
S BABU DEVASENAPATI AND K I RAMACHANDRAN: RANDOM FOREST BASED MISFIRE DETECTION USING KONONENKO DISCRETISER

270

RANDOM FOREST BASED MISFIRE DETECTION USING KONONENKO

DISCRETISER

S. Babu Devasenapati
1
 and K.I. Ramachandran

2

Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India

E-mail:
1
s_babu@cb.amrita.edu and

2
ki_ram@cb.amrita.edu

Abstract

This paper evaluates the use of random forest (RF) as a tool for misfire

detection using statistical features. The engine block vibration contains

hidden information about the events occurring inside the engine.

Misfire detection was achieved by processing the vibration signals

acquired from the engine using a piezoelectric accelerometer. The

hidden information regarding misfire was decoded using feature

extraction techniques. The effect of Kononenko based discretiser as

feature size reduction tool and Correlation-based Feature Selection

(CFS) based feature subset selection is analysed for performance

improvement in the RF model. The random forest based model is found

to have a consistent high classification accuracy of around 90% when

designed as a multi class ,ode and reaches 100% when the conditions

are clubbed to simulate a two-class mode . From the results obtained

the authors conclude that the combination of statistical features and

RF algorithm is well suited for detection of misfire in spark ignition

engines.

Keywords:

Engine Condition Monitoring, Misfire Detection, Random Forest,

Engine Combustion, Recursive Entropy Discretisation, IC Engine

1. INTRODUCTION

Maintenance and condition monitoring of an internal

combustion (IC) engine is a very crucial activity required to

ensure optimum performance and minimum load on the

environment, by restricting emissions to minimum possible

levels. Misfire in spark ignition IC engine is a major factor

leading to undetected emissions and performance reduction.

According to the California Air Resources Board (CARB)

regulations [1] engine misfire means, “lack of combustion in the

cylinder due to absence of spark, poor fuel metering, poor

compression, or any other cause”. Misfire detection in an internal

combustion engine is very crucial to maintain optimum

performance throughout its service life and to reduce emissions.

The engine diagnostic system of the vehicle should be designed to

monitor misfire continuously because even with a small number

of misfiring cycles, engine performance degrades, hydrocarbon

emissions increase, and drivability will suffer [2]. The cylinder

misfire cycle also results in a large quantity of unburned fuel

being sent through the catalytic converter, which causes a

reduction in its service life due to high temperature exposures [3]

and also contributes to significant air pollution.

In-cylinder pressure monitoring is very reliable and accurate

as individual cylinder instantaneous mean effective pressure

could be calculated in real time. However, the cost of fitting each

cylinder with a pressure transducer is prohibitively high.

Extensive studies have been done using measurement of

instantaneous crank angle speed [4] and diverse techniques have

been developed to predict misfire [2]. These methods call for a

high resolution crank angle encoder and associated infrastructure

capable of identifying minor changes in angular velocity due to

misfire. The application of these techniques becomes more

challenging due to continuously varying operating conditions

involving random variation in acceleration coupled with the

effect of flywheel, which tries to smoothen out minor variations

in angular velocity at higher speeds. Fluctuating torque

experienced by the crankshaft through the drive train poses

additional hurdles in decoding the misfire signals.

A detailed work reported by [5] using a combination of engine

block vibration and wavelet transform to detect engine misfire

and knock in a spark ignition engine. The use of engine block

vibration is appreciable because it requires minimum

instrumentation but the use of wavelet transforms increases the

computational requirements. Misfire detection using SVM

reported by [6] reports good classification efficiency but the main

concern here is the computational complexity of SVM which

could pose a serious challenge for implementation in an online

model.

The main contribution of this study aims at developing a low

cost and computationally frugal system for standalone misfire

detection system capable of being integrated in to the engine

controller. The system can be reconfigured at very short notice.

The present study proposes a non-intrusive engine block

acceleration measurement using a piezoelectric accelerometer

connected to a computer through a signal conditioner. The

acquired analog vibration signals are converted to digital signals

using an analog to digital converter and the discrete data files are

stored in the computer for further processing. Feature extraction,

feature reduction and feature subset selection techniques are

employed and their classification results obtained are presented in

the ensuing discussion.

The section 2 describes the experimental setup, the data

acquisition methodology using accelerometer and the signal

conditioning unit while section 3 describes the experimental

procedure in detail. The methods involved in data preprocessing

like feature extraction, feature reduction and feature subset

extraction are presented in section 4 and the detailed working of

the random forest and various stages of work by the algorithm is

presented in section 5. The results and discussion are presented in

detail under section 6 followed by conclusion in section 7, which

establishes that the combination of statistical features and RF

algorithm is well suited for detection of misfire in spark ignition

engines.

2. EXPERIMENTAL SETUP

The misfire simulator consists of two subsystems namely, IC

engine test rig and data acquisition system. They are discussed in

the following subsections. The process for building the model is

shown in Fig.1.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Directory of Open Access Journals

https://core.ac.uk/display/25559427?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ISSN: 2229-6956(ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JANUARY 2012, VOLUME: 02, ISSUE: 02

271

Fig.1. Expert system model building flow chart

Fig.2. Experimental setup

2.1 IC ENGINE TEST RIG

The experimental setup of the engine misfire simulator

consists of a four stroke vertical four cylinder gasoline (petrol)

engine. Switching off the high voltage electrical supply to

individual spark plugs or to a combination of spark plugs

simulates the misfire. The engine accelerator is manually

controlled using a screw and nut mechanism that can be locked in

any desired position. The engine speed is monitored using an

optical interference tachometer.

2.2 DATA ACQUISITION SYSTEM

Accelerometers have a wide operating range enabling them to

detect very small and large vibrations. The vibration sensed is a

reflection of the internal engine condition. The voltage output of

the accelerometers is directly proportional to the vibration. A

mono axial piezoelectric accelerometer and its accessories form

the core equipment for vibration measurement and recording.

The accelerometer is directly mounted on the center of the

engine block using adhesive as shown in Fig.2. The output of the

accelerometer is connected to the signal conditioning unit that

converts the analogue signal into digital form. The digitized

vibration signal (in time domain) is stored in the computer for

further processing.

3. EXPERIMENTAL PROCEDURE

The engine is started by electrical cranking at no load and

warmed up for 15 minutes. The signal conditioner is switched on,

the accelerometer is initialized and the data is recorded after the

Engine fault simulator with sensor

Data acquisition and signal conditioning

Feature extraction

Feature selection

10 fold cross

validation
Training data set

Testing data set

Training of classifier

Trained classifier

Engine misfire detection

S BABU DEVASENAPATI AND K I RAMACHANDRAN: RANDOM FOREST BASED MISFIRE DETECTION USING KONONENKO DISCRETISER

272

engine speed stabilizes at 1500 rpm. A sampling frequency of 24

kHz and sample length of 8192 is maintained for all conditions.

The highest frequency was found to be 10 kHz. The

Nyquist–Shannon sampling theorem recommends that the

sampling frequency must be at least twice that of the highest

measured frequency or higher, hence the sampling frequency was

chosen to be 24 kHz.

Extensive trials were taken at 1500 rpm and discrete vibration

signals were stored in the files. Seven cases were considered -

normal running (without any fault), engine with any one-cylinder

misfire individually (i.e. first, second, third or fourth denoted by

C1m, C2m, C3m and C4m respectively). All the misfire events

were simulated at 1500 rpm, the rated speed of the engine

electrical generator set. A sample plot of misfire and no-misfire is

presented in Figs.3a and 3b respectively.

4. FEATURE EXTRACTION

Statistical Features: Statistical analysis of vibration signals

yields different parameters. The statistical parameters taken for

this study are mean, standard error, median, standard deviation,

sample variance, kurtosis, skewness, range, minimum, maximum

and sum. These features were extracted from the vibration

signals. The definitions for these features are commonly available

and hence not presented.

Fig.3a. Amplitude plot-cylinder1 misfire

Fig.3b. Amplitude plot- no misfire

4.1 FEATURE REDUCTION

The wealth of information available in the extracted features

is abundant and at times overwhelmingly large enough to distract

the machine learning system leading to inferior performance.

Data granulation as means of feature reduction has many

advantages since it reduces the content volume and makes it easy

to handle lot of information without challenging the system

resources. But the technique to discretise or compress data

without loss of valuable information is the key challenge. There

are many techniques reported in the literature but an algorithms

that can suit the given condition needs to be validated by using the

transformed data in the developed model for establishing

performance improvements.

The Kononenko’s algorithm design [7] uses the Recursive

entropy discretisation proposed by Fayyad and Irani with a minor

alteration discussed in the next paragraph. To have a complete

understanding of the work the Fayyad and Irani method is

described as follows.

The Fayyad and Irani model [8] uses a supervised hierarchical

split method where multiple ranges are created instead of binary

ranges to form a tree. Multi-way splits of the numeric attribute at

the same node are performed to produce discrete bins. The

number of cut points is determined using the Minimum

Description Length (MDL) principle. Here class information

entropy is a measure of purity and it measures the amount of

information which would be needed to specify to which class an

instance belongs [9]. Information entropy minimization heuristic

is used to select threshold boundaries by finding a single

threshold that minimizes the entropy function over all possible

thresholds [10]. This entropy function is then recursively applied

to both of the partitions induced. Thresholds are placed half way

between the two delimiting instances. At this point the MDL

stopping criterion is applied to determine when to stop

subdividing discrete intervals, [8]. The Kononenko’s algorithm

includes an adjustment for discretisation of multiple attributes. It

provides a correction for the bias the entropy measure has towards

an attribute with many values, [7].

4.2 FEATURE SUBSET SELECTION

Including all the features may improve the classification

accuracy but the probability of over fitting the training set data

and the additional computational load outweighs their

consideration.

It is observed from the computations that there are significant

differences in some of the feature values for different types of

faults. Selecting those features is crucial for effective

classification and doing it manually demands more expertise;

however, the effectiveness of the manually selected features is not

guaranteed. Selecting the most relevant features through suitable

algorithm will yield better classification results. Here feature

subset selection (FSS) is performed using Correlation based

Feature Selection (CFS). CFS is an algorithm for selecting

features that are highly correlated with the class but uncorrelated

with each other [11]. CFS has the ability to identify irrelevant,

redundant, and noisy features from relevant features as long as

their relevance does not strongly depend on other features. This

method is adapted for building the model since signal corruption

due to noise is more predominant in IC engines. The effect of

using CFS on the developed model is studied.

From a list of 11 statistical features presented the CFS has

recommended the following features as most prominent ones to

-1

0

1

2

3

0 2000 4000 6000 8000

A
m

p
li

tu
d

e

Sample number

-1

-0.5

0

0.5

1

1.5

2

2.5

3

0 1000 2000 3000 4000 5000 6000 7000 8000

A
m

p
li

tu
d

e

Sample Number

ISSN: 2229-6956(ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JANUARY 2012, VOLUME: 02, ISSUE: 02

273

be used for model building. They are standard error, standard

deviation, sample variance, skewness, range and minimum.

5. CLASSIFIER

New families of ensemble classifiers promoting a team of

models that generate many classifiers and aggregate their results

have been considered for many classification applications. Two

most common methods are boosting [12] and bagging of

classification trees. In boosting, successive trees give extra

weight to points incorrectly predicted by earlier predictors. In the

end, a weighted vote is taken for prediction. In bagging,

successive trees do not depend on earlier trees instead each tree is

independently constructed using a bootstrap sample of the data

set. In the end, a simple majority vote is taken for prediction.

Random forests proposed by [13] added an additional layer of

randomness to bagging. In addition to constructing each tree

using a different bootstrap sample of the data, random forests

changed the construction of classification trees. Random forests

are a combination of tree predictors such that each tree depends

on the values of a random vector sampled independently and with

the same distribution for all trees in the forest.

5.1 THE RF ALGORITHM

The random forests algorithm can be represented as

follows[13]:

 Initially ‘n’ subsets of the original data are created, known as

tree bootstrap samples

 For each of the bootstrap samples, an un-pruned

classification tree is grown. At each node, m tree predictors

are randomly sampled and the best split from among those

variables is chosen instead of choosing the best split among

all predictors. In this method bagging is presented as a

special case of random forests obtained when ‘m’ tree = p,

the number of predictors.

 New data is predicted by aggregating the predictions of the n

trees (i.e., majority votes considered for classification).

 An estimate of the error rate can be determined using the

training data as given by [14]

 At each bootstrap iteration, predict the data not in the

bootstrap sample (labeled “out-of-bag”, or OOB, data) using

the tree grown with the bootstrap sample.

 Aggregate the OOB predictions. (On the average, each data

point would be out-of-bag around 36% of the times. An

aggregate of these predictions was taken.)

 The error rate is calculated and is termed as the OOB

estimate of error rate.

In the next section the algorithm for building each tree is

presented in detail.

5.2 BUILDING THE DECISION TREE

In the building phase, the training sample sets with

discrete-valued attributes are recursively partitioned until all the

records in a partition have the same class. The tree has a single

root node for the entire training set. A new node is added to the

decision tree for every partition. For a set of samples in a partition

S, a test attribute X is selected for further partitioning the set into

S1, S2, S3, ……SL. For each new set S1, S2, S3, ……SL new

nodes are created and these are added to the decision tree as

children of the node for S. Further, the node for S is labeled with

test X, and partitions S1, S2, S3, ……SL are recursively

partitioned. When all the records in a partition have identical class

label, further portioning is stopped, and the leaf corresponding to

it is labeled with the corresponding class. The construction of

decision tree strongly depends on how a test attribute X is

selected. C4.5 algorithm uses information entropy evaluation

function as the selection criteria.

The entropy evaluation function is arrived at through the

following steps.

Step 1: Calculate Info(S) to identify the class in the training set

 S.

    2

1

() , / log , /


        
K

i i

i

Info S freq C S S freq C S S

(1) Where, S is the number of cases in the training set. Ci is

 a class, I = 1,2,3,….K is the number of classes and freq(Ci,

S) is the number of cases included in Ci.

Step 2: Calculate the expected information value, infoX(S) for

test X to partition samples in S.

  
1

() / ()


    
K

i i

i

InfoX S S S Info S (2)

 where, K is the number of outputs for test X, Si is a

subset of S corresponding to ith output and is the number

of cases of subset Si.

Step 3: Calculate the information gain

() () ()  XGain X Info S Info S (3)

Step 4: Calculate the partition information value Splitinfo(X)

acquiring for S, partitioned into L subsets.

2 2

1

1
() log 1 log 1

2 

    
           

     


i i i i
L

i

S S S S
SplitInfo X

S S S S

(4)

Step 5: Calculate the gain ratio

 () () () GainRatio X Gain X SplitInfo X

(5)

The GainRatio(X) compensates for the weak point of

Gain(X), which represents the quantity of information provided

by X in the training set. Therefore, an attribute with the highest

GainRatio(X) is taken as the root of the decision tree.

It is observed that a training set in the sample space leads to a

decision tree, which may be too large to be an accurate model;

this is due to over-training or over-fitting. Such a fully-grown

decision tree needs to be pruned by removing the less reliable

branches to obtain better classification performance over the

whole instance space. Pruning is required only if decision tree is

used as a standalone classifier built using a single tree. The

post-pruning strategy for the decision tree is not used since the

random forest algorithm uses the method of voting using multiple

tree models for extracting the final classification results. The

issue of over fitting does not occur here due to the inherent nature

of the random forest [15]. The generalization error of a forest of

tree classifiers depends on the strength of the individual trees in

the forest and the correlation between them [16].

S BABU DEVASENAPATI AND K I RAMACHANDRAN: RANDOM FOREST BASED MISFIRE DETECTION USING KONONENKO DISCRETISER

274

6. RESULTS AND DISCUSSION

The development of the expert system for misfire detection

using recursive entropy discretisation embedded Random forest

algorithm is discussed with the implications or effects of the

following factors

 All statistical features considered

 Feature reduction using Kononenko’s algorithm and

 Features subset selection using CFS

From the experimental setup 200 signals have been acquired

for each condition. The conditions are mentioned in section 2.3

and the features were extracted as mentioned in section 3. These

features are pre-processed using feature reduction and features

subset selection techniques and the effect of these techniques on

the model is thoroughly investigated.

6.1 EVALUATION OF CLASSIFIER

Evaluation of the random forest classifier is performed using

the standard tenfold cross validation process. The

misclassifications details pertaining to Random forest

classification without any data pre-processing is presented in the

form of a confusion matrix in Table.1. C1m represents misfire in

cylinder 1, C2m, C3m and C4m, represents misfire in cylinder 2,

3 and 4 respectively. Good represents no misfire in any cylinder.

The diagonal elements shown in the confusion matrix represents

the correctly classified points and non-diagonal elements are

misclassified ones. Referring to Table.1, it is evident that the

misclassification among the faulty conditions and ‘good’

condition is minimal. However there are misclassifications

among the faulty conditions which do not compromise the overall

misfire prediction accuracy. For example, consider row C1m in

which 184 conditions are correctly identified as misfire in C1 but

20 are wrongly identified as misfire in C3, 9 in C3m and 5 in

C4m. However 2 misfire instances are wrongly misclassified as

good, which is an undesirable error. We can conclude that, as long

as the system does not misclassify good as misfire or vice versa

the model is robust enough for real time application.

The performance values depicted in Table.2 clearly portrays

the capability of the developed model when subjected to various

data preprocessing techniques. From the results obtained it is

evident that including all the data gives better performance but

there is a risk of performance reduction due to model over fitting

the data. In a later date when the engine noise increases due to

wear, there are possibilities of the model suffering setbacks due to

increased misclassifications. However a judicious decision has to

be taken among the available alternatives to freeze the best among

the developed models. Both model B and D deliver 100% result in

2 class mode with almost similar multi class performance. Based

on the processing time model D is chosen, however model B

could also be considered since there is no appreciable deviation in

performance.

Table.1. Confusion matrix – Random forest with all features

considered

STATE Good C1m C2m C3m C4m

Good 200 0 0 0 0

C1m 2 184 0 9 5

C2m 0 0 200 0 0

C3m 0 13 0 154 33

C4m 0 7 0 33 160

Table.2. Classifier performance evaluation chart

Without

data

preprocessi

ng

Model A

With data

discretisa

tion

Model B

With CFS

(data not

discretised)

Model C

With

discretised

data

followed

by CFS

Model D

Random forest

performance
89.2 90.1 88.9 89.7

Processing

time taken in

seconds

3.4 0.6 2.4 0.5

Random forest

performance

in two-class

mode

99 100 99 100

7. CONCLUSION

In a condition monitoring activity fault identification forms

the major objective and fault classification comes second in

priority. In this context, the present algorithm performs fault

identification (differentiating between good and faulty

conditions) sufficiently well since it has not misclassified any

instances out of 1000 samples supplied. This is calculated by

considering good as one class and misfire in all cylinders as the

second class. This assumption is logically valid since misfire

detection is crucial and the identification of the exact cylinder

where misfire happens is not critical.

From the results presented it is encouraging to conclude that

Random forest algorithm is well suited for detection of misfire in

IC engines. Specifically focusing on the two-class problem result

that is presented in the second row of Table.2, in which good Vs

misfire in any cylinder is considered, one is able to infer that data

preprocessing is absolutely necessary for improving the

performance of the expert system and to reduce computational

time required to arrive at a decision. The authors conclude that the

model D, based on data discretisation followed by CFS is the best

since it has the additional advantage of least computational

complexity when compared to CFS without data discretisation,

evident from the time required to run the model.

It should be noted that these results are specific to this

application and cannot be generalized to other similar

ISSN: 2229-6956(ONLINE) ICTACT JOURNAL ON SOFT COMPUTING, JANUARY 2012, VOLUME: 02, ISSUE: 02

275

applications. Further studies are to be conducted on different

engines at different operating conditions in order to generalize

this finding.

REFERENCES

[1] California Air Resources Board, “Technical status Update

and Proposed Revisions to Malfunction and Diagnostic

System Requirements Applicable to 1994 and Subsequent

California Passenger Cars, Light-Duty Trucks, and

Medium-Duty Vehicles – (OBDII)”, CARB staff report,

1991.

[2] Lee D and Rizzoni G, “Detection of Partial Misfire in IC

Engines Using Measurement of Crankshaft Angular

Velocity”, SAE Technical paper 951070, 1995.

[3] Klenk M, Moser W, Mueller W and Wimmer W, “Misfire

Detection by Evaluating Crankshaft Speed – A Means to

Comply with OBDII”, SAE Technical paper 930399, 1993.

[4] Francisco V. Tinaut, Andres Melgar, Hannes Laget and Jose

I. Dominguez, “Misfire and compression fault detection

through the energy model”, Mechanical Systems and Signal

Processing, Vol. 21, No. 3, pp. 1521-1535, 2007.

[5] Jinseok, Kim Manshik, Min Kyoungdoug, “Detection of

misfire and knock in spark ignition engines by wavelet

transform of engine block vibration signals”, Measurement

Science & Technology, Vol. 13, No. 7, pp. 1108-1114, 2002.

[6] Babu Devasenapati, Ramachandran K I and Sugumaran S,

“Misfire Detection in a Spark Ignition Engine using Support

Vector Machines”, International Journal of Computer

Applications, Vol. 5, No. 6, pp. 25-29, 2010.

[7] Kononenko I and Se June Hong, “Attribute selection for

modelling”, Future Generation Computer Systems, Vol. 13,

No. 2-3, pp. 181-195, 1997.

[8] Fayyad U.M and Irani K.B, “Multi-interval discretization of

continuous valued attributes for classification learning”,

Proceedings of the International Joint Conference on

Uncertainity in Artificial Intelligence, Vol. 2, No. 1, pp.

1022-1027, 1993.

[9] James Dougherty, Ron Kohavi and Mehran Sahami,

“Supervised and unsupervised discretization of continuous

features”, Proceedings of Twelfth International Conference

on Machine Learning, Vol. 95, No. 10, pp. 194-202, 1995.

[10] Michael K. Ismail and Vic Ciesielsk, “An Empirical

Investigation of the Impact of Discretization on Common

Data Distributions”, Design and Application of Hybrid

Intelligent Systems, Third International Conference on

Hybrid Intelligent Systems, Vol. 105, pp. 692-701, 2003.

[11] Mark A Hall, “Correlation-based Feature Selection for

Discrete and Numeric Class Machine Learning”,

Proceedings of the Seventeenth International Conference on

Machine Learning, Vol. 1, pp. 359 - 366, 2000.

[12] Cortes H and Drucker C, “Boosting decision trees”,

Advances in Neural Information Processing Systems, Vol. 8,

pp. 479-485, 1996.

[13] Breiman, Leo, “Random Forests”, Machine Learning, Vol.

45, pp. 5-32, 2001.

[14] Bylander T, “Estimating Generalization Error in Two-Class

Datasets Using Out-of-Bag Estimates”, Machine Learning,

Vol. 48, pp. 287-297, 2002.

[15] Liaw Andy and Wiener Matthew, “Classification and

Regression by random Forest”, The Newsletter of the R

Project, Vol. 2, No. 3, pp. 18-22, 2002.

