-sensing

observations of LWST and of the lake ice surface

temperature (LIST), it may be problematic to move

smoothly from one surface type to another because

of their different physics. For example, LIST evolves

fast and has a very strong diurnal cycle, while

LWST changes much slower, especially before

freezing. Different model blocks are active in the

different cases, and it is safer to assign different

state vectors to them.

� Mixed and stratified regimes. As a rule, boreal lakes

are dimictic (Lewis, 1983), that is, mixed in early

spring and autumn and stratified in summer. This

behaviour is well described by the lake model. For

illustration, the typical annual cycle of the model

mixed layer depth in a boreal lake is represented in

Fig. 1. It is important to notice that jumps between

regimes are quite rapid in the model. In these

situations the model is strongly non-linear. More-

over, a model variable such as the shape factor (the

integral of the polynomially approximated tempera-

ture profile in the thermocline, CT) is even discon-

tinuous when changing regimes (it does not exist in

the mixed mode; see Section 2.2 for more details).

Fig. 1. Typical annual cycle of the mixed layer depth in a boreal

(dimictic) 21m deep lake as reproduced by FLake. The mixed

regime takes place in autumn and early spring (for a short period),

and the stratified regime takes place in summer. Diurnal oscilla-

tions, with the convective and wind-mixing regimes, are also

represented.

ASSIMILATION OF LAKE WATER SURFACE TEMPERATURE OBSERVATIONS 3



� Convective and wind-mixing regimes. Typically, con-

vection takes place during the night, while during

the day mixing is mainly wind-generated. This results

in diurnal oscillations of the mixed layer depth (h).

In the convective regime h increases, and during

wind mixing it decreases. These jumps are rapid and

well reproduced by the lake model. So, on the diurnal

scale the behaviour of h is also strongly non-linear,

but at least all of the model variables are continuous.

In this study, DA is used to analyse the prognostic vari-

ables describing the liquid water reservoir; ice and snow

variables are not analysed. Bottom sediments are not con-

sidered. The analysed variables are the mean water tem-

perature (T), the bottom temperature (Tb), the mixed layer

depth (h) and the shape factor (CT). Prognostic equations

for the mixed and stratified regimes are described inMironov

(2008). The mixed layer temperature (TML) in FLake is

calculated from a diagnostic equation (see Section 2.2).

The mean water temperature T and the lake bottom

temperature Tb are slowly evolving variables. Depending

on the depth of a lake and the season of a year, T varies on

a time scale from several days to several weeks. For deep

lakes, Tb changes gradually and shows only some annual

variability. For shallow polymictic lakes (so shallow that

their waters may mix from top to bottom several times

throughout the open water period), oscillations of Tb

during mixing periods follow oscillations of T and have

a variability of several days. The variability of h strongly

depends on the season. In summer, h usually shows sig-

nificant daily oscillations. In early spring and autumn,

during the mixing period, it is equal to the lake depth and

remains constant. The integral of the polynomially ap-

proximated temperature profile in the thermocline CT has

a rather poor physical definition. During the stratified

period, it usually changes gradually, with a time scale of

several days. For the mixed regime, CT does not exist

mathematically, because there is no thermocline. In prac-

tice, in the model code, during the mixed regime CT is

kept constant and equals to a bogus value of 0.5.

Therefore, considering physical reasons and mathema-

tical properties of the model, all lake water prognostic

variables are controlled in the DA procedure. We con-

sidered separately (1) the ice and open water periods and

(2) the mixed and stratified regimes for the open water

period. Regarding daily oscillations of h during the stra-

tified regime and the related model non-linearity, the time

scale of these processes is equal to or shorter than the

typical assimilation cycle period (1 d). Preliminary studies

with perturbations of the initial state and analysis of the

time evolution of different model variables showed less

model sensitivity on a time scale of 1 d comparing to a time

scale of several hours due to the smoothed diurnal osci-

llations of h. Therefore we did not distinguish the convective

and wind-mixing regimes, and assumed that this non-

linearity is acceptable for the assimilation procedure.

2.2. EKF application

By means of sequential DA, the control variables in the

lake model should be initialised using information only

from the LWST observations. In other words, innovations

(departures between the observed and simulated LWST)

should be redistributed among control lake variables. We

pose the task differently for different lake model regimes.

For the ice period, when there are no observations, the

DA procedure is switched off. The assimilation cycling is

stopped explicitly, because the gap between observations is

too large (the entire winter), making it impossible to cycle

the background error covariance matrix for this period.

It is unknown beforehand, when observations will appear

again after the ice break-up date, at mixed or stratified

model regime. In an operational implementation, the ques-

tion of skipping the analysis during the ice period should be

specially addressed.

For the open water period and stratified regime, four

prognostic variables are included into the state vector X:

X ¼ T g Tb CT

� �T
:

Here T and Tb are the mean water and bottom temp-

eratures (K), CT is the shape factor, g ¼ 1� h
D

is the

dimensionless mixed layer depth and h and D (both in m)

are the mixed layer depth and the lake depth, respectively.

For the mixed regime in FLake there is only one prognostic

variable T . The mixed layer depth h in this case is equal to

the lake depth D, Tb is equal to T and CT does not exist.

Therefore, the state vector consists of only one variable:

X ¼ T
� �

:

We look for the analysis vector XA, using the previous

forecast values for the background vector XB. Since only

LWST is observed, and in open water conditions TML is

equal to LWST, there is only one value of the observed

mixed layer temperature To
ML in the observation vector Y:

Y ¼ To
ML½ �:

In the case of the stratified regime the diagnostic

equation for TML from FLake may be used for the obser-

vation operator H(X):

TML ¼
T � CTgTb

1� CTg
:

This expression and hence H(X) is non-linear. In the case

of the mixed regime, the observation operator H(X) is
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simply TML ¼ T . In both cases, a linearised observation

operator H may be easily derived analytically. For the

stratified regime, it can be given as:

H ¼ 1

1� CTg

CT T � Tb

� �
1� CTgð Þ2

�CTg

1� CTg

g T � Tb

� �
1� CTgð Þ2

" #
:

For the mixed regime H�1.

Then, the EKF procedure may be applied in the form

described in Le Moigne et al. (2009):

XB ¼M XAð Þ
B ¼ MAMT þQ

K ¼ BHT HBHT þ R
� ��1

XA ¼ XB þ K Y �H XBð Þð Þ
A ¼ I� KHð ÞB:

Here M(X) is the non-linear model operator, M is the

linearised model operator matrix, B is the background

error covariance matrix, R is the observational error co-

variance matrix, Q is the model error covariance matrix, A

is the analysis error covariance matrix and K is the Kalman

gain vector. In our case, the observational error covariance

matrix R is reduced to the scalar value of the observational

error variance. For both the mixed and stratified regimes,

the linearised model operator matrix M is obtained

numerically by calculating Jacobians:

M ¼ @ xt
i

@ x0
j

:

Here xt
i are elements of the state vector; the lower index

denotes the number of an element and the upper index

denotes the time, from one sequential analysis cycle to

another. For the stratified regime M is given as:

M ¼

@ T
t

@ T
0

@ T
t

@ g0
@ T

t

@ T0
b

@ T
t

@ C0
T

@ gt

@ T
0

@ gt

@ g0

@ gt

@ T0
b

@ gt

@ C0
T

@ Tt
b

@ T
0

@ Tt
b

@ g0

@ Tt
b

@ T0
b

@ Tt
b

@ C0
T

@ Ct
T

@ T
0

@ Ct
T

@ g0

@ Ct
T

@ T0
b

@ Ct
T

@ C0
T

2
666664

3
777775:

In the mixed regime M is reduced to:

M ¼ @ T
t

@ T
0

" #
:

To calculate Jacobians numerically, the state vector

should be perturbed by values small enough for accurate

approximation but not too small that round errors occur

(Mahfouf et al., 2009). Our choice of perturbations resulted

from a preliminary study with both small and large, nega-

tive and positive perturbations. We considered only the

overall performance of EKF in terms of LWST evolution.

For a better choice of perturbations, careful examination is

needed, as was done in Balsamo et al. (2004). In our study,

for the stratified regime the following perturbation values

of the state vector were used:

dX0 ¼ 0:2K 0:05 0:1K 0:05½ �T:

For the mixed regime, the state vector which has only

one component, was perturbed by:

dX0 ¼ 0:2K½ �:

The size of matrix B changes when the regime changes.

In these cases we stop the EKF cycling and reinitialise the

B matrix. Explicit reinitialisation helps to avoid problems

caused by non-linearity and possible EKF divergence

(Jacobians and variances in the matrix B which are too

large) when jumping between regimes. There is one more

important constraint in the application of EKF in the

FLake model. In the model initialisation, ‘inverse’ water

density stratification is impossible. In terms of temperature,

this means that in the stratified regime (1) the mixed layer

temperature and the bottom temperature should both

be higher or lower than the temperature of the maximum

water density (277.13K) and (2) if both of these are

higher, the bottom temperature should be lower than the

mixed layer temperature, and vice versa if both are

lower. The crossover situation must not result from

analysis. If it happens, the analysis is skipped and matrix

B is reset.

In general, it is not trivial to specify the model error

covariance matrix Q, which contains model errors other

than errors resulting from the initial state. In the case of

offline simulations, when the lake model is driven by atmo-

spheric forcing from a NWP model or from observations,

it also contains errors from the forcing data. In our study,

Q is prescribed in ad hoc manner. Variances were chosen as

typical model errors squared. Typical model errors were

derived from different studies, where the performance of

FLake was assessed based on deep water temperature ob-

servations (Kirillin, 2010; Golosov et al., 2012). All

correlations were prescribed to be 0.5, with signs deter-

mined using some modelling experience. For example,

positive errors in the mean water temperature often lead

to temperature profiles which are too sharp with mainly

negative errors in the bottom temperature. Therefore,

correlation between the appropriate errors is negative.

Covariances are calculated accordingly. For better defini-

tions of these values, more studies based on deep water

temperature observations on lakes with different depths

and mixing types are needed. For the mixed regime, Q is

defined as

Q ¼ 4:0K2
� �

;

ASSIMILATION OF LAKE WATER SURFACE TEMPERATURE OBSERVATIONS 5



and for the stratified regime as

Q ¼
4:000K2 0:100K � 1:000K2 � 0:100K

0:100K 0:010 � 0:050K 0:005
�1:000K2 � 0:050K 1:000K2 0:050K

�0:100K 0:005 0:050K 0:010

2
664

3
775:

In our experiments, matrix B evolved from matrix Q in

the first cycle, and was reset back to B�Q each time at

reinitialisation. The sensitivity of the analysis system per-

formance to Q values was studied only in terms of LWST

and appeared to be small (0.18C order of magnitude).

3. Lake observations

A good overview of lake observations, in-situ and remote-

sensing, is given in Kheyrollah Pour et al. (2014a, 2014b).

Both types of observations have advantages and disadvan-

tages. Space-borne observations not only contain informa-

tion about LWST and ice cover, but also about other lake

water characteristics, for example, water quality parameters

(Potes et al., 2011). LWST and ice cover are measured

by different sensors on various satellites. In Kheyrollah

Pour et al. (2014b), the MODIS data are mainly used.

Different satellite observations for 263 large lakes from

the ARCLake project (http://www.geos.ed.ac.uk/arclake/)

(MacCallum and Merchant, 2012) were compared with

operational LWST analyses in the Operational Sea Surface

Temperature and Sea Ice Analysis (OSTIA) product by

Fiedler et al. (2013). However, remote-sensing data may

contain gaps due to cloudiness. Errors due to the fractional

ice cover, undetected clouds and inaccuracies in the land-

water mask may be significant. Also, the remotely mea-

sured water skin temperature may differ from the bulk

temperature, which is predicted by models and measured

in-situ [see, e.g., Donlon et al., (2002)].

In-situ measurements may not only contain information

about lake surface characteristics but also information

about the vertical temperature distribution, ice depth and

other properties [see, e.g., Arst et al. (2008) and Jonas et al.

(2003)]. However, in-situ data are produced only for selected

lakes and are used mainly for research purposes, with the

exception of operational SYKE measurements. For opera-

tional in-situ measurements, the time period is problematic.

Usually instruments are installed in early spring when

the ice has already disappeared. This happens approxi-

mately 1 week after the ice break-up and means that these

measurements alone do not provide the exact ice break-up

date. Therefore, extra observations are needed. At present,

both types of lake observations are widely used for model

verification (Duguay et al., 2003; Kheyrollah Pour et al.,

2012). In the NWP context, lake state observations are used

in a very simplified way (Eerola et al., 2010; Rontu et al.,

2012; Kheyrollah Pour et al., 2014b).

In our study, two sets of LWST observations were

assimilated into the lake model. First, we assimilated in-

situ SYKE observations for 27 lakes in Finland (see Table 1

for the lake locations and depth). SYKE observations do

not contain direct information about ice cover, and during

the ice period LWST is not measured. Therefore, the ‘no

data’ flag indicates that LWST is not observed either

because of ice cover or for other reasons. In practice,

the majority of cases with the ‘no data’ flag correspond to

the ice cover situation, and these periods last for several

months. In our experiments, for cases with ‘no data’ flag

and during the ice period, the assimilation cycling was

Table 1. The impact I (for the definition see Section 4.2) of the assimilation of SYKE observations of LWST for the open water period

(EKF-S experiment, summer of 2011) for 27 lakes whose geographical coordinates (deg) and mean depth D are given

Name (longitude, latitude) D (m) I (%) Name (longitude, latitude) D (m) I (%)

Kuivajärvi (23.9, 60.8) 2.2 94.8 Rehja-Nuasjärvi (28.0, 64.2) 8.5 95.5

Tuusulanjärvi (25.1, 60.4) 3.2 94.3 Vaskivesi (23.8, 62.1) 7.0 97.1

Pääjärvi 1 (24.5, 62.9) 3.8 96.6 Haukivesi (28.4, 62.1) 9.1 94.9

Pesiöjärvi (28.7, 64.9) 3.9 95.4 Kallavesi (27.7, 62.8) 9.7 96.3

Kyyvesi (27.1, 62.0) 4.4 96.5 Pielinen (29.6, 63.3) 10.1 94.6

Jääsjärvi (26.1, 61.6) 4.6 96.2 Konnevesi (26.6, 62.6) 10.6 95.4

Nilakka (26.5, 63.1) 4.9 96.6 Saimaa (28.1, 61.3) 10.8 94.5

Pyhäjärvi (22.3, 61.0) 5.5 96.4 Ala-Rieveli (26.2, 61.3) 11.2 92.4

Längelmävesi (24.4, 61.5) 6.8 94.4 Päijänne (25.5, 61.6) 14.1 93.7

Ounasjärvi (23.6, 68.4) 6.6 97.3 Inarijärvi (27.9, 69.1) 14.3 97.1

Lappajärvi (23.7, 63.1) 6.9 93.4 Näsijärvi (23.8, 61.6) 14.7 94.0

Oulujärvi (27.0, 64.5) 7.0 95.0 Pääjärvi 2 (25.1, 61.1) 14.8 96.7

Unari (25.7, 67.1) 7.0 94.0 Kilpisjärvi (20.8, 69.0) 19.5 96.8

Kevojärvi (27.0, 69.8) 7.0 98.0
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interrupted and the model evolved without any analysis

update (relying on the model state). When LWST measure-

ments are again available, the background error matrix was

reinitialised and the assimilation cycling was resumed from

the current state vector.

Secondly, for four selected lakes in Finland, in-situ mea-

surements from SYKE were combined with MODIS UW-L3

data prepared by the University of Waterloo (Kheyrollah

Pour et al., 2014a) for early spring, and observations from

SYKE about ice break-up dates [see Kheyrollah Pour et al.

(2014b) for details]. The four lakes differ in depth, size and

location: (1) deep northern Lake Inarijärvi, (2) shallow

southern Lake Tuusulanjärvi, (3) large Lake Saimaa and

(4) medium Lake Lappajärvi (see Table 1 for details). Time

series of the LWST measured by SYKE and observed by

MODIS were merged manually. MODIS data were taken

for the pixels nearest to the SYKE locations and added to

the time series starting from the ice break-up date until

the first spring SYKE measurements date. For the period

prior to the ice break-up date, the ‘no data’ flag was set to

LWST, as in the original SYKE measurements. Hereafter,

we refer to this type of data as ‘the merged data set’. The

main aim of the experiments with the merged data set was

to study the role of observations during early spring. Cross-

validations were also performed with these data.

LWST is measured daily at 08.00 Eastern European

Time (EET) by SYKE. One MODIS observation per day

was added to the merged data set. In our experiments, all

MODIS data were assigned the time 08.00 EET (note that

there is almost no diurnal cycle of LWST in the early

spring). Gaps in MODIS observations were filled manually

with time-interpolated values. Assuming in-situ measure-

ments provided by SYKE were of good quality and manually

selected MODIS observations were carefully checked, no

other quality controls were used.

The observational error variance usually consists of the

instrumental error squared and the representativeness error

variance. For MODIS, the error variance associated with

the skin effects, undetected cloudiness and floating ice

should be included. In all of our experiments, the observa-

tional error variance is equal to an ad hoc value of 1.0K2.

This is the order of magnitude of the difference between the

in-situ and MODIS observations variance (Kheyrollah

Pour et al., 2012). The specification of observational error

statistics requires further studies. Note that the observa-

tional error variance is small compared to the background

error variances (which represent the errors of the para-

meters defining the lake water temperature profile and may

be compared with the observational error variance using

values of the H vector, see Appendix).

4. Numerical experiments

4.1. Experiment setup

The EKF algorithm for assimilating LWST observations

was implemented in a stand-alone (1D) offline version of

the lake model FLake. In the offline mode the lake model

is coupled only one-way with a NWP model, being forced

by atmospheric model data. Forcing data from operational

runs of the HIRLAMNWPmodel were used. The following

forcing variables were extracted from the HIRLAM 7.3

operational 6-hour forecasts1 archives: wind speed, tem-

perature and specific humidity at the lowest model level,

accumulated downward long-wave and short-wave radia-

tion fluxes and the total snowfall. Hourly outputs were used

to calculate radiation fluxes and precipitation rates. The

turbulent heat and momentum fluxes were calculated with

the specific flux formulation in FLake.

Experiments were performed for a 1 yr period from 3

November 2010 to 10 November 2011. For this period,

observations from different lakes were selected and com-

piled into time series. For both the SYKE and merged data

sets, observations were assigned to the valid time 08.00

EET. The EKF analysis was performed at 06.00 EET with

a cycling period of 24 hours and an assimilation window2

of 4 hours (we considered all observations 2 hours before

and 2 hours after the analysis time and referred them to this

time). Note that in our experiments the satellite observa-

tions were put into the assimilation window artificially.

Therefore, in operational implementation, the assimilation

window question should be specially addressed. For cross-

validation, observations were assimilated from every sec-

ond day (the rest were used for validation). In this case, the

cycling period was 48 hours. For all lakes, the free model

run (without DA) was initialised from the typical late

autumn temperature profile for a boreal lake: a lake is

mixed down to the bottom, and the water temperature is

equal to the screen level temperature. Numerical experi-

ments with FLake-EKF were performed for 27 lakes

assimilating SYKE observations and for four lakes assim-

ilating merged observations. The design of experiments is

summarised in Table 2.

1The model horizontal resolution is 15 km, 60 levels in vertical.
2The following notation is used here: An analysis time is a moment

in time when the analysis is performed to initialise the new forecast

(increments are added to the background). A cycling period is a

period between two analysis times. The (shortest) forecast length

equals to the cycling period. Jacobians are calculated with the

model runs for the full previous cycling period. Assimilation

window is a time period around the analysis time, during which the

available observations are picked to be assimilated.
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The best way to evaluate the performance of the assimi-

lating system is by a comparison with independent ob-

servations. Either different sources of data may be used, or

cross-validation methods may be applied, when observa-

tions from the single source of data are partly assimilated,

partly used for validation. A posteriori verification is useful

to reveal potential problems, for example, biases in a model

or in observations. The quality of the linear approximation

and possibilities for simplifications (if any) may be assessed

from the behaviour of the Jacobians, as well as from the

evolution of the B matrix and Kalman gain vector K.

However, to study in details the evolution of all the EKF

components, the amount of material is large. The statistics

differ depending on the season and the corresponding

model regime. In this paper, the entire picture is described,

focusing on the changing regimes and other physical aspects.

Only a preliminary study of Jacobians, the components of

the B matrix and vector K is performed. In experiments

using different datasets we evaluate the performance of the

EKF depending on data availability. For SYKE observa-

tions (EKF-S experiment) the impact of data is shown for

all of the lakes and the behaviour of the components of the

matrices and vectors M, H, B and K is briefly described.

For the merged data set (EKF-M experiment), the results

of cross-validation are presented. A detailed study of a

posteriori statistics and the performance of the EKF assimi-

lation system in terms of the evolution of its components is

planned for the future.

4.2. Results of experiments and discussion

4.2.1. Assimilation of SYKE data. A number of examples

are given to provide a qualitative overview of the assimila-

tion of SYKE observations. In the FR experiment (the

free run) TML was too warm for all of the lakes in summer.

This is a well-known FLake problem (Kourzeneva et al.,

2012b; Martynov et al., 2012). Figure 2 shows that for Lake

Inarijärvi the mixed layer temperature TML in the EKF-S

experiment is much closer to observations than in the FR

experiment, where it is up to 58C warmer. In Fig. 3, com-

paring the EKF-S experiment with the FR experiment, no

impact is seen on the ice and snow thicknesses in autumn

and winter (the snow thicknesses in EKF-S and EKF-M

are not shown), mainly because of the lack of SYKE

observations just before the ice onset date. In late autumn

and winter, the EKF-S experiment relied on a background

state similar to the FR experiment. In spring, the FR

experiment usually showed an ice break-up date which was

too late. The early spring situation for different experi-

ments is described in Table 3. For Lake Inarijärvi in the FR

experiment the ice break-up was on June 6th. For the EKF-

S experiment it was 2 weeks earlier, on May 23rd, and

coincided with the beginning of SYKE observations in

spring. However, the SYKE observations usually com-

mence one or 2 weeks after the actual ice break-up date.

Therefore, LWST may appear to be much higher than the

melting point. For example, in Table 3 in the EKF-S

experiment the observations for Lake Inarijärvi start from

the already high LWST value of 7.68C. Thus, the real ice

break-up conditions were unknown from both the FR and

EKF-S experiments. In Fig. 2, the late ice break-up date in

the FR experiment influences the spring TML (values too

low), so that TML in June is up to 108C lower for the FR

experiment than for the EKF-S experiment. The EKF-S

experiment compared with FR gave much warmer TML

during the whole of spring. Hence, with SYKE observa-

tions alone (without satellite observations), there was lot of

uncertainty in real knowledge of the lake state, mainly in

early spring but also in late autumn. The impact of the

EKF assimilation on the ice and snow temperatures in

autumn and winter was minor (not shown).

Through the DA, the LWST observations also influ-

enced the mean water temperature T and the bottom

temperature Tb (Fig. 4 for Lake Inarijärvi and Fig. 5 for

Lake Saimaa). The impact was large, and typically the

summer maximum was warmer in the EKF-S experiment

than in FR: for 5�78C for T and for 7�118C for Tb. Since

deep water temperature measurements were not available,

it is difficult to understand which experiment is closer to

the truth. For a better understanding, if Tb in the EKF-S

experiment is realistic, it was compared with the observed

Tb values in Lake Valkea-Kotinen (Dmitrii Mironov,

personal communications 2014). Lake Valkea-Kotinen is

a very small lake with the mean depth of 3m. It is located

in Southern Finland, about 100 km to the northwest of

Lake Tuusulanjärvi. Both lakes are small and shallow and

located in the same climate zone, and are expected to

exhibit similar behaviour annually. The maximum summer

Tb of Lake Valkea-Kotinen was 78C in 2006. For Lake

Tuusulanjärvi Tb was 20.58C in the EKF-S experiment (not

shown), which is too high. For Lake Saimaa Tb shown in

Fig. 5b is 18.28C, which is also too high. According

to preliminary studies, the sensitivity of T and Tb evolu-

tion to the Q matrix specification is high (not shown).

Table 2. Design of the experiments

Experiment

name

Data

assimilation Observations

Cycling

period

Number

of lakes

FR (free

run)

No No No 27

EKF_S Yes SYKE 24 h 27

EKF_M Yes Merged 24 h (48 h

for cross-

validation)

4
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Thus, poorly specified values in the Q matrix may be one

reason for the overestimation of the deep water tempera-

tures. Better specification needs further study, comparing

the modelling results with regular deep water temperature

observations. Another possible reason is the wrong timing

of regimes. Both Tb and T evolve slowly, depending on the

lake depth. In the EKF-S experiment, Tb and T were

strongly influenced by memory from the early spring just

after ice break up, when a lake is mixed down to its bottom.

Usually this mixed period is rather short (several days).

In most cases, SYKE observations started only after this

period. At that moment, the lake model still showed a

mixed regime, while in reality the regime was already

stratified. The EKF algorithm resulted in positive correc-

tions to the entire water column (both for T and Tb) instead

of making a non-mixed profile. Due to the long memory of

Tb and T , this resulted in their overestimation for the entire

modelling period. In this way, the lack of SYKE observa-

tions in the early spring maintained errors of 6�118C in

deep water temperatures during the entire summer.

Although the state vector includes the dimensionless

mixed layer depth h, the mixed layer depth h itself (con-

nected to h by the simple equation h�D(1�h), where D

is the lake depth) can be interpreted more naturally. In

contrast with deep water temperatures, h is a quickly varying

variable. It was also influenced by the EKF analysis. In

Fig. 6a, the EKF-S experiment shows earlier autumn mix-

ing than FR. In summer, the EKF-S experiment usually

showed a deeper mixed layer. But since h changes quickly,

it tends to return to its background state within one DA

cycle, which neglects the assimilation impact. Results for

Lake Saimaa (11m deep) illustrate this summer process in

more detail (Figs. 7�9). In Fig. 7, the h increments are

mainly negative and the T increments are very small. Thus,

the EKF-S experiment produced colder TML values, which

were closer to the observations, but the result was unstable

(Fig. 8). As h quickly returned to its background state (i.e.

wrong values), TML increased quite fast and again deviated

from the observations. In Fig. 9b the innovations are

mainly negative. Physically, in this situation the model

jumps between the convective and wind-mixing regimes.

During daytime in summer, due to short-wave radiation,

the temperature of the upper-most water layer increases

and stratification becomes stable (the wind mixing regime

with the absolute value of h decreasing). During night-time,

due to long-wave cooling, the temperature of the upper-

most surface layer decreases and stratification becomes

unstable (the convective regime with the absolute value of h

increasing). In the model, these two regimes are described

by different equations. The mainly negative increments of h

in the EKF analysis mean that the prognostic equation for

h in the stable regime may be biased. The problem is

enhanced by T in summer which is too warm in EKF-S.

During summer, when the absolute value of h is small, the

deep and upper water layers are decoupled. This results in

small T analysis increments (Fig. 7b), not enough to fix

existing errors (see also the analysis of the tangent linear

model operator M later in this section). Assimilation of

more observations, for example, from remote sensing, more

frequent and starting earlier in the spring, might improve

the situation. A possible bias in the atmospheric forcing

may also be a reason for the discrepancy: absolute values of

h which are too small may come from momentum fluxes

being too small. It is not easy to answer the question,

whether excluding h from the state vector would be a good

solution of the decoupling problem: it only evolves quickly

in midsummer, but more slowly in spring and autumn.

Besides, it is responsible for the timing of the mixed and

stratified regimes. Figure 8 illustrates also that in the EKF

experiments the observational error variance is small

compared to the background error variances: the EKF-S

results are very close to the observations.

The shape factor CT has no clear physical meaning, thus

it is difficult to analyse its performance. It can be said that

it was also influenced, and in Fig. 6b there is a significant

difference between the FR and EKF-S experiments.

In order to quantify the assimilation performance with a

posteriori statistics, a root mean square error (RMSE) was

computed for different lakes. The RMSE was calculated

for the open water period, when observations of LWST

were available. The impact I (%) of the assimilation with

respect to the model was calculated as:

I ¼ RMSEmod � RMSEassim

RMSEmod

� 100%

Table 3. Ice break-up dates in the FR, EKF-S and EKF-M experiments and the first spring observed LWST for the EKF-S and EKF-M

experiments (note that the ice break-up dates are contemporaneous with the spring start of observations for EKF-S and EKF-M)

Inarijärvi Saimaa Lappajärvi Tuusunlajärvi

FR Date 06/06 05/10 05/09 05/07

EKF-S Date 05/23 05/11 05/13 05/06

LWST 7.68C 12.68C 12.08C 8.98C
EKF-M Date 05/16 05/05 05/04 04/26

LWST 4.68C 7.88C 2.78C 2.88C

10 E. KOURZENEVA



Here RMSEmod and RMSEassim are for the free model

run and for the assimilation system run, respectively. The

impact for different lakes along with their geographical

coordinates and mean depths is presented in Table 1. As

expected, RMSEassim is much smaller than RMSEmod and

the impact is high (note that the analysed LWST is not

a weighted average between the observed and modelled

values). A maximum impact of 98.0% is seen for the

medium-depth polar Lake Kevojärvi and a minimum

impact of 93.4% for the medium-depth Lake Lappajärvi
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Fig. 4. Time evolution of (a) the mean water temperature and (b) the bottom temperature in 8C for Lake Inarijärvi (the mean depth is

14m) for the summer period from May 2011 to November 2011. The FR, EKF-S and EKF-M results are shown by the blue, green and

cyan lines, respectively.
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located in central Finland. A dependency of the impact on

the lake depth or latitude is not seen (the lakes in Table 1

are arranged by increasing mean depth).
Weights in the Kalman gain vector K define the overall

performance of the analysis system and depend on the

components of the background errors covariance matrix B.

Behaviour of the B matrix is in turn dependent on the

components of the tangent linear model operator M and

on the linearised observation operator H (note that the

components of H are derived analytically). The detailed

study of their behaviour is planned for the future. A pre-

liminary study was performed with SYKE observations for

Lake Inarijärvi and Lake Tuusuljärvi, perturbation values

and the matrix Q indicated in Section 2. In the Appendix
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11m) for the summer period from April 2011 to November 2011. The FR, EKF-S and EKF-M results are shown by the blue, green and

cyan lines, respectively.
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the limits of the components of the matrix M, the vector

H, the matrix B and the vector K are shown and their

behaviour at different mixing regimes is briefly described.

For the stratified regime, many components of the matrix

M and the vector H, as well as of the matrix B and the

vector K vary depending on season and lake type and often

show an annual cycle. Maxima and minima appear in mid-

summer when stable stratification prevails, or in autumn

before mixing occurs. The components of the matrix M are

bounded and evolve smoothly, which means that there is

a good tangent linear approximation within each model

regime. Sometimes the components of the matrix M and

vector H can be very large (e.g.
@ Tt

b

@ C0
T

, @ TML

@ g , @ TML

@ CT
). This leads

to large values in the matrix B elements (e.g. var (eTb
)). But

being large, they remain bounded, and decrease when the

appropriate components of the M matrix and the vector H

–16

–14

–12

–10

–8

–6

–4

–2

0a)

May 01 Jun 01 Jul 01 Aug 01 Sep 01 Oct 01 Nov 01

de
pt

h 
(m

)

Mixed layer depth

EKF-M
EKF-S

FR

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85b)

May 01 Jun 01 Jul 01 Aug 01 Sep 01 Oct 01 Nov 01

S
ha

pe
 fa

ct
or

Shape factor 

EKF-M
EKF-S

FR
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decrease (as well as when the B matrix is reset). Some

components of the matrix M, such as
@ Tt

b

@ T0
b

, remain almost

constant and are the same for different lakes. Components

of the Kalman gain vector K show an annual cycle or

oscillations in time. All of these are stable, even when some

of the B matrix components are large. For the mixed

regime, all of the matrices and vectors are reduced to scalar

values and remain almost constant in time (although @ T
t

@ T
0 is

slightly less for shallow lakes). The almost constant values

give potential for simplification of the EKF algorithm.

Note that in midsummer @ T
t

@ T
0 has minimum and @ T

t

@ g0 has

maximum. This corresponds to decoupling and leads to
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small weights in the Kalman gain vector K and small

analysis increments in T . Increasing the related compo-

nents of the B matrix in order to propagate information in

the vertical in the decoupling situation and to increase the

weights for T , necessitates modification of the filtering

procedure.

4.2.2. Assimilation of merged data and cross-validation.

Experiments with the merged data set were designed to

study the role of LWST information in early spring, just

after ice break-up. Can this information improve the qua-

lity of the analysis? To answer this question, numerical

experiments with two observational datasets, SYKE and

merged (EKF-S and EKF-M experiments), were compared.

The ice break-up dates in the EKF-S and EKF-M experi-

ments did not differ much. In the EKF-M experiment,

the ice break-up date was up to 7 d earlier; however, the

first spring LWST was up to 98C higher than observed

(see Figs. 2 and 3, and Table 3). Thus, TML in the EKF-M

experiment increased very quickly during this 7-d period. In

Fig. 2, the TML difference between the EKF-M and EKF-S

experiments reaches 108C in early spring, and then dimin-

ishes within 2�3 weeks. Therefore, starting from June the

effect of additional early spring observations on TML

cannot be noticed. Spring mixing in the EKF-M experi-

ment appeared also several days earlier (Fig. 6a). The

summer behaviour of the temperature profile in lakes was

also influenced by early spring observations. The impact

was different depending on the spring mixing conditions.

For Lake Saimaa, the spring mixing period lasted for 2�3 d
(not shown). For this lake, the summer maxima of T and

Tb in the EKF-M experiment were up to 48C and 128C
lower compared with the overestimated values in the EKF-

S experiment (Fig. 5) and therefore seem to be more realis-

tic. For the very shallow Lake Tuusulanjärvi (the mean

depth is 3m) the spring mixing period lasted for 15�20 d,
and in terms of T and Tb there was no difference between

the EKF-S and EKF-M experiments, although in the EKF-

M experiment the spring TML was higher until June (not

shown). Different summer behaviour of the lake tempera-

ture profiles in the EKF-M and EKF-S experiments

resulted in different autumn mixing conditions. For Lake

Inarijärvi, there was earlier mixing in the EKF-M experi-

ment (Fig. 6a). This in turn may influence the ice onset date

the following year and the following winter ice conditions.

The length of our experiments was not sufficient for study-

ing these aspects and this should be investigated in future.

In the EKF-M experiments, there was also a problem

of a possible bias in the prognostic equation for h in the

case of stable stratification. Improved summer values of

T resulted in neither more stable behaviour of TML nor

smaller increments of h. In summer observational depar-

tures of TML were mainly negative and increments of h

were mainly positive (not shown) and had approximately

the same values as in the EKF-S experiments. This means

that the problem of a possible bias in the prognostic equa-

tion for h cannot be corrected by better T values due to
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Fig. 8. Time evolution of the mixed layer temperature in 8C for Lake Saimaa (the mean depth is 11m) for the period of June�July 2011.

The FR and EKF-S results are shown by the blue and green lines, respectively. The LWST observations are represented by the pink dots.
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additional early spring observations and necessitates spe-

cial attention. Perhaps, bias correction in the assimilation

system should be considered.

For the merged data set, the assimilation system was

cross-validated, assimilating every second observation and

using the other data to calculate scores. Note here a longer

cycling period (48 hours) was used, which means more non-

linearity in the model, less accurate Jacobians and larger

analysis departures (not shown). The results of the cross-

validation, as well as the impact for the merged data, are

presented in Table 4. Here, the bias, RMSE and the error

standard deviation (ESTD) were calculated for each lake
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for the entire open water period. The impact of the merged

observations for chosen lakes was slightly larger (ca. 1.5%)

than for the SYKE data (compare Tables 1 and 4). In this

study, a reliable time series of error statistics could not be

obtained due to the small number of lakes. For individual

lakes, the mainly positive bias in summer was compensated

by the mainly negative bias in spring, so the overall annual

bias was quite small. In the EKF-M experiment compared

with FR, the absolute value of the bias decreased for Lake

Inarijärvi and Lake Saimaa (and the bias even changed

sign) and slightly increased for Lake Lappajärvi and Lake

Tuusulanjärvi. The RMSE and ESTD are much more demon-

strative scores in this type of validation, because errors do

not compensate each other. For all lakes, the EKF assimi-

lation procedure resulted in a noticeable decrease in RSME

and ESTD. For example, for Lake Inarijärvi ESTD de-

creased from 4.598C to 0.968C. For Lake Tuusulanjärvi,

despite the increase in bias and unrealistic temperature

profiles in summer, the ESTD for LWST also noticeably

decreased (from 2.808C to 1.138C). Note that in the EKF-S

experiments, the unrealistic behaviour of T and Tb did not

spoil the LWST analysis.

From cross-validation, the EKF-M experiment was

closer to reality than FR. These results are very promising

for NWP. The role of early spring observations and errors

in T and Tb should be studied further in the future. These

errors may be relevant for the next winter period. Also,

although the simulated deep lake water properties do not

influence an atmospheric model, their accurate estimation

could be a useful by-product of NWP models for environ-

mental applications (e.g. hydrological or limnological).

5. Conclusions

An algorithm to assimilate LWST observations into the

lake model FLake has been developed using the EKF

technique. This algorithm propagates information to the

water temperature profile in the lake model space. The

algorithm considers different lake model regimes: the ice

period, the mixed regime and the stratified regime. To avoid

the divergence of EKF, the prediction of the B-matrix is

reinitialised when switching between model regimes. The

algorithm was applied for two types of data: (1) instru-

mental measurements of LWST by SYKE and (2) the

merged data set, compiled from SYKE measurements, the

ice break-up dates observed by SYKE and manually picked

MODIS LWST data. With the second type of data, the

role of early spring observations was studied. Tests with

the SYKE data were performed for 27 lakes in Finland

and tests with the merged data for 4 lakes. Experiments

comprised a 1 yr period (3 November 2010 to 10 November

2011) and were run offline with forcings from HIRLAM

operational forecasts.

In addition to the qualitative evaluation of the results,

the impact was calculated for the numerical experiments

with SYKE data. Cross-validation was performed for the

merged data set. In terms of LWST, for all lakes and all

types of data, the EKF experiments are much closer to

observations than the free model run, the impact is more

than 90%. For all lakes, cross-validation shows a small

overall annual bias (less than 0.98C) for the EKF run. The

ESTD with the EKF decreases significantly in comparison

with the free model (1�38C). The experiments with the

merged data set demonstrated the important role of the

early spring observations to improve the performance of

the model in terms of the mean water temperature and the

bottom temperature (in the experiments using only the

SYKE data they were overestimated). For further evalua-

tion of this behaviour, longer experiments are needed.

Numerical experiments revealed a possible model bias in

the prognostic equation for the mixed layer depth in the

case of the wind mixing in FLake. This problem should be

studied in the future. A preliminary study of the behaviour

of different elements of the assimilation system was done.

Components of Jacobians, the model and background error

matrices, the Kalman gain vector showed the annual cycle

or time oscillations, no instability was noticed. However,

more tests and comparisons with deep water temperature

observations are needed. Thus, the task is difficult and

the results presented are quite early. Additional numerical

experiments using different types of data to study potential

problems in the assimilation system (the frequency of

Table 4. The impact I (for the definition see Section 4.2), the bias, the root mean square error (RMSE) and the error standard deviation

(ESTD) (8C) for the assimilation of the merged LWST observations for different lakes (the bias is calculated as simulated minus observed

values, a positive bias means an overestimation of LWST)

FR EKF-M

Lake I (%) Bias RMSE ESTD Bias RMSE ESTD

Inarijärvi 97.9 �2.03 5.02 4.59 0.12 0.96 0.96

Saimaa 96.8 �1.07 3.67 3.52 �0.04 1.11 1.11

Lappajärvi 97.5 0.19 2.87 2.87 0.46 1.51 1.44

Tuusulanjärvi 95.9 0.83 2.92 2.80 0.85 1.41 1.13
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observations, the quality control of remote-sensing data)

are planned.

The EKF algorithm used to assimilate LWST data into

the lake model FLake showed promising results and was

recognised as effective. For the operational implementation

however, other parts of the lake DA system (OI analysis,

the data quality control, etc.) should also be developed or

improved. New sources of data are very important and

welcome, in particular space-borne data such as MODIS,

Advanced Along-Track Scanning Radiometer (AATSR)

and Medium Resolution Imaging Spectrometer (MERIS).

The EKF algorithm will be implemented into the externa-

lised surface modelling platform SURFEX (Le Moigne,

2009; Masson et al., 2012) which is widely used in NWP, in

climate applications and for monitoring and research

purposes. Implementation of SURFEX with FLake and

EKF into the operational NWP system HARMONIE/

AROME (Seity et al., 2010) is also planned. The EKF

algorithm has strong potential to initialise the lake para-

meterisation scheme in NWP models and to correct model

errors by using LWST observations.
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7. Appendix
Limits of the components of the tangent linear model operator M, the linearised observation operator H, the background error covariance

matrix B and the Kalman gain vector K for different mixing regimes

Component Value Remarks

Mixed regime

Matrix M
@ T

t

@ T
0 0.8�0.9 K/K Almost constant value, less for shallow lakes

Vector H
@ T

@ T
1.0 K/K Constant value

Matrix B

var e�Tð Þ 4.5�4.8 K2 Almost constant value

Vector K (weights)

for T 0.82�0.83 Almost constant value

Stratified regime

Matrix M
@ T

t

@ T
0 0.5�1.0 K/K Larger values for deep lakes, smaller for shallow lakes; for shallow lakes the annual cycle

has a minimum in midsummer
@ T

t

@ g0 (�1.2)�(�0.1) K Larger absolute values for shallow lakes, smaller for deep lakes; the annual cycle has a

maximum in midsummer
@ T

t

@ T0
b

0.01�0.40 K/K Larger values for shallow lakes, smaller for deep lakes; the annual cycle has a maximum in

midsummer
@ T

t

@ C0
T

(�4.5)�(�0.1) K Larger absolute values for shallow lakes, smaller for deep lakes; the annual cycle has a

minimum in midsummer
@ gt

@ T
0 (�0.2)�0.2 K�1 Almost zero values in midsummer

@ gt

@ g0 0.1�1.4 Larger values for deep lakes, smaller for shallow lakes; the annual cycle has a maximum in

autumn
@ gt

@ T0
b

(�0.3)�0.5 K�1 Larger absolute values for shallow lakes, smaller for deep lakes; the annual cycle has a

minimum in autumn
@ gt

@ C0
T

(�1.0)�1.0 Almost zero values in midsummer

@ Tt
b

@ T
0 (�0.6)�0.6 K/K The annual cycle with a minimum in spring

@ Tt
b

@ g0 (�2.0)�0.4 K Close to zero in midsummer

@ Tt
b

@ T0
b

0.2�1.2 K/K For shallow lakes an almost constant value of 1.0 K/K, for deep lakes small values in

midsummer
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