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Abstract 

This paper evaluates the use of random forest (RF) as a tool for misfire 

detection using statistical features. The engine block vibration contains 

hidden information about the events occurring inside the engine. 

Misfire detection was achieved by processing the vibration signals 

acquired from the engine using a piezoelectric accelerometer. The 

hidden information regarding misfire was decoded using feature 

extraction techniques. The effect of Kononenko based discretiser as 

feature size reduction tool and Correlation-based Feature Selection 

(CFS) based feature subset selection is analysed for performance 

improvement in the RF model. The random forest based model is found 

to have a consistent high classification accuracy of around 90% when 

designed as a multi class ,ode and reaches 100% when the conditions 

are clubbed to simulate a two-class mode . From the results obtained 

the authors conclude that the combination of statistical features and 

RF algorithm is well suited for detection of misfire in spark ignition 

engines. 
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1. INTRODUCTION 

Maintenance and condition monitoring of an internal 

combustion (IC) engine is a very crucial activity required to 

ensure optimum performance and minimum load on the 

environment, by restricting emissions to minimum possible 

levels. Misfire in spark ignition IC engine is a major factor 

leading to undetected emissions and performance reduction. 

According to the California Air Resources Board (CARB) 

regulations [1] engine misfire means, “lack of combustion in the 

cylinder due to absence of spark, poor fuel metering, poor 

compression, or any other cause”. Misfire detection in an internal 

combustion engine is very crucial to maintain optimum 

performance throughout its service life and to reduce emissions. 

The engine diagnostic system of the vehicle should be designed to 

monitor misfire continuously because even with a small number 

of misfiring cycles, engine performance degrades, hydrocarbon 

emissions increase, and drivability will suffer [2]. The cylinder 

misfire cycle also results in a large quantity of unburned fuel 

being sent through the catalytic converter, which causes a 

reduction in its service life due to high temperature exposures [3] 

and also contributes to significant air pollution. 

In-cylinder pressure monitoring is very reliable and accurate 

as individual cylinder instantaneous mean effective pressure 

could be calculated in real time. However, the cost of fitting each 

cylinder with a pressure transducer is prohibitively high. 

Extensive studies have been done using measurement of 

instantaneous crank angle speed [4] and diverse techniques have 

been developed to predict misfire [2]. These methods call for a 

high resolution crank angle encoder and associated infrastructure 

capable of identifying minor changes in angular velocity due to 

misfire. The application of these techniques becomes more 

challenging due to continuously varying operating conditions 

involving random variation in acceleration coupled with the 

effect of flywheel, which tries to smoothen out minor variations 

in angular velocity at higher speeds. Fluctuating torque 

experienced by the crankshaft through the drive train poses 

additional hurdles in decoding the misfire signals.  

A detailed work reported by [5] using a combination of engine 

block vibration and wavelet transform to detect engine misfire 

and knock in a spark ignition engine. The use of engine block 

vibration is appreciable because it requires minimum 

instrumentation but the use of wavelet transforms increases the 

computational requirements. Misfire detection using SVM 

reported by [6] reports good classification efficiency but the main 

concern here is the computational complexity of SVM which 

could pose a serious challenge for implementation in an online 

model. 

The main contribution of this study aims at developing a low 

cost and computationally frugal system for standalone misfire 

detection system capable of being integrated in to the engine 

controller. The system can be reconfigured at very short notice. 

The present study proposes a non-intrusive engine block 

acceleration measurement using a piezoelectric accelerometer 

connected to a computer through a signal conditioner. The 

acquired analog vibration signals are converted to digital signals 

using an analog to digital converter and the discrete data files are 

stored in the computer for further processing. Feature extraction, 

feature reduction and feature subset selection techniques are 

employed and their classification results obtained are presented in 

the ensuing discussion.  

The section 2 describes the experimental setup, the data 

acquisition methodology using accelerometer and the signal 

conditioning unit while section 3 describes the experimental 

procedure in detail. The methods involved in data preprocessing 

like feature extraction, feature reduction and feature subset 

extraction are presented in section  4 and the detailed working of 

the random forest and various stages of work by the algorithm is 

presented in section 5. The results and discussion are presented in 

detail under section 6 followed by conclusion in section 7, which 

establishes that the combination of statistical features and RF 

algorithm is well suited for detection of misfire in spark ignition 

engines. 

2. EXPERIMENTAL SETUP  

The misfire simulator consists of two subsystems namely, IC 

engine test rig and data acquisition system. They are discussed in 

the following subsections. The process for building the model is 

shown in Fig.1.  
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Fig.1. Expert system model building flow chart 

 

Fig.2. Experimental setup 

2.1 IC ENGINE TEST RIG 

The experimental setup of the engine misfire simulator 

consists of a four stroke vertical four cylinder gasoline (petrol) 

engine. Switching off the high voltage electrical supply to 

individual spark plugs or to a combination of spark plugs 

simulates the misfire. The engine accelerator is manually 

controlled using a screw and nut mechanism that can be locked in 

any desired position. The engine speed is monitored using an 

optical interference tachometer.  

2.2 DATA ACQUISITION SYSTEM 

Accelerometers have a wide operating range enabling them to 

detect very small and large vibrations. The vibration sensed is a 

reflection of the internal engine condition. The voltage output of 

the accelerometers is directly proportional to the vibration. A 

mono axial piezoelectric accelerometer and its accessories form 

the core equipment for vibration measurement and recording.  

The accelerometer is directly mounted on the center of the 

engine block using adhesive as shown in Fig.2. The output of the 

accelerometer is connected to the signal conditioning unit that 

converts the analogue signal into digital form. The digitized 

vibration signal (in time domain) is stored in the computer for 

further processing. 

3. EXPERIMENTAL PROCEDURE 

The engine is started by electrical cranking at no load and 

warmed up for 15 minutes. The signal conditioner is switched on, 

the accelerometer is initialized and the data is recorded after the 
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engine speed stabilizes at 1500 rpm. A sampling frequency of 24 

kHz and sample length of 8192 is maintained for all conditions. 

The highest frequency was found to be 10 kHz. The 

Nyquist–Shannon sampling theorem recommends that the 

sampling frequency must be at least twice that of the highest 

measured frequency or higher, hence the sampling frequency was 

chosen to be 24 kHz.  

Extensive trials were taken at 1500 rpm and discrete vibration 

signals were stored in the files. Seven cases were considered - 

normal running (without any fault), engine with any one-cylinder 

misfire individually (i.e. first, second, third or fourth denoted by 

C1m, C2m, C3m and C4m respectively). All the misfire events 

were simulated at 1500 rpm, the rated speed of the engine 

electrical generator set. A sample plot of misfire and no-misfire is 

presented in Figs.3a and 3b respectively. 

4. FEATURE EXTRACTION 

Statistical Features: Statistical analysis of vibration signals 

yields different parameters. The statistical parameters taken for 

this study are mean, standard error, median, standard deviation, 

sample variance, kurtosis, skewness, range, minimum, maximum 

and sum. These features were extracted from the vibration 

signals. The definitions for these features are commonly available 

and hence not presented. 

 

Fig.3a. Amplitude plot-cylinder1 misfire 

 

Fig.3b. Amplitude plot- no misfire 

4.1 FEATURE REDUCTION 

The wealth of information available in the extracted features 

is abundant and at times overwhelmingly large enough to distract 

the machine learning system leading to inferior performance. 

Data granulation as means of feature reduction has many 

advantages since it reduces the content volume and makes it easy 

to handle lot of information without challenging the system 

resources. But the technique to discretise or compress data 

without loss of valuable information is the key challenge.  There 

are many techniques reported in the literature but an algorithms 

that can suit the given condition needs to be validated by using the 

transformed data in the developed model for establishing 

performance improvements. 

The Kononenko’s algorithm design [7] uses the Recursive 

entropy discretisation proposed by Fayyad and Irani with a minor 

alteration discussed in the next paragraph. To have a complete 

understanding of the work the Fayyad and Irani method is 

described as follows. 

The Fayyad and Irani model [8] uses a supervised hierarchical 

split method where multiple ranges are created instead of binary 

ranges to form a tree. Multi-way splits of the numeric attribute at 

the same node are performed to produce discrete bins. The 

number of cut points is determined using the Minimum 

Description Length (MDL) principle. Here class information 

entropy is a measure of purity and it measures the amount of 

information which would be needed to specify to which class an 

instance belongs [9]. Information entropy minimization heuristic 

is used to select threshold boundaries by finding a single 

threshold that minimizes the entropy function over all possible 

thresholds [10]. This entropy function is then recursively applied 

to both of the partitions induced. Thresholds are placed half way 

between the two delimiting instances. At this point the MDL 

stopping criterion is applied to determine when to stop 

subdividing discrete intervals, [8].  The Kononenko’s algorithm 

includes an adjustment for discretisation of multiple attributes. It 

provides a correction for the bias the entropy measure has towards 

an attribute with many values, [7]. 

4.2 FEATURE SUBSET SELECTION 

Including all the features may improve the classification 

accuracy but the probability of over fitting the training set data 

and the additional computational load outweighs their 

consideration.  

It is observed from the computations that there are significant 

differences in some of the feature values for different types of 

faults. Selecting those features is crucial for effective 

classification and doing it manually demands more expertise; 

however, the effectiveness of the manually selected features is not 

guaranteed. Selecting the most relevant features through suitable 

algorithm will yield better classification results. Here feature 

subset selection (FSS) is performed using Correlation based 

Feature Selection (CFS). CFS is an algorithm for selecting 

features that are highly correlated with the class but uncorrelated 

with each other [11]. CFS has the ability to identify irrelevant, 

redundant, and noisy features from relevant features as long as 

their relevance does not strongly depend on other features. This 

method is adapted for building the model since signal corruption 

due to noise is more predominant in IC engines. The effect of 

using CFS on the developed model is studied. 

From a list of 11 statistical features presented the CFS has 

recommended the following features as most prominent ones to 
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be used for model building. They are standard error, standard 

deviation, sample variance, skewness, range and minimum. 

5. CLASSIFIER 

New families of ensemble classifiers promoting a team of 

models that generate many classifiers and aggregate their results 

have been considered for many classification applications. Two 

most common methods are boosting [12] and bagging of 

classification trees. In boosting, successive trees give extra 

weight to points incorrectly predicted by earlier predictors. In the 

end, a weighted vote is taken for prediction. In bagging, 

successive trees do not depend on earlier trees instead each tree is 

independently constructed using a bootstrap sample of the data 

set. In the end, a simple majority vote is taken for prediction. 

Random forests proposed by [13] added an additional layer of 

randomness to bagging. In addition to constructing each tree 

using a different bootstrap sample of the data, random forests 

changed the construction of classification trees. Random forests 

are a combination of tree predictors such that each tree depends 

on the values of a random vector sampled independently and with 

the same distribution for all trees in the forest. 

5.1 THE RF ALGORITHM 

The random forests algorithm can be represented as 

follows[13]: 

 Initially ‘n’ subsets of the original data are created, known as 

tree bootstrap samples  

 For each of the bootstrap samples, an un-pruned 

classification tree is grown. At each node, m tree predictors 

are randomly sampled and the best split from among those 

variables is chosen instead of choosing the best split among 

all predictors. In this method bagging is presented as a 

special case of random forests obtained when ‘m’ tree = p, 

the number of predictors.  

 New data is predicted by aggregating the predictions of the n 

trees (i.e., majority votes considered for classification).  

 An estimate of the error rate can be determined using the 

training data as given by [14]  

 At each bootstrap iteration, predict the data not in the 

bootstrap sample (labeled “out-of-bag”, or OOB, data) using 

the tree grown with the bootstrap sample. 

 Aggregate the OOB predictions. (On the average, each data 

point would be out-of-bag around 36% of the times. An 

aggregate of these predictions was taken.)  

 The error rate is calculated and is termed as the OOB 

estimate of error rate. 

In the next section the algorithm for building each tree is 

presented in detail. 

5.2 BUILDING THE DECISION TREE 

In the building phase, the training sample sets with 

discrete-valued attributes are recursively partitioned until all the 

records in a partition have the same class. The tree has a single 

root node for the entire training set. A new node is added to the 

decision tree for every partition. For a set of samples in a partition 

S, a test attribute X is selected for further partitioning the set into 

S1, S2, S3, ……SL. For each new set S1, S2, S3, ……SL new 

nodes are created and these are added to the decision tree as 

children of the node for S. Further, the node for S is labeled with 

test X, and partitions S1, S2, S3, ……SL are recursively 

partitioned. When all the records in a partition have identical class 

label, further portioning is stopped, and the leaf corresponding to 

it is labeled with the corresponding class. The construction of 

decision tree strongly depends on how a test attribute X is 

selected. C4.5 algorithm uses information entropy evaluation 

function as the selection criteria. 

The entropy evaluation function is arrived at through the 

following steps. 

Step 1: Calculate Info(S) to identify the class in the training set  

 S. 

 
    2

1

( ) , / log , /


        
K

i i

i

Info S freq C S S freq C S S

 

(1)     Where, S is the number of cases in the training set. Ci is  

           a class, I = 1,2,3,….K is the number of classes and freq(Ci, 

S) is the number of cases included in Ci. 

Step 2: Calculate the expected information value, infoX(S) for 

test X to partition samples in S. 

             
1

( ) / ( )


    
K

i i

i

InfoX S S S Info S   (2) 

              where, K is the number of outputs for test X, Si is a 

subset of S corresponding to ith output and is the number 

of cases of subset Si. 

Step 3: Calculate the information gain  

 
( ) ( ) ( )  XGain X Info S Info S   (3) 

Step 4: Calculate the partition information value Splitinfo(X) 

acquiring for S, partitioned into L subsets. 

            

2 2

1

1
( ) log 1 log 1

2 
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(4) 

Step 5: Calculate the gain ratio 

             ( ) ( ) ( ) GainRatio X Gain X SplitInfo X
 

(5) 

The GainRatio(X) compensates for the weak point of 

Gain(X), which represents the quantity of information provided 

by X in the training set. Therefore, an attribute with the highest 

GainRatio(X) is taken as the root of the decision tree.   

It is observed that a training set in the sample space leads to a 

decision tree, which may be too large to be an accurate model; 

this is due to over-training or over-fitting. Such a fully-grown 

decision tree needs to be pruned by removing the less reliable 

branches to obtain better classification performance over the 

whole instance space. Pruning is required only if decision tree is 

used as a standalone classifier built using a single tree. The 

post-pruning strategy for the decision tree is not used since the 

random forest algorithm uses the method of voting using multiple 

tree models for extracting the final classification results. The 

issue of over fitting does not occur here due to the inherent nature 

of the random forest [15]. The generalization error of a forest of 

tree classifiers depends on the strength of the individual trees in 

the forest and the correlation between them [16].  
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6. RESULTS AND DISCUSSION 

The development of the expert system for misfire detection 

using recursive entropy discretisation embedded Random forest 

algorithm is discussed with the implications or effects of the 

following factors 

 All statistical features considered         

 Feature reduction using Kononenko’s algorithm and  

 Features subset selection using CFS   

From the experimental setup 200 signals have been acquired 

for each condition. The conditions are mentioned in section 2.3 

and the features were extracted as mentioned in section 3. These 

features are pre-processed using feature reduction and features 

subset selection techniques and the effect of these techniques on 

the model is thoroughly investigated. 

6.1 EVALUATION OF CLASSIFIER 

Evaluation of the random forest classifier is performed using 

the standard tenfold cross validation process. The 

misclassifications details pertaining to Random forest 

classification without any data pre-processing is presented in the 

form of a confusion matrix in Table.1. C1m represents misfire in 

cylinder 1, C2m, C3m and C4m, represents misfire in cylinder 2, 

3 and 4 respectively. Good represents no misfire in any cylinder. 

The diagonal elements shown in the confusion matrix represents 

the correctly classified points and non-diagonal elements are 

misclassified ones. Referring to Table.1, it is evident that the 

misclassification among the faulty conditions and ‘good’ 

condition is minimal. However there are misclassifications 

among the faulty conditions which do not compromise the overall 

misfire prediction accuracy. For example, consider row C1m in 

which 184 conditions are correctly identified as misfire in C1 but 

20 are wrongly identified as misfire in C3, 9 in C3m and 5 in 

C4m. However 2 misfire instances are wrongly misclassified as 

good, which is an undesirable error. We can conclude that, as long 

as the system does not misclassify good as misfire or vice versa 

the model is robust enough for real time application.  

The performance values depicted in Table.2 clearly portrays 

the capability of the developed model when subjected to various 

data preprocessing techniques. From the results obtained it is 

evident that including all the data gives better performance but 

there is a risk of performance reduction due to model over fitting 

the data. In a later date when the engine noise increases due to 

wear, there are possibilities of the model suffering setbacks due to 

increased misclassifications. However a judicious decision has to 

be taken among the available alternatives to freeze the best among 

the developed models. Both model B and D deliver 100% result in 

2 class mode with almost similar multi class performance. Based 

on the processing time model D is chosen, however model B 

could also be considered since there is no appreciable deviation in 

performance. 

 

 

 

 

Table.1. Confusion matrix – Random forest with all features 

considered 

STATE Good C1m C2m C3m C4m 

Good 200 0 0 0 0 

C1m 2 184 0 9 5 

C2m 0 0 200 0 0 

C3m 0 13 0 154 33 

C4m 0 7 0 33 160 

Table.2. Classifier performance evaluation chart 
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data 

preprocessi

ng 

Model A 

With data 

discretisa

tion 

Model B 

With CFS 

(data not 

discretised) 

Model C 

With 

discretised 

data 

followed 

by CFS 

Model D 

Random forest 

performance 
89.2 90.1 88.9 89.7 

Processing 

time taken in 

seconds 

3.4 0.6 2.4 0.5 

Random forest 

performance 

in two-class 

mode 

99 100 99 100 

7. CONCLUSION 

In a condition monitoring activity fault identification forms 

the major objective and fault classification comes second in 

priority. In this context, the present algorithm performs fault 

identification (differentiating between good and faulty 

conditions) sufficiently well since it has not misclassified any 

instances out of 1000 samples supplied. This is calculated by 

considering good as one class and misfire in all cylinders as the 

second class. This assumption is logically valid since misfire 

detection is crucial and the identification of the exact cylinder 

where misfire happens is not critical.  

From the results presented it is encouraging to conclude that 

Random forest algorithm is well suited for detection of misfire in 

IC engines. Specifically focusing on the two-class problem result 

that is presented in the second row of Table.2, in which good Vs 

misfire in any cylinder is considered, one is able to infer that data 

preprocessing is absolutely necessary for improving the 

performance of the expert system and to reduce computational 

time required to arrive at a decision. The authors conclude that the 

model D, based on data discretisation followed by CFS is the best 

since it has the additional advantage of least computational 

complexity when compared to CFS without data discretisation, 

evident from the time required to run the model.  

It should be noted that these results are specific to this 

application and cannot be generalized to other similar 
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applications. Further studies are to be conducted on different 

engines at different operating conditions in order to generalize 

this finding. 
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