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Abstract 

In this paper, an energy function approach for finding roots of a 

characteristic equation has been proposed. Finding the roots of a 

characteristics equation is considered as an optimization problem. We 

demonstrated that this problem can be solved with the application of 

feedback type neural network. The proposed approach is fast and 

robust against variation of parameter. 
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1. INTRODUCTION 

Hopfield proposed a feedback neural network popularly 

known as Hopfield neural network [9], [10]. In his work, 

Hopfield designed a recurrent neural network as dynamical 

associative memory and showed that a single-layer of a fully 

connected network is capable of restoring a previously learned 

static pattern called a memory vector, ensuring its convergence 

from any initial condition [9].  The Hopfield network may be 

operated in a continuous mode or discrete mode, depending on 

the model adopted for describing the neurons.  The continuous 

model of operation is based on an additive model [10].  On the 

other hand, the discrete mode of operation is based on 

McCulloch-Pitts model [9]. 

Hopfield network has been used for a variety of applications, 

such as associative memory [9], complex-valued associative 

memory [6], classification [31], and object recognition [27]. It is 

also used to solve optimization problems like Traveling 

salesman problem [11], finding solutions of linear and nonlinear 

equations [4], [23], Analog-to-Digital (ADC) converter [5], [29], 

Job Scheduling [30], Assignment problem [3] etc. However, the 

application of conventional Hopfield neural network in 

optimization was limited to quadratic cost functions only. To 

overcome this limitation, Samad and Harper [28] extended this 

network for higher order cost functions and proposed a higher 

order Hopfield neural network. Later on Miguel et al. applied it 

to several well known problems of optimization [2], [21].  

The techniques of finding roots of a polynomial, found 

applications in diverse fields such as control system [25], digital 

signal  processing  [32],  and  image  processing  [1].  These 

problems can easily be solved by many traditional methods such 

as Laguerre method, Muller method, Hurwitz method, Newton-

Raphson method [32], and Routh criterion [7]. Since last two 

decades, Neural network technique has been used successfully in 

many fields, e.g., in factorization of polynomials with two or 

more variables [12], [26], inversion of the non-singular matrices 

[19], solving linear/non–linear algebraic equations [4], [22], 

[24], etc.  Similar to above mentioned applications application of 

neural networks in finding the roots of polynomial is a novel and 

important research topic [20]. Huang et al. contributed 

significant applications of feed-forward neural network for 

determining the roots of arbitrary order polynomials. The 

approach using backpropagation network to zero polynomial is 

to factorize the polynomial into subfactors on the hidden layer of 

the network, and use a suitable adaptive learning algorithm to 

train the connection weights, i.e. roots, from the input layer to 

the hidden layer until the defined output error between actual 

output and the desired output (the polynomial) converges to a 

predefined accuracy [16]. All these learning schemes are 

supervised learning schemes. In these schemes initialization of 

neural network parameters is one of the key issues. In their 

work, Huang et.al. depicts that neural network based root finder 

schemes compete equally with conventional root finder schemes. 

However, the application of Hopfield neural network for 

extracting the roots of the characteristic equation is not explored 

even today. In this paper, an energy function approach using 

slightly modified Hopfield neural network is attempted to 

compute the roots of a given characteristic equation. Our study 

concludes that a fixed weight neural network such as Hopfield 

neural network with minor modifications can be used for root 

finding. 

The paper is organized as follows. Section 2 presents the 

formulation of modified Hopfield neural network for finding the 

roots of a given characteristic polynomial. Stability analysis of 

the proposed approach is carried out in section 3. Section 4, 

demonstrates few numerical experiments with proposed 

approach. We concluded our work with a brief discussion in 

section 5.   

2. MODIFIED HOPFIELD NEURAL 

NETWORK FOR DETERMINING NON-

REPEATED ROOTS OF A 

CHARACTERISTIC EQUATION 

Consider the characteristic equation, 

 

( 1)
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Eq.(1), can be written in the following form, 

 
     1 2 3 ( )nq s s s s s s s s s       (2) 

where, s1, s2 . . ., sn are the roots of Eq.(1). These roots can be 

real or in complex conjugate pair. Here, we assumed that all the 
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roots can be written in the form of (x + iy). Variable s in Eq.(1) 

can be replaced by (x + iy). That results in following,  
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Expanding the Eq.(3) gives us a complex algebraic equation 

of form (σ + iω). That can be represented as follows, 
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 (4)                           

Here,     gives the real part of the characteristic equation 

q(s) after expansion, while      gives the imaginary part. The 

individual terms of Eq.(4), i.e.   and  are used for energy 

function formulation for the proposed model. This energy 

function will be used further to determine all possible non-

repeated roots of the given characteristic equation.  In our work, 

we consider this problem as an optimization problem and, in 

order to use a neural network model to solve an optimization 

problem, the problem is cast into the form of an energy function 

that the model minimizes. Hence, the energy function using 

Eq.(4) can be shown as follows,  
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which can be further simplify as, 
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   2 2,E x y     (6) 

The energy function given in Eq.(6) is used to design a 

modified Hopfield neural network for finding the non-repeated 

roots of the characteristic equation Eq.(1). Calculation of partial 

derivatives of Eq.(6) with respect to variables x and y, gives the 

dynamics of network, which can be written as, 

 ,xdu
E x y

dt x


 


 

 ,
ydu

E x y
dt y


 


 

 xx u  

 
( )yy u  (7) 

Equations (6) and (7) are used to determine weights and 

biases of the proposed neural network. 

As evident from [9], that the conventional Hopfield neural 

network utilizes linear aggregation of weights, biases, and inputs 

at the particular node.  The aggregated inputs are then passed 

through a nonlinearity to achieve a nonlinear input-output 

relation. The output of every neuron in the network is fed back 

to all the neurons of the network. Hence, it forms a fully 

connected recurrent neural network. However, in the proposed 

modified Hopfield neural network model, nonlinear 

combinations of inputs are aggregated at the summing node. The 

nonlinear combination includes linear as well as nonlinear terms. 

This is loosely inspired from the phenomenon of nonlinear 

dendritic interaction.  This nonlinear combination of inputs is 

aggregated via unique weights. Other features are identical to 

conventional Hopfield model.  

 

Fig.1. Generalized architecture of proposed model 

The proposed architecture for the modified Hopfield neural 

network is shown in Fig.1. It is observed from the figure that 

highest order of the polynomial decides the number of weights 

and combination of states. As a general rule if n is the highest 

order present in the characteristic equation then the number of 

weights and combinations of x and y are given by expression 

p(p+3)/2 , p > 2, here p = n + 1. For example, if we have to find 

the roots of a quadratic equation, then n = 2 and p = 3 which 

results in 9 different combinations of x and y which are 

aggregated through 9 synaptic weights. 

Fig.1 helps us to write dynamical equations for the proposed 

network. These dynamical equations are expressed as, 

     1 1 1, , ,x
i i P P bias

du
w F x y w F x y w F x y I

dt
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     1 1 2, , ,
y

i i P P bias

du
v F x y v F x y v F x y I

dt
     

 xx u  

 yy u  

 
( 3)

; 2
2

p p
P p


   (8) 

where w1 ,. . ., wi ,. . ., wP  and v1, . . ., vi, . . ., vP are the 

associated weights of the network. Ibias1 and Ibias2 are the constant 

bias values to the neurons x and y, respectively. F1(x, y),. . . , 

Fi(x, y), . . ., FP(x, y) are various combinations of inputs x and y. 

The function      is the input-output transfer function for the 

neurons. This function should be continually differentiable and 

monotonically increasing. Comparing Eq.(7) with Eq.(8) yields   

the weights w1,. . ., wi ,. . ., wP, v1 , . . ., vi , . . ., vP and biases 

Ibias1 and Ibias2. 

3. STABILITY ANALYSIS OF THE MODIFIED 

HOPFIELD NEURAL NETWORK 

In  this  section,  the  stability  analysis  for  the   proposed 

modified Hopfield  neural  network  is  carried  out.  We use the 

basic notions of Lyapuonv stability theory [25], [34] in order to 

prove that the proposed energy function (Eq. 6) is a valid energy 

function. 

Consider an autonomous system described by, 

    (
d

x t f x t
dt

  (9) 

and let, x(x(t0),t)) be a solution. Let E(x) is the total energy 

associated with the system. If the derivative dE(x)/dt is negative 

for all x(x(t0),t) except the equilibrium point, then it follows that 

energy of the system decreases as t increases and finally the 

system reaches the equilibrium point. This holds because energy 

is non negative function of system state which reaches a 

minimum only if the system motion stops. 

In section 2, we formulated the energy function for the 

proposed model with the help of Eq.(1) through Eq.(4). This 

energy E(x,y) is the function of variables x, y and polynomial 

constant coefficients a0, a1, . . ., an. Eq.(5) can be rewritten as,  

     2 2, , ( , )E x y x y x y    (10) 

For the system to being stable, at  any  instant,  the  total  

energy  E(x,y)  in  the  system  is positive unless the system is at 

rest at the equilibrium state, where the energy is zero. This can 

be written as, 

 , 0;when  , 0E x y x y   

  0,0 0;when  , 0E x y   (11) 

The rate of change of energy is given by, 

  ,
d E dx E dy

E x y
dt x dt y dt

 
 
 

 (12) 

The dynamics for the modified Hopfield neural network is 

given by, 

  ,xdu
E x y

dt x


 


 (13) 

 ,
ydu

E x y
dt y


 


 

Using equations (12) and (13) we get, 

  ,
yx

dudud dx dy
E x y

dt dt dt dt dt
    (14) 

States u x and u y are obtained by,  
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The activation function      is chosen in such a way that, 

     is continuously differentiable and strictly monotonically 

increasing, that is,       >       if p > p0. Considering the 

relation as shown in Eq.(14) and Eq.(15) results in, 

  
22 1(.)

,
( , )

yx
dudud

E x y
dt dt dt x y

                  

   (16) 

Thus,  ,
d

E x y
dt

is negative at all points except the 

equilibrium state. This proves the stability of the modified 

Hopfield like network in Lyapunov sense. The total energy of 

the system will decrease with time and the proposed network is 

stable. 

The gradient descent approach for minimizing the energy 

function E(x, y) necessitates a positive slope for activation 

function     with respect to states x and y. In our 

experimentation, the input-output transfer function      was 

linear. The input dynamics of network follows a gradient descent 

approach for minimizing the energy function E(x, y), the network 

inputs are guaranteed to converge at a local minimum of E(x, y), if 

E(x, y) has one.  Energy at a local minimum is zero, i.e. every 

minimum of E(x, y) is a global minimum and hence corresponds 

to a solution [4]. 

4. ILLUSTRATIVE EXAMPLES 

Methodology for calculating the non-repeated roots of a 

characteristic equation by using the modified Hopfield neural 

network approach is discussed in previous section. In this 

section we demonstrate usefulness of proposed method by 

several numerical experiments. Section 4.1 will describe the 

proposed approach in details. However, for subsequent examples 

only results have been presented.  Initial states of the network 

are randomly initialized in the range of [-1, 1] and network is 

simulated on a machine configured with Intel Pentium 4 CPU 

3.20GHz 512 MB RAM. 

4.1 EXAMPLE 1 

Consider a characteristic equation of quadratic form, i.e. 

As
2
+Bs+C = 0. The parameters A, B, and C of this equation are 

any arbitrary real valued constants. 
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4.1.1 Energy Function Formulation: 

The given characteristic equation has two roots which can be 

either complex conjugate pair or real depending on the values of 

parameters A, B, and C. The parameters A, B, C ∈ R and variable 

s ∈ C; here R is the set of real number and C represents the set of 

complex number. Replacing s with x + iy in the given 

characteristic equation results in, 

 
2( ) ( ) 0A x iy B x iy C       (17) 

which is further simplified as, 

     2 2 2 0 A x y Bx C i Axy By       (18) 

The energy function for this problem is given by, 

 
2 2 2 2( , ) ( ( ) ) (2 )E x y A x y Bx C Axy By          (19) 

Eq.(19) is used further to calculate the weights and biases for 

the proposed network. 

4.1.2 Design Details of Proposed Network: 

With the calculated weights and bias values, network 

attempts to minimize the energy function E(x, y) for obtaining 

the solutions. We assumed that the proposed network does not 

have any inherent loss terms, and its dynamics is governed by 

Eq.(7). Using equations (7) and (19), we get, 

3 3 2 2 2 2
1 2 3 4 5 6

7 8 9 1

x

bias

du
w x w y w x y w xy w x w y

dt

w xy w         x w y I
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y
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du
v x v y v x y v xy v x v y
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x u
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 (20) 

Values of weights and biases are determined by comparing 

the RHS of Eq.(19) and Eq.(20). The architecture of the 

proposed network for quadratic characteristic equation is shown 

in Fig.2. Results for Example 1 are obtained by numerical 

simulation of Eq.(20) with A = 1, B = 2, and C = 3. In our 

experimentation, we noticed that in few cases the numerical 

method fails to converge if the integration step size is not 

appropriate and hence the selection of optimal integration step 

size is essential. Energy profile for the proposed network is 

drawn in Fig.3.  It is evident from this figure that the energy of 

system minimizes with iterations and network requires small 

number of iterations to reach its minimum. 

It is also noted here that all the non-repeated roots of the 

network are calculated sequentially. One complete simulation of 

the network results in one non-repeated root for the given 

polynomial.  To evaluate all non-repeated roots the same 

network is simulated again and again with different initial states. 

In other words every time for a unique root for a characteristic 

equation the network is trained with unique random initial states.  

Each starting point in the basin of attraction must have different 

minima. If the starting point is  same  every  time,  we  will  get  

one  root  of  the  given characteristic  equation.  This  is  one  of  

the  limitations  of proposed  method  because  there  is  no  

mechanism  for  the selection  of  starting  point.  Because  of  

this  limitation  the computational  time  is  high  as  compared  

to  conventional methods. 

 

Fig.2. Architecture of the modified Hopfield neural network for 

Example 1 

 

Fig.3. Energy profile for the proposed network while finding the 

roots of quadratic characteristic equation 

Table.1 depicts the comparison between proposed energy 

minimization based neural network technique (PM) and 

conventional methods used for root determination, i.e. 

Lagurre[32] (LM) and Eigenvalues of balanced companion 

matrix method [8] (EBCM). It is evident from this table that the 

roots obtained with all the methods are almost identical but the 

computation time required by the proposed technique is high.  

Thus, the incorporation of nonlinear dendritic interaction in the 

Hopfield neural network can be used for determination of non-

repeated complex roots of polynomial. However, this method is 

not computationally efficient method.  
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Table.1. The comparison of performance of the proposed 

method and Conventional methods for quadratic characteristic 

Equation, Eq.(17). 

Indices PM LM EBCM 
Estimated 

roots 

-1-1.414i 

-1+1.414i 

-1-1.414i 

-1+1.414i 

-1-1.414i 

-1+1.414i 

CPU time(s) 0.39 0.094 0.015 

4.2 EXAMPLE 2 

The proposed methodology is used to calculate the non 

repeated roots of a cubic characteristic equation of form, i.e. As
3
 

+ Bs
2
 + Cs + D = 0. The parameters A, B, C and D can have any 

arbitrary real values. Table.2 presents the simulation results and 

comparison with conventional numerical methods. 

Table.2. The comparison of performance of the proposed 

method and conventional methods for the cubic characteristic 

equation at A = 1, B = 2, C = 3, and D = 5 

Indices PM LM EBCM 

Estimated 

roots 

-1.8437 

-0.07813-1.6449i   

-0.07813+1.6449i 

-0.0781-1.644i  

-0.0781+1.644i 

-1.8437 

-1.843 

-0.0781+1.644i 

-0.0781-1.644i 

CPU time(s) 0.50 0.078 0.047 

4.3 EXAMPLE 3 

In this section, we extended the proposed approach for 

finding all the non-repeated roots for a fifth order characteristic 

equation of form, i.e. As
5
 +Bs

4
 +Cs

3
 +Ds

2
 +Es+F = 0. The 

parameters A, B, C, D, E, and F can have any arbitrary real 

values. Table.3 presents the simulation results and comparison 

with conventional numerical methods. 

Table.3. The comparison of performance of the proposed 

method and conventional methods for the fifth order 

characteristic equation at A = 1, B = 2, C = 3, D = 6, E = 3, and 

F = 5 

Indices PM LM EBCM 

Estimated 

roots 

-0.2703-1.166i 

-0.2703+1.166i 

-1.966 

0.2534-1.307i 

0.2534+1.307i 

-0.2703-1.166i 

-0.2703+1.166i 

-1.966 

0.2534-1.307i 

0.2534+1.307i 

-0.2703-1.166i 

-0.2703+1.166i 

-1.966 

0.2534-1.307i 

0.2534+1.307i 

CPU time(s) 1.34 0.031 0.062 

4.4 EXAMPLE 4 

Here we exhibit simulation results for the seventh order 

characteristic equation of form As
7
 + Bs

6
 + Cs

5
 + Ds

4
 + Es

3
 +F 

s
2
 +Gs+H = 0. The parameter A, B, C, D, E, F, G, and H can be 

any arbitrary real values. Table.4 presents the simulation results 

and comparison with conventional numerical methods. 

Table.4. The comparison of performance of the proposed 

method and conventional methods for the seventh order 

characteristic equation at A = 1, B = 2, C = 3, D = 6, E = 3, F=5, 

G = 6 and  H = 6. 

Indices PM LM EBCM 
Estimated 

roots 

-0.703-0.897i 

-0.03607-1.611i 

-0.7129-0.6506i 

-0.7129+0.6506i 

-1.908 

-0.03607+1.6113i 

-0.03607+1.611i 

0.7031+0.8971i 

-1.9081 

-0.7129-0.6506i 

-0.7129+0.6506i 

0.7031+0.8971i 

0.7031-0.8971i 

-0.03607-1.6113i 

-0.03607+1.6113i 

-1.9081 

-0.03607-1.6113i 

0.7031+0.8971i 

0.7031-0.8971i 

-0.7129+0.6506i 

-0.7129-0.6506i 

CPU 

time(s) 
5.891 0.078 0.062 

5. CONCLUSION AND DISCUSSION 

In this paper, modified Hopfield neural network whose 

formulation is inspired from nonlinear dendritic aggregation is 

proposed. The modification lies in the application of linear as 

well as nonlinear terms in calculating the aggregation at each 

neuron unit. 

We proposed a modified Hopfield neural network approach 

for determining the roots of a characteristic equation. We 

formulated an energy function that is used to determine the 

weights and biases for the proposed network. A generalized 

architecture of the proposed network is also given, which can be 

used to calculate non-repeated roots of any order of 

characteristic equation. Lyapunov stability analysis for the 

proposed network is carried out and it is found that proposed 

energy function for the network is stable in Lyapunov sense. 

Results for quadratic, cubic, fifth order, and seventh order 

characteristic equations are shown. These results are compared 

with the conventional Lagurre and Eigenvalues of balanced 

companion matrix methods. Computation time with each method 

is also compared. In our simulation the proposed method is not 

as fast as the conventional methods. 

However, we believe that it is faster in comparison to feed 

forward type neural network. For determining the convergence 

and stability of the proposed network numerically, energy profile 

for the network is plotted. It has been noticed that the energy of 

the system minimizes with iterations. Thus, dynamics of the 

proposed network is stable. 

Determination of proper weights and bias values, selection of 

suitable starting point, and higher computational time as 

compared to conventional numerical methods are some 

limitations of the proposed network. It is also observed that the 

proposed network should be trained with unique random initial  

states  for  approximately  5  times  to  the  maximum number  of  

roots  in  a  given  polynomial  to  evaluate  non-repeated roots 

of given characteristic equation. It is also noted that each starting 

point in the basin of attraction must have different minima. If the 

starting point is same every time, we will get only one root. In 

this application, selection of starting point plays an important 

role. This can be rectified if some mechanism for the selection of 

starting point is developed. 

This work can be taken as future research work. The 

proposed approach can also be extended for handling repeated 

roots of a characteristic polynomial.  It  is  concluded  that 

incorporating nonlinear dendritic aggregation in conventional 

Hopfield neural network and a proper formulation of energy 

function  we  can  determine  real  as  well  as  complex  non-

repeated roots of characteristic equations and set of nonlinear 

algebraic equations.  
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