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Abstract 

Modern fighter aircrafts, ships, missiles etc need to be very low Radar 

Cross Section (RCS) designs, to avoid detection by hostile radars. 

Hence accurate prediction of RCS of complex objects like aircrafts is 

essential to meet this requirement. A simple and efficient numerical 

procedure for treating problems of wide band RCS prediction Perfect 

Electric Conductor (PEC) objects is developed using Method of 

Moment (MoM). Implementation of MoM for prediction of RCS 

involves solving Electric Field Integral Equation (EFIE) for electric 

current using the vector and scalar potential solutions, which satisfy 

the boundary condition that the tangential electric field at the 

boundary of the PEC body is zero.  For numerical purposes, the 

objects are modeled using planar triangular surfaces patches. Set of 

special sub-domain type basis functions are defined on pairs of 

adjacent triangular patches. These basis functions yield a current 

representation free of line or point charges at sub-domain boundaries. 

Once the current distribution is obtained, dipole model is used to find 

Scattering field in free space. RCS can be calculated from the 

scattered and incident fields. Numerical results for a square plate, a 

cube, and a sphere are presented over a bandwidth. 
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1. INTRODUCTION 

The estimation of RCS has been the field of focus in the 

recent years for various purposes. The accurate estimation has 

been taken by many researches using different techniques. The 

regular shaped objects at high frequencies impose a challenging 

task for the researchers to estimate RCS. E.F.Knott et al., [2] 

have reported the  MoM for prediction of RCS by solving EFIE 

for electric current using the vector and scalar potential 

solutions. In arbitrary surface modeling the EFIE has the 

advantage of being applicable to both open and close bodies 

whereas the MFIE are applied only to closed surfaces. Johnson 

J.H.Wang [1] has detailed based on Galerkin’s technique to 

solve simultaneous equations of MFIE.There are notable 

approaches that have been used to form integral equation for 

Method of Moments. The surface of the body is generally 

modeled either as a wire-mesh (wire-grid model) or a surface 

partitioned into smooth or piecewise smooth (surface patch 

model). Some of the problems encountered in wire grid model 

include the presence of fictitious loop currents in the solution, 

ill-conditioned moment matrices and incorrect currents at the 

cavity resonant frequencies of the scatterer. The difficulties in 

interpreting computed wire currents and relating them to 

equivalent surface currents [3]. 

J.H. Richmond [4] has discussed wire mesh model to predict 

the RCS of closed surface. It provided poor accuracy compared 

to the theoretical values. K.S.H.Lee et al., [5] have proposed a 

method to predict the RCS of simple cube and metallic device 

using wire grid model. Prediction has done considering the 

patches as rectangular mesh. The measurement results indicate 

that the wire grid model have accurate for simple objects and 

difficult for complex objects. Most of these difficulties can be 

either wholly or partially overcome by surface patch approaches. 

An efficient computational technique for obtaining scattering 

cross sections of electrically small aircraft at low frequencies is 

presented by Yah T. Lin et al., [6]. It has based on the wire-grid 

reaction method works as an efficient target identification 

technique at low frequencies. 

T.S.M. Rao et al., [7] have developed an efficient procedure 

for plane wave, circular and square objects using by combining 

EFIE and triangular surface patches. It overcomes the problems 

focused by wire grid methods. Virga, K.L. and Rahmat-Samii, Y 

[8] have presented a methodology to obtain monostatic radar 

cross section of a finite-size perfectly conducting flat plate using 

triangular patch mesh profile. The RCS obtained shows better 

results in low frequency region as compared to physical optics. 

Two different numerical methods based on MoM and 

physical objects was proposed by Sidhu, J.S [9] to analyze the 

RCS of complex scattering objects in resonance frequency 

Region. Numerical results indicate that MoM provides high 

accuracy compared to physical objects in resonance frequency 

region. Do-Hoon Kwon et al., [10] have introduced a method to 

reduce the computer processing time to estimate the Monostatic 

RCS of simple objects using MoM based surface patch model. In 

that case, the unknown surface currents have expressed in terms 

of basis functions. 

X. F. Li et al.,[11]  have presented an accurate and efficient 

approach  to predict the bistatic RCS of  electrically large PEC 

targets. A current matching technique was introduced into the 

conventional high-frequency method to obtain bistatic RCS.  

The high frequency surface wave radar has been numerically 

evaluated by combining finite-difference time-domain (FDTD) 

method and the MoM was presented in [12].It has provided good 

results when the range of RCS is 5 to 60 dB. 

2. MOM IMPLEMENTATION 

The estimation of RCS of a PEC is determined by applying 

Method of Moments (MoM) using the Electric Field Integral 

Equation (EFIE). The MoM is an integral based algorithm. 

Consider an arbitarly shaped perfect electric conductor shown in 

Fig.1. The PEC surface has divided into triangular sub-domains 

using surface batch model. The simultaneous equations have 

been generated over the sub-domains and added together to form 

a global matrix equation. The solution of the matrix gives 

electric current distribution in the surface of the PEC objects. 
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Fig.1. Aircraft surface modeled by triangular patches 

Consider the inhomogeneous equations [6], 

 L(f) = g (1) 

where, L is a linear operator, g is known and f is to be 

determined. Let f be expanded in a series of functions f1, f2, f3 .… 

as, 

 
n

nn ff   (2) 

where, n is a constant. The function fn is called expansion 

functions or basis functions. For exact solutions, the above 

equation is an infinite summation and the form a complete set of 

basis functions. For approximate solutions, this has usually a 

finite summation. 

From the above two equations, 

   
n

nn gfL  (3) 

Now define a set of weighting functions, or testing functions, 

w1, w2, w3 … in the range of L, and take the inner product of the 

above equation with each wn. The result is, 

 

...,,mgwLfw
n

nnnn 321    ,,   (4) 

This set of equation can be written in matrix form as, 
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where, 
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If the matrix [l] is nonsingular its inverse [l
-1

] exists. n can 

also be represented as, 

     mmnn gl 1  (7) 

and the solution for f is given by, 
n

nn ff  . For concise 

expression of this result, define the matrix of functions 

    .....21

~
fffn    (8) 

and the value of f̂  is given as, 

       mmnnnn glfff 1ˆˆˆ                 (9) 

This solution may be exact of approximate, depending upon 

the choice of the fn and wn. The particular choice fn = wn is 

known as Galerkin’s method. 

2.1 ELECTRIC FIELD INTEGRAL EQUATION 

(EFIE) 

Let S denotes the surface of an open or closed perfectly 

conducting object with unit normal n̂ . An electric field, defined 

to be the field due to an impressed source in the absence of the 

object, is incident on and induces surface currents J on S.  

The scattering electric field E
s
 can be computed from the 

surface current by [7] 

 ΦAΕ  js
  (10) 

with the magnetic vector potential defined as, 

   '

4
SJrA d

R

e

s

jkR








         (11) 

and the electric scalar potential as, 

   





s

jkR

d
R

e '

4
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           (12) 

where, k is wave number and R = |r – r`| is the distance between 

an arbitrarily located observation point r and a source point r` on 

S. Both r and r` are defined with respect to a global coordinate 

origin O. The surface charge density  is related to surface 

divergence of J through the equation of continuity, 

 
js  J                   (13) 

We derive an integro-differential equation for J by enforcing 

the boundary condition, 

 
  0EEn  isˆ   on S, obtaining          (14) 

 
 ,ˆˆˆ ΦAnEnEn  jwis

 r on S     (15) 

 
  ,tantan ΦAE  jwi

 
r on S       (16) 

the above equation is the so-called electric field equation [8]. 

2.2 BASIS FUNCTION FORMULATION 

The basis function defined on a pair of triangular patches and 

sharing a common (interior) edge as shown in the Fig.2 and 

Fig.3.  

Points in 


nT triangle may be designated either by the position 

vector r defined with respect to O, or by free position vector 

n  

defined with respect to and away from the free vertex of 


nT . For 

points in triangle 


nT may be designated either by the position 

vector r defined with respect to O, or by free position vector 

n  

defined with respect to and toward the free vertex of 


nT .  This 

designation is chosen so that a positive current vector associated 

with edge ln is from triangle 


nT  to triangle 


nT . The surface 
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divergence of fn in 


nT , which is proportional to the surface 

charge density charge density associated with the basis element, 

is, 
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Fig.2. Triangle pair and geometrical parameter associated with 

interior edge 

 

Fig.3. Dipole model of an edge element 

Since the surface divergence in 


nT  is       nnnn  f1 . 

The charge density is thus constant in each triangle. The current 

on S may be approximated in terms of the fn as, 

  



N

n
nnI

1

rfJ    (23) 

where, N is the number of interior (non-boundary) edges. Since a 

basis function is associated with each non-boundary edge, each 

triangle patch has up to three basis functions of currents flowing 

on it. 

Substituting the current expression in a N x N system of 

linear equations, the impedance matrix can be formulated as, 

Z = IV 

where, Z = [Zmn] is an N x N matrix and I = [In] and V = [Vm] are 

column vectors of length N. Elements of Z and V are given by, 
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where,  
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These equations provide elements of the moment matrix and 

the forcing vector V. 

2.3 DIPOLE MODEL 

Once surface currents are known on the object surface, a 

radiated electromagnetic signal in free space can be calculated 

by a number of approaches.  One method is dipole model [15]. 

In dipole model the surface current distribution for each edge 

element containing two triangles is replaced by an infinitesimal 

dipole, having an equivalent dipole moment or strength. The 

basis function defined on a pair of triangular patches and sharing 

a common (interior) edge as shown in the Fig.3. The radiated 

field of a small dipole is the well-known analytical expression. 

The total radiated field is then obtained as a sum of the 

contributions of infinitesimal dipoles. 

To find the equivalent dipole moment, consider an edge 

element m which is the product of an effective dipole current and 

effective dipole length is obtained by the integration of the 

surface current, corresponding to edge element m, over the 

element surface: 
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Here, fm(r) is the edge element basis function. 

The radiated magnetic and electric fields of an infinitesimal 

dipole located at the origin is expressed at a point r in terms of 

vector notations as, 
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2r

rmr
M


 , r = |r|, 

  =377 is the free space impedance.  

The total electric and magnetic field at a point r are obtained 

as a sum over all edge elements. 
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From the incident electric and the estimated electric fields, 

the Radar Cross Section can be calculated as [2]  

 

2

2

24
i

s

R

E

E
  (34) 

3. RESULTS 

To validate the analysis presented in the previous sections, a 

few numerical examples are considered. The first geometry 

considered is a dielectric sphere of radius r = 0.2λ with the 

incident electric field at 0 degrees and α = 90 degrees. The 

frequency responses from 2GHz to 8GHz are plotted in Fig.4. 

The sphere is discretized with 500 triangular elements resulting 

into 706 unknown current coefficients. It can be observed that 

the EFIE along it produces more accurate for the whole 

frequency band and angular domains. For 706 unknowns, exact 

solution took around 260 seconds CPU time to fill the matrix. 

 

Fig.4. RCS of a sphere 

 

Fig.5. Cube with dimensions (2 x 2 x 2) 

 

Fig.6. Mesh structure in 3D cube 

The monostatic RCS frequency and angular response of a 

PEC cube (2cm x 2cm x 2cm) is calculated by MoM integral 

equations based on dipole model with  = 0. The cube is 

discretized with 850 triangular elements resulting into 1226 

unknown current coefficients. Fig.7 shows the frequency 

response of a cube is plotted at various frequencies and 

compared with Finite Element Method. It shows that the result 

of proposed method is more agreed with theoretical 

measurements. 

 

Fig.7. Monostatic RCS of a cube at  = 0 
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Fig.8. Mesh structure in 3D cylinder 

The monostatic RCS of a cylinder shown in Fig.8 is 

calculated, where, a = 0.15m, h = 0.5m, and l = 0.8m. The 

frequency of the incident planar wave which is horizontal 

polarized is 3GHz. The comparison between the monostatic RCS 

calculated by the expression and MoM are compared. It shows 

that the proposed method is good agreement with theoretical 

results. 

Table.1 shows the cube with various dimensions and 

frequencies. It is observed that an increase in the dimension of a 

cube results in different RCS values. The frequencies of a cube 

also make an increase in the RCS estimation.  

Table.1. RCS of Cube at various dimensions and frequencies 

Size of the 

Cube(cm) 

2
  at various frequencies in GHz 

2 GHz 2.35GHz 2.5GHz 

2 0.42 0.58 0.67 

3 0.58 0.63 0.76 

4 0.82 0.89 0.98 

5 1.23 1.45 1.87 

6 1.65 1.89 2.56 

Table.2 shows the computation time required for a sphere in 

various dimensions. The incident angle and the triangular 

elements are taken as constant values. It is observed that the 

dimension of a sphere is increased; the triangle size gets 

increased and needs more matrix elements for computation 

which in turn increases the computation time. 

Table.2. Size of sphere vs computation time 

Object 

(Sphere) 

Radius (cm) 

Incident 

Angle () 

degrees 

No of 

triangular 

elements 

Computation 

Time(sec) 

1 0 500 260 

1.5 0 502 302 

2 0 502 346 

2.5 0 502 408 

3 0 502 460 

 

Table.3 shows the radar cross section of a cylinder at r = 1cm 

and h = 1cm with the frequency 9GHz. The RCS was estimated 

using FEM, Method of Moments. The estimated values are also 

compared with the theoretical value. It was observed that the 

RCS estimation based on Method of Moments provides an 

accurate value compared to FEM. 

Table.3. Radar cross section of a cylinder at r = 1cm and h = 

1cm and frequency f = 9GHz 

 

Aspect angle in 

degrees 

Radar cross section (dB) of a cylinder at 

r = 1cm and h = 1cm, f = 9GHz 

Theoretical FEM MOM 

0 -50 -44 -46 

20 -43 -37.3 -36.6 

40 -38.8 -32 -33.1 

60 -33.7 -25.1 -24 

80 -23.9 -14.3 -13.9 

90 33 28.2 25.5 

100 -23.8 -15.4 -14.6 

120 -34 -25.5 -25 

140 -38.7 -29 -28.5 

160 -42.9 -34.4 -35 

180 -52 -44 -46 

 

4. CONCLUSION 

The electric field integral equation (EFIE) has been used 

with the Method of Moment (MoM) to develop a simple and 

efficient numerical procedure for treating problems of radar 

cross section (RCS) prediction of regular shaped objects. For 

numerical purposes, the objects were modeled using planar 

triangular surfaces patches. Because the EFIE formulation is 

used, the procedure is applicable to both open and closed 

surfaces. Crucial to the numerical formulation is the 

development of a set of special sub-domain-type basis functions, 

which were defined on pairs of adjacent triangular patches and 

yield a current representation free of line or point charges at sub-

domain boundaries. A dipole model approach was used to 

calculate the scattering field in free space from the calculated 

current values. The two main advantages of integral equation 

methods for large exterior scattering problems are the reduction 

in dimensionality of the problem, and the ability to model 

infinite domains accurately. These must be weighed against the 

increased complexity (over differential methods) in the 

formulation and their being less well suited for highly 

inhomogeneous problems.  
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