
ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, MARCH 2014, VOLUME: 05, ISSUE: 01

863

ANALYSIS OF ANDROID VULNERABILITIES AND MODERN EXPLOITATION

TECHNIQUES

Himanshu Shewale
1
, Sameer Patil

2
, Vaibhav Deshmukh

3
 and Pragya Singh

4

MS (Cyber Laws and Information Security) Division, Indian Institute of Information Technology, Allahabad, India

E-mail:
1
ims2012014@iiita.ac.in,

2
ims2012012@iiita.ac.in,

3
ims2012047@iiita.ac.in,

4
pragyabhardwaj@iiita.ac.in

Abstract

Android is an operating system based on the Linux kernel. It is the

most widely used and popular operating system among Smartphones

and portable devices. Its programmable and open nature attracts

attackers to take undue advantage. Android platform allows

developers to freely access and modify source code. But at the same

time it increases the security issue. A user is likely to download and

install malicious applications written by software hackers. This paper

focuses on understanding and analyzing the vulnerabilities present in

android platform. In this paper firstly we study the android

architecture; analyze the existing threats and security weaknesses.

Then we identify various exploit mitigation techniques to mitigate

known vulnerabilities. A detailed analysis will help us to identify the

existing loopholes and it will give strategic direction to make android

operating system more secure.

Keywords:

Android, Vulnerability, Exploit, Malware, Linux Kernel

1. INTRODUCTION

Android is a fast growing and largest installed base of mobile

platform which powers millions of mobile devices. Based on the

Linux kernel, android operating system is open and flexible

enough to run on different mobile devices having varied

hardware configuration [6]. This increases the popularity and

acceptance of android amongst the users.

Android platform provides developers huge opportunity to

develop applications to cater to the needs of its ever increasing

user base. The Android platform includes applications,

middleware and the operating system [7]. Developers use the

AndroidSDK, which consist of various tools and APIs to

develop applications using programming language like Java.

Android provides an open marketplace wherein developers can

sell and distribute applications instantly.

While the openness of android provides a favorable

atmosphere for users as well as developers, it also attracts

attackers and hackers to take undue advantage [1]. The

capability of android to run on different devices and with

different versions exposes it to varied security issues. Not all

devices can be updated to latest version because of the

customization done by different device manufacturer. This result

in leaving the old users stay unprotected from latest security

issues addressed in the new version [2].

The android marketplace lacks rigorous inspection of the

applications being sold and distributed by developers [1].

Applications can be published in the marketplace without any

third party’s review. It leaves a device running android

susceptible to stealing of data that is of corporate or personal

use. Smartphones store information like location history,

contacts, mails, call register, photos, messages or any other file

that is important [2]. Malicious applications can gain access to

user’s private information stored in the device. A malware can

even try to gain root privileges and abuse the normal functioning

of the device [3].

2. ANDROID PLATFORM ARCHITECTURE

The Android platform was created by Android Inc. which was

later bought by Google and called it the Android Open Source

Project. The software can be freely obtained from a central

repository and modified in terms of the license. The Android

platform is based on the Linux kernel, which is modified to meet

special needs of better power management, memory management

and runtime environment. Also, as Android is designed to be used

on Smartphones and tablets, it has many changes and updates to

the Linux kernel in order to support different devices [2]. The

additions include subsystem to control memory and processor,

libraries to manage file systems designed for memories, process

management and device management.

The Android software stack can be subdivided into five

layers: the Linux Kernel and lower level tools, System Libraries,

the Android Runtime, the Application Framework and

Application layer on top of all. Each layer provides different

services to the layer just above it.

2.1 LINUX KERNEL

The Linux kernel is the basic layer equivalent to an abstract

level between hardware layer and other software layers in the

system. The Android OS is built on top of this Linux kernel with

some changes in the architecture made by Google [7]. The kernel

contains a vast array of device drivers which makes interfacing to

peripheral hardware easy. The kernel provides basic system

functionality like memory management, process management,

security, device management, network group etc. [7].

2.2 LIBRARIES

On top of the Linux kernel is a set of Android’s native

C/C++ libraries. The libraries are specific for particular

hardware. For example, the media framework library guides

playback and recording of various pictures, video and audio

formats. Some other important core libraries include Surface

Manager, SQLite, WebKit and OpenGL.

2.3 ANDROID RUNTIME

Android Runtime includes set of core Java libraries.

Application programmers use Java programming language for

developing apps. It includes the Dalvik Virtual machine and

Core Java libraries.

HIMANSHU SHEWALE et al.: ANALYSIS OF ANDROID VULNERABILITIES AND MODERN EXPLOITATION TECHNIQUES

864

Fig.1. Android Architecture

 Dalvik Virtual Machine: A virtual machine runs as if it

was an independent device having its own operating

system. It permits numerous instances of virtual machine to

be executed simultaneously providing isolation, security,

memory management and threading support [7]. Each

application runs as its own process in a virtual machine

such that no other application is dependent on it and in case

of application crash, it would not affect any other

application running on the device [2]. These features

together are called the sandbox.

 Core Java Libraries: Most of the functionality defined in

the Java SE libraries, including tasks such as string

handling, networking and file manipulation is provided by

these libraries.

2.4 APPLICATION FRAMEWORK

Application framework manages the functions of the phone

such as resource management, voice call management, etc.

Applications from the upper layer interact with the Application

Framework layer. Some of the important blocks of Application

framework are Activity Manager, Content Provider, Telephony

Manager, Location Manager and Resource Manager [7].

2.5 APPLICATIONS

Application is the topmost layer of android architecture. An

average user mostly interacts with this layer to perform basic

functions like making phone call, accessing web browser etc.

The Android SDK tools compile the application code and related

data or resource file into an android package with .apk suffix [1].

All the contents of an .apk file comprise one application that can

be installed on android device. The Android platform has some

preinstalled applications by default for the browser, dialer,

home, connection manager, etc. Developers are free to use their

innovation to build new application according to user’s need.

3. ANDROID VULNERABILITIES

We classified the vulnerabilities found in android according

to various layers of the android architecture from which they

originated. The categories are: Linux Kernel Layer, Libraries

Layer, Application Framework Layer, Applications Layer and

External Drivers. The purpose of this classification is to identify

the weak areas of android implementation. From the sample

space of 30 exploits with CVSS scores ranging from 2.6 to 10,

the Application Framework Layer was found to have the most

number of exploits.

3.1 APPLICATION FRAMEWORK LAYER

The vulnerabilities in Application Framework Layer caused

DoS, privilege escalation, code execution and unauthenticated

access. For example, a recent vulnerability allows a malicious

app to bypass intended access restrictions and remove the device

locks activated by any user. Similarly, a Bluetooth service flaw

compromised the user’s contact data which is considered as

sensitive data. An old exploit allowed an app to bypass several

permissions and allow the attacker to access the camera and

microphone without making permission requests. Other

vulnerabilities found are CVE-2011-3975, CVE-2011-0680,

CVE-2011-4804, CVE-2009-2999, CVE-2009-2656 and CVE-

2009-1754.

3.2 APPLICATION LAYER

The Application Layer exploits occurred mostly through

browsers which allowed attackers to execute arbitrary code and

provide unauthenticated access to some protected resources. It

also includes the vulnerability of the Picasa app where username

and passwords were sent in clear text when transmitting the

authToken obtained after ClientLogin [8]. As a result, personal

pictures and gallery could be accessed by anyone who sniffs the

authToken. This famous exploit had the highest CVSS score of

10 as it completely compromised the CIA parameters. A bug in

the Android browser allowed man in the middle attack and

monitoring of user activities on the browser. It could not restrict

modifications to HTTPS session cookies allowing user to inject

arbitrary cookies for the sessions. Application layer includes

vulnerabilities like CVE-2012-6301, CVE-2012-3979, CVE-

2011-2357, CVE-2011-2344 and CVE-2008-7298.

3.3 EXTERNAL DRIVERS

The flaws in the implementation of external drivers like

Qualcomm and PowerVR have also caused vulnerabilities. Some

specially crafted arguments for a local kgcl_ioctl call caused

DoS in Qualcomm graphics kernel driver which can further

execute arbitrary code for the attacker in the kernel context. In

this, using an application, an attacker could dereference several

untrusted pointers from the user space and perform further

computations without verification. The Levitator exploit targeted

the PowerVR graphics card driver which led to privilege

escalation through kernel memory corruption caused in

/dev/pvrsrvkm device [22]. Some other vulnerabilities in this

category are CVE-2013-3666, CVE-2012-4222, CVE-2012-

4221, CVE-2012-4220, CVE-2011-1352 and CVE-2011-1350.

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, MARCH 2014, VOLUME: 05, ISSUE: 01

865

Fig.2. Total vulnerabilities at each layer

3.4 LIBRARIES LAYER

The vulnerabilities in Libraries layer with very high CVSS

scores had a huge impact. For example, the ZergRush exploit

found in 2011 performed DOS and its exploit code is also

available at [18]. ZergRush exploit performed stack buffer

overflow, and followed by code execution, by passing wrong

number of arguments to a particular API. The GingerBreak

exploit CVE-2011-1823 was even used by some well-known

malwares to get the root of devices. It took advantage of the fact

that the vold volume manager daemon trusted messages that

were received from a PF_NETLINK socket, which allowed gain

root privileges by bypassing a signed integer check with

negative index [11]. The most recent CVE-2013-4787 allowed

any person to modify a developer-signed APK file and upload

malicious content in it without modifying the signature. This

vulnerability, famously known as the “Master Key”

vulnerability, can allow attackers to execute arbitrary code on

the victim machine. Other vulnerabilities falling in this category

are CVE-2011-0419, CVE-2010-1807 and CVE-2009-3698.

3.5 LINUX KERNEL LAYER

As we know that the Android kernel is derived from the

Linux kernel itself, choosing the most secure kernel has always

been neglected. The wrong permission sets owned by the zygote

socket allowed any application to send any number of fork

requests without verifying its identity. It resulted in DOS in fork

requests from legitimate processes. The KillingInTheNameOf

exploit by Sebastian Krahmer of 743C team targeted

vulnerability in ashmem that allowed any user to remap shared

memory region belonging to init with PROT_READ and

PROT_WRITE permissions [11]. This vulnerability was also

demonstrated by the psneuter exploit.

4. ANDROID SECURITY USING EXPLOIT

MITIGATION TECHNIQUES

The main target for implementing Android security is to

protect the user data, system resources, and providing

application isolation. For this, Android has timely updated its

security controls with each patch and every version it has

released. The earlier versions of Android had very little or no

security features to protect against advanced attacks because the

development was still on and also very few people had android

devices.

4.1 ANDROID CUPCAKE

Android 1.5 CupCake had propolice and safe_iop as two

security features against buffer overflows [9]. ProPolice prevents

stack buffer overruns and safe_iop stops integer overflows. But

the two were ineffective as ASLR was still not present.

4.2 ANDROID GINGERBREAD

In Android 2.3 Gingerbread, hardware based No eXecute

(NX) was enforced. So even if some application is able to

perform buffer overflow and put the exploit code on the stack or

heap, the exploit would not execute because of this protection. It

also added the format string vulnerability protection as users

were able to input specially crafted strings which the application

evaluated as a command allowing code execution, reading the

stack or cause segmentation faults in the running application.

Apart from this, mmap_min_addr is introduced at a basic level

to check NULL pointer dereference bugs in kernel space. It

protects the system against crashes caused due to triggering of

one of such NULL pointer defects.

4.3 ANDROID ICE CREAM SANDWICH

Android 4.0 Ice Cream Sandwich became the first version to

implement ASLR. Address Space Layout Randomization

(ASLR) randomizes memory addresses of stack, heap, etc each

time the memory allocation is done for a process/module. But

the first implementation did not live up to the expectations

because of lack of randomization of the executable and linker

memory regions. Hence attacks using Return Oriented

Programming (ROP) were still possible.

4.4 ANDROID JELLY BEANS

With the enforcement of a few more exploit mitigation

techniques in Jelly Beans 4.1, the hard work of vulnerability

hunters even got harder. The Position Independent Executables

support technique allows binaries to be compiled/linked with the

PIE flag to ensure the executable mapping will be randomized

when executed. Also, kernel.randomize_va_space is being set to

2 to enable heap randomization. In the same way, lib/mmap and

linker are also randomized. The GingerBreak exploit as

mentioned earlier used a Global Offset Table (GOT) overwrite

to perform code execution in vold daemon. To put a check on

the exploit, ELF hardening is done where each binary is

compiled with the RELRO and BIND_NOW flags. Relocation

Read-Only (RELRO) flag tells the linker to make the relocation

segments that are used to resolve dynamically loaded functions

read-only [8]. With BIND_NOW flag, programs can resolve all

0

1

2

3

4

5

6

7

8

9

10

Application

Layer

Application

 Framework

Libraries

Layer

External

Drivers

Linux

Kernel

Layer

N
U

M
B

E
R

 O
F

 V
U

L
N

E
R

A
B

IL
IT

IE
S

ANDROID LAYERS

HIMANSHU SHEWALE et al.: ANALYSIS OF ANDROID VULNERABILITIES AND MODERN EXPLOITATION TECHNIQUES

866

dynamic links at start-up itself so that the GOT can be made read

only when combined with RELRO.

Jelly Beans also added dmesg_restrict and kptr_restrict

protections to avoid leaking of kernel addresses. Dmesg_restrict

protection [22] restricts unprivileged access to kernel syslog

which prevents leaking of kernel information into user space.

Kptr_restrict protection [23] restricts exposing some kernel

pointers through various interfaces in /proc.

The next version 4.2 of Jelly Beans brought some more

security enhancements. Installd daemon hardening is done to

reduce potential attack surface through root privilege escalation.

All system libraries and applications during compile time are

checked with FORTIFY_SOURCE that detects and prevents a

subset of buffer overflows before they could do any damage.

Further, init script hardening is also introduced by applying

O_NOFOLLOW semantics to prevent symlink related attacks.

Apart from the above mentioned memory protection

schemes, vulnerability fixes in the open source libraries like

WebKit, libpng, OpenSSL and LibXML are also included. Users

can also verify the apps before installing them to check if it is

malicious or not.

The most significant security update came in Jelly Beans 4.3

when SELinux was reinforced for Android Sandbox. SELinux

[15] implements Mandatory Access Control (MAC) in the Linux

Kernel which added more robustness to the present security

model, but taking care that it is still compatible with existing

applications. Setuid and setguid features were removed so that

no low privileged user can execute a file/module with high

privileges. Had this been implemented in the earlier versions of

Android, exploits like RageAgainstTheCage and ZimperLich

would not have occurred.

4.5 ANDROID KITKAT

At present, the latest Android 4.4 KitKat is launched with

significant enhancements to the existing security enforcements.

KitKat runs SELinux in enforcing mode restricting activities of

all modules and applications in accordance withSELinux

policies. The AndroidKeyStore is upgraded to include the

advanced ECDSA and DSA algorithms [9]. KitKat has also

introduced an experimental security feature, dm-verity, to

protect against advanced malware/rootkits which stay persistent

in a system. It is basically a kernel level protection which can

detect modifications on the file system by maintaining a

cryptographic tree.

The impact of these mitigation techniques is huge and

statistics proves this as well. There were 13 listed vulnerabilities

in 2011 when the latest version was GingerBread 2.3. After Ice

Cream Sandwich was released, not more than 5 vulnerabilities

with high CVSS scores have been reported each year. ASLR

protection feature in ICS 4.0 has significantly improved the level

of security in Android. This mainly strengthened the Application

Framework Layer as the vulnerabilities originating from this

layer have reduced to almost nil and it has become very difficult

to perform buffer overflows, DoS attacks and code execution.

The library layer API security level has increased because of

security features like ELF hardening, FORTIFY_SOURCE and

installd hardening. Only a few vulnerabilities originating from

libraries layer have been discovered after the launch of ICS.

With the implementation of SELinux in Android, MAC was

enforced as a security mechanism instead of DAC. It indeed was

a difficult challenge to implement SELinux because of the

discretionary nature of the Android APIs. The system-wide

policies implemented through the MAC are able to put a check

on many exploits like GingerBreak, Exploid, RageAgainstTheCage,

Zimperlich, KillingInTheNameOf, Levitator, and Psneuter [15].

SELinux has put a check on the privilege escalation

vulnerabilities, as it only gives the permissions which are

mandatory and avoid giving discretionary powers at runtime.

5. ANDROID MALWARES OVERVIEW

Android Malwares have been a major security concern for all

the users of the OS. Malwares can hide in the phone memory

without the user’s knowledge and spy on all his browser and

system activities. Some malwares even sent premium SMS

messages without user permission to communicate with C&C

server. Malware infected APK files were initially distributed by

third-party Chinese Android app market, but Android.DroidDream

was the first malware to be distributed through the official

Android Market. Users must make sure to check what

permissions the app wants before installing it, for example, a

system cleaner tool won’t require permissions for GPS service.

Other types of malwares use exploits like RageAgainstTheCage

and KillingInTheNameOf to perform privileged actions [20].

More advanced malwares like DroidKungFu, Geinimi, NickiBot

and FakePlayer have compromised user privacy.

6. CONCLUSION

After studying in detail the various Android vulnerabilities,

it’s clear how dangerous its impact can be. To tackle the number

of increasing vulnerabilities, Android must timely introduce new

security enforcement and exploit mitigation techniques. The

kernel of Linux OS itself is so vulnerable that every week new

exploit is discovered. The vulnerability fixes released for these

should be patched in Android's Linux Kernel as well to avoid

replicating the same vulnerabilities again. To stay away from

malwares, users need to be aware about the importance of

looking over the permissions granted to an app during

installation time and to download apps from the official Google

play store. In the coming years, we see Android to be a very

secure OS, which the users can trust enough to do even their

banking transactions from smart phones.

REFERENCES

[1] Han Bing, “Analysis and Research of System Security

Based on Android”, Proceedings of Fifth International

Conference on Intelligent Computation Technology and

Automation, pp: 581-584, 2012.

[2] Ruben Jonathan Garcia Vargas, Ramon Galeana Huerta,

Eleazar Aguirre Anaya and Alba Felix Moreno Hernandez,

“Security Controls for Android”, Proceedings of Fourth

International Conference on Computational Aspects of

Social Networks, pp: 212-216, 2012.

[3] Takamasa Isohara, Keisuke Takemori and Ayumu Kubota,

“Kernel-based Behavior Analysis for Android Malware

ISSN: 2229-6948(ONLINE) ICTACT JOURNAL ON COMMUNICATION TECHNOLOGY, MARCH 2014, VOLUME: 05, ISSUE: 01

867

Detection”, Proceedings of Seventh International

Conference on Computational Intelligence and Security,

pp: 1011-1015, 2011.

[4] Khodor Hamandi, Ali Chehab, Imad H. Elhajj and Ayman

Kayssi, “Android SMS Malware: Vulnerability and

Mitigation”, Proceedings of 27th International Conference

on Advanced Information Networking and Applications

Workshops, pp. 1004-1009, 2013.

[5] Xiali Hei, Xiaojiang Du and Shan Lin, “Two vulnerabilities

in Android OS kernel”, Proceedings of IEEE International

Conference on Communications, pp. 6123-6127, 2013.

[6] Android the world’s most popular mobile OS, Available at:

http://www.android.com/meet-android/

[7] Android Architecture, Available at: http://www.android-

app-market.com/android-architecture.html

[8] Android Vulnerabilities list, Available at:

http://www.cvedetails.com/vulnerability-list/vendor_id-

1224/product_id-19997/Google-Android.html

[9] Android Security Overview, Available at:

http://source.android.com/devices/tech/security

[10] Exploit Mitigataion Techniques in Android Jelly Beans 4.1,

Available at: https://www.duosecurity.com/blog/exploit-

mitigations-in-android-jelly-bean-4-1

[11] Massimiliano Oldani, “Android Attacks”, Available at:

www.immunityinc.com/infiltrate/archives/Android_Attack

s.pdf

[12] Timothy Strazzere and Timothy Wyatt,“Geinimi Trojan

Technical Teardown”, Available at:

https://blog.lookout.com/_media/Geinimi_Trojan_Teardow

n.pdf

[13] Yajin Zhou and Xuxian Jiang, “Dissecting Android

Malware: Characterization and Evolution”, Available at:

www.csc.ncsu.edu/ faculty/jiang/pubs/OAKLAND12.pdf

[14] SANS, “Dissecting Andro Malware”, Available at:

https://www.sans.org/ reading-

room/whitepapers/malicious/dissecting-andro-malware_33754

[15] Stephen Smalley, “The Case for SE Android”, Available

at:www.selinuxproject.org/~jmorris/lss2011_slides/casefor

seandroid.pdf

[16] Stephen Smalley,“Implementing SELinux as a Linux

Security Module”, Available at:

www.nsa.gov/research/_files/ publications/

implementing_selinux.pdf

[17] Tsukasa Oi, “Yet Another Android Rootkit”, Available at:

https://media.blackhat.com/bh-ad-11/Oi/bh-ad-11-Oi-

Android_Rootkit-WP.pdf

[18] Revolutionary dev team, zergRush.c, Available at:

https://github.com/

revolutionary/zergRush/blob/master/zergRush.c

[19] Jon Oberheide, cve-2009-1185.c, Available at:

https://jon.oberheide.org/files/cve-2009-1185.c

[20] Current Android Malwares, Available at:

http://forensics.spreitzenbarth.de/android-malware

[21] Jon Larimer and Jon Oberheide,“Levitator.c Android <

2.3.6 PowerVR SGX Privilege Escalation Exploit”,

Available at: https://jon.oberheide.org/files/levitator.c

[22] Enabling the kernel's DMESG_RESTRICT feature,

Available at: https://lists.ubuntu.com/archives/ubuntu-

devel/2011-May/033240.html

[23] kptr_restrict for hiding kernel pointers, Available

at:http://lwn.net/Articles/420403/

