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Starvation alters the liver transcriptome of the
innate immune response in Atlantic salmon
(Salmo salar)
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Abstract

Background: The immune response is an energy demanding process, which has effects in many physiological
pathways in the body including protein and lipid metabolism. During an inflammatory response the liver is
required to produce high levels of acute phase response proteins that attempt to neutralise an invading pathogen.
Although this has been extensively studied in both mammals and fish, little is known about how high and low
energy reserves modulate the response to an infection in fish which are ectothermic vertebrates. Food withdrawal
in fish causes a decrease in metabolic rate so as to preserve protein and lipid energy reserves, which occurs
naturally during the life cycle of many salmonids. Here we investigated how the feeding or fasting of Atlantic
salmon affected the transcriptional response in the liver to an acute bacterial infection.

Results: Total liver RNA was extracted from four different groups of salmon. Two groups were fed or starved for
28 days. One of each of the fed or starved groups was then exposed to an acute bacterial infection. Twenty four
hours later (day 29) the livers were isolated from all fish for RNA extraction. The transcriptional changes were
examined by micro array analysis using a 17 K Atlantic salmon cDNA microarray. The expression profiling results
showed major changes in gene transcription in each of the groups. Enrichment for particular biological pathways
was examined by analysis of gene ontology. Those fish that were starved decreased immune gene transcription
and reduced production of plasma protein genes, and upon infection there was a further decrease in genes
encoding plasma proteins but a large increase in acute phase response proteins. The latter was greater in
magnitude than in the fish that had been fed prior to infection. The expression of several genes that were found
altered during microarray analysis was confirmed by real time PCR.

Conclusions: We demonstrate that both starvation and infection have profound effects on transcription in the liver
of salmon. There was a significant effect on the transcriptional response to infection depending on the prior
feeding regime of the fish. It is likely that the energy demands on protein synthesis for acute phase response
proteins are relatively high in the starved fish which have reduced energy reserves. This has implications for dietary
control of fish if an immune response is anticipated.

Background
The immune response is a coordinated reaction
mounted by a host in an attempt to control or destroy
an invading pathogen. There are a multitude of different
processes that occur during this response which are
dependent on the type of pathogen, the route of infec-
tion or the previous exposure to the pathogen. The

innate immune response includes both cellular and
humoral elements. These can detect and neutralise
pathogens [1] but manage to avoid attacking the hosts
own tissues. Once an inflammatory immune response is
initiated proinflammatory cytokines including IL-1b, IL-6,
tumour necrosis factor a and a panel of chemokines
instigate the coordinated expression of downstream
genes. Fish have an increasingly well characterised innate
immune system [2] with many genes being identified as
having a role in controlling the immune response [3].
Transcriptome analysis has been performed in salmonid
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fish following bacterial [4-7], viral [8-10] and parasitic
infections [11].
Mounting an immune response requires energy and

an increase in metabolic activity, and the effectiveness of
the response may be related to body energy reserves
[12]. In mammals dietary restriction can be advanta-
geous in relation to autoimmune diseases [13] but is
deleterious with respect to defence to infections [14]. In
many temperate animals allocation of energy reserves
change on a seasonal basis resulting in altered immune
status, as seen in deer mice where B cell production is
decreased especially during energy demanding periods
[15]. Repression of the immune response can be linked
to survival in animals that have a high energy reserve
demand. For example eider ducks showing a low
humoral immune reactivity have significantly greater
return rates to breeding areas than those with high
immune activity [16].
Although nutritional status of individuals has been

shown to have direct effects on their immune response
these studies have focused primarily on human health
[17] and endothermic animals[18]. Dramatic effects on
the transcriptional response in mammals result from
either complete food restriction [19] or from calorie
restriction [20] with multiple tissues responding. Mice
starved for 24 h show activation of genes related to
muscle wastage [21] releasing free amino acids for
essential metabolic functions. These same pathways are
activated during chronic infection [22], demonstrating a
link between nutritional status and immune function.
Fish are ectothermic and as such control their meta-

bolic rate very differently to mammals. They show
major changes following starvation [23-25] such as a
generalized reduction in protein synthesis and protein
turnover [26], however almost nothing is known about
the effect of dietary restriction on the immune response
in fish. Additionally carnivorous fish such as salmonids
rely on protein as the major energy source oxidising
proteins for gluconeogenesis [27]. As the liver is a cen-
tral organ controlling many physiological functions and
synthesizing plasma proteins, under acute infection con-
ditions it is required to alter much of its transcriptional
and translational machinery to synthesise high levels of
acute phase reactants [28,29]. The production of these
acute phase proteins requires increased access to free
amino acids. Additionally protein synthesis is an energy
demanding process [30] thus mounting of a successful
innate response may be related to the availability of suf-
ficient energy reserves and free amino acids for de novo
synthesis.
In this paper we have examined how the liver tran-

scriptional response to a bacterial pathogen of Atlantic
salmon (Salmo salar) is modulated depending on the
previous feeding regime. We have used the Atlantic

salmon TRAITS-SGP 17 K cDNA microarray [31,32]
platform that has been enriched for genes related to
lipid and protein metabolism and the immune response
[5]. Our results show that key components of the
immune system are depressed during starvation but that
following infection the starved fish attempt to compen-
sate for this by increasing expression of several key
immune related genes to a much greater extent than
that seen in fish fed prior to infection.

Results
All fish survived the 4 week trial. The mean (± sem) size
of fish starting the trial was 54.2g ± 1.3 and the growth
rate of the fed fish was 0.87% ± 0.04 body weight (bw)
day-1. Fish that were starved lost weight at -0.57% ±
0.05 bw day-1. The condition factor of the starved fish
was also significantly decreased compared to fed fish
(0.96 ± 0.02 and 1.27 ± 0. 17, P < 0.01) at the end of
the experiment, indicating a decreased level of energy
reserves in the starved fish. The condition factor for the
fed fish increased significantly during the experiment,
increasing from 1.16 ± 0.01 to 1.27 ±0.17 (P < 0.01),
showing that the fish were depositing additional energy
reserves during growth.

Overview of transcriptome analysis
The four groups of fish allowed examination of the
changes in the liver transcriptome occurring as a result
of starvation and acute bacterial infection. Additionally
we wished to determine the effect of infection on the
liver transcriptome depending on the feeding regime
prior to infection. For each sampling, 6 replicates of fish
were used, each replicate consisting of four individual
fish (24 fish per group). RNA extracted from 4 different
fish was pooled equally and then considered as a single
sample. This pooling of individuals removed any large
individual variation as our intention was not to study
individual responses. The experimental design (Fig. 1)
was a common reference design for which the reference
sample was an equi molar mixture of all the experimen-
tal samples and cDNA from the experimental groups
was hybridized against this common control RNA sam-
ple. Each of the 6 replicates was hybridized using a dye
swap protocol resulting in 12 slides per group and 48
slides in total. All 48 microarray slides hybridized were
used in the analysis. Following scanning of the slides
and quality control 9855 (58%) cDNA features reached a
threshold and were maintained for analysis as described
in the materials and methods.
The challenges resulted in large global alterations in

transcriptional activity, with 2363 genes being signifi-
cantly altered following infection compared to 959 genes
that were altered by the starvation, indicating that 23.9%
and 9.7% of those genes that passed filtering were
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significantly affected by these treatments. The numbers
of genes differentially expressed are shown in Fig. 2. For
annotation of the microarray, 76% of the genes could be
assigned to a functional protein and 46% of the genes
had a gene ontology (GO) identifier. This allowed statis-
tical analysis for enrichment for GO biological processes
to help interpret the changes in the transcriptome fol-
lowing starvation, infection and the effect of feeding
regime on the response to infection.

Transcriptome changes following starvation
Of 959 genes significantly altered by starvation, 288
were altered by greater than 2 fold, with 109 showing an
increased and 179 a decreased expression as a result of
starvation (Table 1 & Additional file 1 Table S1). To
further interpret this extensive list of genes, enrichment
for GO biological process was performed. Seventy one
biological processes were found to be significantly
altered following starvation. The GO enrichments indi-
cated major alterations in biological processes related to
fatty acid and steroid metabolism, energy metabolism,
cell structure, immune status, protein metabolism and
ion transport (Table 2, Additional file 2 Table S2).
Genes encoding proteins related to a number of key
biological processes that were altered in expression
following starvation are outlined below.
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Transcriptome responses to starvation

Effect of prior feeding on response to infection

RNA from 6 groups of 4 fish

RNA from 6 groups of 4 fishRNA from 6 groups of 4 fish

RNA from 6 groups of 4 fish

Figure 1 Experimental design and hybridizations. Diagram outlining the experimental setup and hybridization strategy for microarray
analysis. For each experimental group 6 pools of liver RNA extracted from 4 individuals was used. Experimental groups were: PBS control/fed
liver (PFL), from fish fed a normal diet and injected with PBS: PBS control/starved liver (PSL), fish starved for 28 days and injected with PBS:
Aeromonas salmonicida infected/fed liver (AFL), fish fed normal diet and injected with 100 μL of bacteria (A. salmonicida, 109 CFU ml-1); A.
salmonicida infected/starved liver (ASL) fish starved for 28 days and injected with 100 μL of bacteria (A. salmonicida, 109 CFU ml-1). All fish were
sampled 24 h following injection. The pooled control was an equal mixture of RNA pools from each group. All hybridizations were between
experimental groups and the pooled control. For each group of 6, 12 hybridizations were performed which included a dye swap.
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Figure 2 Venn diagram showing numbers of genes identified
as differentially expressed by microarray analysis. Summary of
numbers of genes up and down regulated. The genes presented
are all significantly altered in expression (P < 0.001 and multiple test
correction) with >2 fold change in expression. Up regulated in AFL
group relative to PFL is also denoted as Au, upregulated in ASL
relative to PSL is denoted as Bu, up regulated in PSL relative to PFL
is denoted as Cu, and down regulated genes are Ad, Bd and Cd
respectively.
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Table 1 Genes altered significantly in liver by starvation

TRAITS IDENTIFIER1 ACC2 AFL3 ASL4 PSL5 Identity6

FC A FC B FC C group7

Blood and serum proteins

liv_stb_J4D11_sti_tra_sub_0p_11S AM397499 3.17 Cu (P80961) Antifreeze protein LS-12 precursor

liv_ali_02H02_abe_tra_sub_0p_11C AM402609 2.92 Cu Type-4 ice-structuring protein precursor (Antifreeze protein type
IV)

tes_opk_14E17_osl_sgp_std_5p_11S CK899203 2.26 Cu (P29788) Vitronectin precursor (Serum spreading factor) (S-
protein)

int_oss_T5O22_osl_sal_std_5p_11C CK885870 -2.15 -2.74 BCd (P14527) Hemoglobin alpha-4 subunit (Hemoglobin alpha-4
chain) (Alpha-4-globin)

spl_sts_19B11_sti_sal_std_5p_12S AJ425729 -3.71 Cd (P02019) Hemoglobin alpha-1 subunit (Hemoglobin alpha-1
chain) (Alpha-1-globin)

mus_snm_10F04_osl_tra_nrc_5p_11C EG648831 -4.16 Cd (P02142) Hemoglobin beta-1 subunit

swi_rpk_74B22_osl_sgp_std_5p_11C CK896319 -6.95 Cd (Q01584) Lipocalin precursor

Energy metabolism

swi_rpk_74M05_osl_sgp_std_5p_11S CK895001 3.68 Cu isocitrate dehydrogenase 2 (NADP+) mitochondrial

gil_oss_52N23_osl_sal_std_5p_11C CK879377 3.05 Cu (Q9N2D5) Glyceraldehyde-3-phosphate dehydrogenase (EC
1.2.1.12) (GAPDH)

liv_ali_06G02_abe_tra_sub_0p_11S AM402930 2.05 Cu Bos taurus mono(ADP-ribosyl)transferase (ART1) mRNA

int_oss_T5A05_osl_sal_std_5p_11C CK885697 -2.17 Cd (P48163) NADP-dependent malic enzyme (EC 1.1.1.40) (NADP-ME)
(Malic enzyme1)

pit_cpi_C1C04_car_tra_sub_0p_11C No Acc -2.39 Cd glyoxalase 1

tes_tsr_02H11_gal_sal_std_5p_11C BM413811 -3.06 Cd (Q8BH95) Enoyl-CoA hydratase mitochondrial precursor (EC
4.2.1.17)

Stress response

kid_aki_05A08_abe_tra_sub_0p_11C AM042306 29.57 12.79 3.63 ABCu (P06761) 78 kDa glucose-regulated protein precursor (GRP 78)
(BiP)

hrt_opk_04E05_osl_sgp_std_5p_11C CK883188 15.54 7.86 2.57 ABCu DnaJ-like subfamily B member 11

gil_oss_GHB16_osl_sal_std_5p_11C CN181053 2.30 Cu (P08110) Endoplasmin precursor (Heat shock 108 kDa protein)
(Transferrin-binding protein)

int_oss_T5B18_osl_sal_std_5p_11C CK885962 2.31 2.27 ACu (P30710) Epididymal secretory glutathione peroxidase precursor
(EC 1.11.1.9)

liv_opk_12F09_osl_sgp_std_5p_11C CK888938 2.12 Cu glutathione peroxidase 3

int_oss_T4K02_osl_sal_std_5p_11C CK884637 2.10 Cu (O57521) Heat shock protein HSP 90-beta

gil_rpk_76A21_osl_sgp_std_5p_11C CK878328 2.06 Cu (P08294) Extracellular superoxide dismutase [Cu-Zn] precursor (EC
1.15.1.1)

hrt_opk_08M01_osl_sgp_std_5p_11C CK899423 -2.39 -2.47 ACd thioredoxin interacting protein

bra_snb_06F02_osl_tra_nrc_5p_11C EG647964 -2.84 Cd (Q4AEH7) Glutathione peroxidase 2 (EC 1.11.1.9)

Immune related

swi_rpk_74F07_osl_sgp_std_5p_11C CK896920 9.77 Cu (Q9ES30) Complement C1q tumor necrosis factor-related protein
3 precursor

liv_ali_02G01_abe_tra_sub_0p_11C AM402595 5.33 Cu C-type MBL-2 protein

liv_lrr_01C04_gal_sal_std_5p_11C No Acc 2.91 Cu (Q02988) Lectin precursor

eye_opk_20I02_osl_sgp_std_5p_11S CO471610 7.56 2.97 2.86 ABCu (P27797) Calreticulin precursor (CRP55) (Calregulin)

liv_dis_D1E12_abe_tra_sub_0p_11N AM049479 16.18 6.74 2.79 ABCu similar to catechol-O-methyltransferase domain containing 1

liv_dis_D4H02_abe_tra_sub_0p_11N AM049741 14.11 7.30 2.59 ABCu precerebellin-like protein

liv_dis_D4B06_abe_tra_sub_0p_11N AM049686 2.04 Cu (Q9WUW3) Complement factor I precursor (EC 3.4.21.45) (C3B/
C4B inactivator)

liv_dis_D1G04_abe_tra_sub_0p_11N AM049505 2.65 2.00 ACu (O88803) Leukocyte cell-derived chemotaxin 2 precursor

kid_aki_05H02_abe_tra_sub_0p_11C AM042371 -2.03 Cd (Q801Y3) Hepcidin 1 precursor

tes_tsa_01C01_gal_sal_std_5p_11C No Acc -2.58 Cd liver-expressed antimicrobial peptide 2 isoform A precursor

liv_lrr_01C06_gal_sal_std_5p_11C No Acc. -2.05 -2.59 ACd (P04186) Complement factor B precursor (EC 3.4.21.47)
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Table 1 Genes altered significantly in liver by starvation (Continued)

liv_dis_D4A07_abe_tra_sub_0p_11N AM049678 -3.09 Cd C type lectin receptor A

eye_rpk_73M16_osl_sgp_std_5p_11C CK875442 -3.82 Cd TTRAP_BRARETRAF and TNF receptor-associated protein homolog

gil_oss_G6N16_osl_sal_std_5p_11C CK877483 -2.31 -4.15 ACd nuclear factor kappa-B 1

liv_opk_12I14_osl_sgp_std_5p_11S CK889507 -4.65 Cd (P80429) Serotransferrin II precursor (Siderophilin II) (STF II)

kid_aki_04G07_abe_tra_sub_0p_11C AM042284 -10.17 Cd (P81491) Serum amyloid A-5 protein

Lipid and steroid metabolism

bra_opk_07F18_osl_sgp_std_5p_11S CK875291 5.39 4.62 ACu (O35760) Isopentenyl-diphosphate delta-isomerase 1 (EC 5.3.3.2)

swi_rpk_74J22_osl_sgp_std_5p_11C CK896123 3.91 Cu similar to Elongation of very long chain fatty acids protein 2

liv_opk_12J23_osl_sgp_std_5p_11C CK888142 4.94 3.35 ACu AF232215Salvelinus fontinalis steroidogenic acute regulatory
protein (StAR)

hrt_opk_06O21_osl_sgp_std_5p_11C CK874989 3.13 Cu (O88822) Lathosterol oxidase (EC 1.3.3.2) (Lathosterol 5-
desaturase)

bra_snb_09B09_osl_tra_nrc_5p_11S EG647637 2.77 Cu squalene monooxygenase

liv_ali_01E09_abe_tra_sub_0p_11S AM402497 2.74 Cu (P23228) Hydroxymethylglutaryl-CoA synthase cytoplasmic (EC
2.3.3.10)

bra_bfo_02D04_fou_sal_nrc_5p_11S DW588272 2.36 Cu (P37268) Squalene synthetase (EC 2.5.1.21)

kid_opk_01A09_osl_sgp_std_5p_11S CK887294 -2.18 Cd (O54939) Estradiol 17-beta-dehydrogenase 3 (EC 1.1.1.62)

bra_bfo_13G03_fou_sal_nrp_5p_11M DW589986 -4.35 Cd (Q92038) Acyl-CoA desaturase (EC 1.14.19.1) (Delta(9)-desaturase)

ova_opk_10D15_osl_sgp_std_5p_11C CK891273 -5.23 -4.51 ACd (Q18268) Phosphodiesterase delta-like protein

Amino acid metabolism

swi_rpk_74K12_osl_sgp_std_5p_11C CK895973 2.74 Cu betaine-homocysteine methyltransferase

bra_bfo_15H06_fou_sal_nrp_5p_11M DW590158 2.73 Cu (P46410) Glutamine synthetase (EC 6.3.1.2) (Glutamate–ammonia
ligase) (GS)

liv_ali_03E06_abe_tra_sub_0p_11C AM402665 2.63 Cu alanine-glyoxylate aminotransferase

mus_snm_07H11_osl_tra_nrc_5p_11C EG648581 2.63 Cu (P82264) GLutamate dehydrogenase (EC 1.4.1.3) (GDH)

liv_ali_02E10_abe_tra_sub_0p_11C AM402574 2.13 Cu (Q866Y3) N-acetylmuramoyl-L-alanine amidase precursor (EC
3.5.1.28)

liv_opk_12F15_osl_sgp_std_5p_11C CK888977 2.00 Cu (P16930) Fumarylacetoacetase (EC 3.7.1.2) (Fumarylacetoacetate
hydrolase)

Protein degradation

ova_oyr_02D04_gal_sal_std_5p_11S BM414061 4.13 2.09 4.07 ABCu (P97571) Calpain-1 catalytic subunit (EC 3.4.22.52)

mus_mfo_14E10_fou_sal_nrp_5p_11M DW592075 -2.12 Cd (Q9JHW0) Proteasome subunit beta type 7 precursor (EC 3.4.25.1)

liv_ali_04H04_abe_tra_sub_0p_11C AM402779 -2.22 Cd (P62193) 26S protease regulatory subunit 4 (Proteasome 26S
subunit ATPase 1)

hkd_opk_03C15_osl_sgp_std_5p_11S CK881845 -2.31 Cd (P18242) Cathepsin D precursor (EC 3.4.23.5)

spl_sts_03D12_sti_sal_std_5p_11C AJ425020 -2.43 Cd (Q9H944) Ubiquitin-specific protease homolog 49 (TRF-proximal
protein homolog)

tes_opk_13P17_osl_sgp_std_5p_11S CK898961 -2.99 -3.60 ACd (Q92743) Serine protease HTRA1 precursor (EC 3.4.21.-)

int_oss_T6A14_osl_sal_std_5p_11C CK884021 -3.66 Cd (P62972) Ubiquitin

int_rpk_78A08_osl_sgp_std_5p_11S CK885620 -7.97 -8.17 ACd (Q04592) Proprotein convertase subtilisin/kexin type 5 precursor
(EC 3.4.21.-)

Protein synthesis

gil_rpk_75O01_osl_sgp_std_5p_11C CK878136 -2.29 Cd (P47198) 60S ribosomal protein L22

gil_cgi_E3H04_car_tra_sub_0p_11N No Acc -2.39 -2.40 ACd (Q9DCH4) Eukaryotic translation initiation factor 3 subunit 5

bra_bfo_04H04_fou_sal_nrc_3p_11C DW588554 -2.45 Cd AF390021_1glutamine synthetase

mus_mfo_13G09_fou_sal_nrp_5p_11S DW591963 -2.67 Cd (P25007) Peptidyl-prolyl cis-trans isomerase (EC 5.2.1.8)

tes_tsr_03A07_gal_sal_std_5p_11C BM413900 -3.28 Cd (Q7ZYS1) 60S ribosomal protein L19

spl_sts_17H08_sti_sal_std_5p_11C AJ425625 -3.58 -4.97 ACd (P63326) 40S ribosomal protein S10

int_oss_T6A03_osl_sal_std_5p_11C CK884084 -9.32 -8.66 ACd rRNA promoter binding protein
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Transcription, protein and amino acid metabolism
Following starvation there was a general decrease in
expression of genes related to mRNA transcription, pro-
tein synthesis and protein degradation suggesting a
reduction in protein metabolism. Genes decreased and
related to protein synthesis included ribosomal protein
mRNAs, rRNA binding proteins and several key tran-
scription initiation factors. For protein degradation,
genes related to the ubiquitin proteasome pathway such
as polyubiquitin and proteasome subunits were reduced
as was the lysosomal enzyme, cathepsin D. However a
calcium activated protease, calpain 1 mRNA was
increased following the starvation indicating these path-
ways of protein degradation are independently controlled.
Although a general decrease in genes relating to protein
turnover was observed in starved animals, an increase in
genes encoding proteins related to amino acid catabolism
was found after starvation. The increased amino acid cat-
abolism may generate molecules that contribute to gluco-
neogenesis and subsequent entry into the TCA cycle.
Lipid and steroid metabolism
Genes encoding proteins performing steroid biosynthesis
and metabolism of fatty acids were up regulated following
starvation suggesting a reallocation of lipid reserves and
cholesterol metabolism. A number of genes encoding key
proteins involved in cholesterol metabolism were found
increased including hydroxymethyl-glutaryl-CoA synthetase
(HMG-CoA), a rate limiting enzyme in cholesterol bio-
synthesis, isopentenylpyrophosphate delta-isomerase (IPP),
lathosterol, squalene monooxygenase and squalene synthe-
tase, which together demonstrate the fish were attempting
to compensate for the dramatic reduction in circulating
cholesterol levels following starvation. A number of genes
involved in fatty acid metabolism were decreased indicating
a general decrease in lipid metabolism.

Serum and oxygen transport
Plasma and blood transport protein encoding genes
were reduced, both a and b haemoglobins, serotransfer-
rin and the calcium binding albumin protein parvalbu-
min decreased in starved animals indicating a reduced
requirement for transport of oxygen and ions in the
blood, presumably reflecting reduced energy and oxygen
demand from peripheral tissues. A member of the apoli-
poprotein family, described as an antifreeze protein had
reduced expression in starved fish. Two genes central to
preventing oxidative damage that showed increased
expression were glutathione peroxidase and superoxide
dismutase, both implicated in the protection from reac-
tive oxygen species that are often produced as a conse-
quence of nitric oxide synthase activity. Thus these
genes may have been up regulated to deal with toxic by
products of amino acid catabolism.
Immune and defence genes altered by starvation
Interestingly, genes encoding a number of secreted
immune related proteins were decreased in expression
following starvation, including serum amyloid A, com-
plement factor B and serotransferrin, suggesting a
reduced level of production of these serum secreted
proteins which were constitutively expressed at low
levels in uninfected animals. During an infection these
are major components of the acute phase response. A
mRNA encoding precerebellin, a protein also related
to the acute phase response was increased in the
starved fish, indicating there is a requirement to
maintain this plasma protein at higher levels even
during starvation conditions. Two liver specific anti-
microbial peptides were also down regulated by star-
vation, hepcidin and LEAP 2, which could reflect a
reduced ability of the starved fish to respond to bac-
terial infection.

Table 1 Genes altered significantly in liver by starvation (Continued)

Cell structure

int_oss_T4C19_osl_sal_std_5p_11C CK885060 -2.15 Cd collagen a3(I)

int_oss_THA07_osl_sal_std_5p_11C CN181319 -2.13 Cd Oncorhynchus mykiss COL1A3 mRNA for collagen a3(I) complete
cds

int_rpk_78C22_osl_sgp_std_5p_11C CK885437 -2.76 Cd (O00423) Echinoderm microtubule-associated protein-like 1
(EMAP-1)

mus_snm_03C07_sti_tra_nrc_5p_11C EG649361 -2.76 Cd (O93484) Collagen alpha 2(I) chain precursor

ova_oyr_04F11_gal_sal_std_5p_11S BM414013 -3.96 Cd (P14105) Myosin-9 (Myosin heavy chain nonmuscle IIa)

List of selected mRNAs found up and down regulated resulting from starvation and grouped according to functional classes (shown in bold). The selection was
based on manual assignment of function and genes with greatest fold difference in expression are presented, the genes that are down regulated are denoted by
(-) value. In this table the genes within each group are ordered by expression level following starvation (PSL). If the genes were significantly altered in the
infection these values are also given. The genes shown were significant at P < 0.001 following correction for multiple tests and greater than 2 fold change.
1Indicates the unique code for the feature on the microarray, 2Accession number of the cDNA sequence, if “No Acc” the TRAITS web page. 3Fold change for
genes increased in expression following Aeromonas salmonicida infection in fish fed a normal diet (AFLvsPFL). 4Fold change for genes increased in expression
following A. salmonicida infection in fish starved prior to infection (ASLvsPSL). 5Fold change for genes increased expression following 28 days starvation. 6Identity
of the cDNA as determined by BlastX and BlastN searches. 7This indicates if this gene is up regulated in one or more other experiments, Ad (AFL), Bd (ASL), Cd
(PSL), ABd (AFL+ASL), ABCd (AFL+ASL+PSL). The complete list of genes can be found in Additional file Table S1.
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Transcriptome changes following infection
A large diverse group of genes were found to be modu-
lated by the bacterial challenge, with 615 genes
increased and 458 decreased with greater than a two
fold change. For those genes increased in expression
318 were commonly up regulated in fish fed or starved

prior to the infection, whereas 145 and 123 genes were
increased uniquely for fish fed prior to infection (AFL)
or starved prior to infection (ASL) respectively (Fig. 2).
It is of note that there were more than twice as many
genes down regulated in ASL with 397 decreased com-
pared to 170 in the AFL group, which may reflect he
requirement of the starved fish to further down regulate
genes in order to mount an adequate immune response.
Key genes found modulated are presented in Additional
file 3 Table S3. To determine the major biological pro-
cesses being altered by the bacterial infection, enrichment
for GO identifiers were assigned to 76 significantly
enriched biological processes that were altered following
the infection (Table 3, Additional file 2 Table S2). The bio-
logical processes that were enriched could be grouped to
immune related, cellular homeostasis, protein, lipid and
energy metabolism and catabolism.
Immune related genes
As predicted, a large number of genes responding to the
bacterial infection could be directly related to immune
responses, with GO biological process showing acute
phase response proteins, inflammatory response and
chemotaxis being significantly up regulated. A number
of highly induced genes were acute phase response pro-
teins, including serum amyloid A, haptoglobin, comple-
ment factors and precerebellin like protein. As part of
the immune recognition of pathogens a number of cell
surface receptors were also induced such as C type lec-
tin receptors and Toll like receptors which initiate
further signalling to coordinate the immune response.
Up regulated transcription factors included Jun B,
CAAT enhancer binding proteins a and b, interferon
regulatory factor 2 and inhibitor of NF�B amongst
others. Genes encoding proteins with direct antibacterial
activity were also induced; in particular, hepcidin was
dramatically up regulated in both ASL and AFL, and
lysozyme was also increased but to a lesser level.
Protein and amino acid metabolism
The dramatic increase in transcriptional and transla-
tional activity for the production of acute phase
response proteins and other immune related proteins is
expected to have major effects on other processes and
potentially at the whole animal level. Ribosomal protein
encoding genes and protein elongation factors imply an
increase in protein synthesis activity, combined with
major protein degradation pathways which were also
increased including ubiquitin-proteasome, lysosomal
(cathepsins) and calpains. Such changes indicate
increased protein turnover reflecting the altered protein
production in the liver. A number of genes encoding
protein chaperones were increased including heat shock
proteins 60, 70 and 108, which could be interpreted as a
stress response. Several genes related to amino acid cat-
abolism were increased following infection, a number of

Table 2 GO Biological processes significantly altered
following starvation

GO
Identifier1

Term2 q3 m4 p5

Blood and oxygen transport

GO:0015669 gas transport 10 19 0.00

GO:0015671 oxygen transport 10 19 0.00

Amino acid metabolism

GO:0006544 glycine metabolic process 5 33 0.05

GO:0006541 glutamine metabolic process 3 16 0.08

Fatty acid and steroid metabolism

GO:0006720 isoprenoid metabolic process 5 33 0.05

GO:0016125 sterol metabolic process 4 18 0.03

GO:0008299 isoprenoid biosynthetic process 4 10 0.00

GO:0008203 cholesterol metabolic process 3 15 0.06

Immune function

GO:0006953 acute-phase response 3 17 0.09

GO:0009617 response to bacterium 3 13 0.05

GO:0042742 defense response to bacterium 3 13 0.05

GO:0006935 chemotaxis 7 27 0.00

Cellular homeostasis

GO:0006873 cellular ion homeostasis 7 60 0.06

GO:0030003 cellular cation homeostasis 7 50 0.03

GO:0048878 chemical homeostasis 7 69 0.09

GO:0050801 ion homeostasis 7 61 0.06

Cellular responses

GO:0042221 response to chemical stimulus 17 184 0.01

GO:0009605 response to external stimulus 10 56 0.00

GO:0040011 locomotion 8 53 0.01

GO:0007610 behaviour 7 37 0.00

Other processes

GO:0022603 regulation of anatomical structure
morphogenesis

4 27 0.08

GO:0001501 skeletal system development 4 22 0.05

GO:0018904 organic ether metabolic process 3 8 0.01

GO:0030334 regulation of cell migration 3 17 0.09

Gene ontology (GO) identifiers over represented in genes found differentially
expressed following infection. In total 175 genes (69 up regulated and 106
down regulated) genes were included in the list for GO analysis. 1Gene
ontology identifier, 2Gene Ontology term, 3number of times the GO term is
present in the gene list, 4number of times the GO term is present on the
filtered array list, 5statistical enrichment for GO term. Only GO terms that
appear 4 or more times are shown. Full list is shown in Additional file Table S2.

Martin et al. BMC Genomics 2010, 11:418
http://www.biomedcentral.com/1471-2164/11/418

Page 7 of 20



these being concerned with metabolism of specific
amino acids rather that synthesis and turnover of pro-
teins. Genes related to energy metabolism via glycolysis
were also down regulated following infection, as well as
genes encoding enzymes in gluconeogenic pathways,
perhaps reflecting a reduced use of amino acids as an
energy source.
Lipid and steroid metabolism
There was a general decrease in genes related to lipid
and steroid metabolism in those fish that
were infected, specifically peroxisomal enzymes and a
fatty acid desaturase. A nuclear peroxisome prolifera-
tor-activated receptor, a critical regulator of the

cholesterol and inflammatory response in macro-
phages, was increased following infection suggesting
tight control of cholesterol metabolism in the infected
animals. This can explain the increase in steroid bio-
genesis related genes including isopentenyl pyropho-
sphate isomerise 1 and steroidogenic acute regulatory
factor that were increased following infection, so as to
maintain correct cholesterol balance and potential pro-
duction of prostaglandins. The genes related to trans-
port of lipids, apolipoprotein (Apo) B, Apo A-I and
Apo H were decreased in expression following disease
in the ASL group, proteins highly abundant in the
plasma. Another plasma protein, serum albumin, was

Table 3 GO Biological processes significantly altered following infection

GO Identifier1 Term2 q3 m4 p5

Immune related

GO:0006952 defense response 30 110 0.00

GO:0009611 response to wounding 27 102 0.01

GO:0006954 inflammatory response 25 70 0.00

GO:0002526 acute inflammatory response 19 39 0.00

Protein metabolism

GO:0006519 cellular amino acid and derivative metabolic process 64 296 0.00

GO:0009308 amine metabolic process 55 284 0.09

GO:0044106 cellular amine metabolic process 53 256 0.02

GO:0006520 cellular amino acid metabolic process 51 253 0.05

Energy metabolism

GO:0019752 carboxylic acid metabolic process 80 372 0.00

GO:0005975 carbohydrate metabolic process 52 244 0.01

GO:0044262 cellular carbohydrate metabolic process 42 193 0.03

GO:0019318 hexose metabolic process 33 138 0.02

Catabolic process

GO:0044282 small molecule catabolic process 43 173 0.00

GO:0046164 alcohol catabolic process 23 96 0.09

GO:0046395 carboxylic acid catabolic process 21 82 0.05

GO:0009063 cellular amino acid catabolic process 19 70 0.04

Lipid and steroid metabolism

GO:0006720 isoprenoid metabolic process 12 33 0.01

GO:0045444 fat cell differentiation 3 5 0.08

GO:0006775 fat-soluble vitamin metabolic process 4 7 0.04

Other Processes

GO:0044281 small molecule metabolic process 137 683 0.00

GO:0043436 oxoacid metabolic process 80 372 0.00

GO:0040011 locomotion 20 53 0.00

GO:0030003 cellular cation homeostasis 15 50 0.04

Gene ontology (GO) identifiers significantly over represented in genes differentially expressed following infection. In total 698 regulated (414 up regulated and
284 down regulated) genes were included in the list for GO analysis. 1Gene ontology identifier, 2Gene Ontology term, 3number of times the GO term is present
in the gene list, 4number of times the GO term is present on the filtered array list, 5statistical enrichment for GO term. Only GO terms that appear 3 or more
times are shown. Full list is shown in Additional file Table S2.
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also down regulated following infection, although
again, only significantly so for the ASL group.

Starvation and infection interaction
A key feature of this study was to determine if the feed-
ing regime prior to infection had any effect on the
change in the liver transcriptome following infection.
The difference in the response between the ASL and
AFL treatment groups was examined by extracting this
specific contrast (ASL vs AFL) from the linear model.
This resulted in the identification of 474 genes (198 at
greater than 2 fold) that responded differently to infec-
tion depending on prior feeding. From this analysis 103
and 53 genes showed a greater expression in AFL and
ASL respectively. The results from the linear model
gave 4 possible groups (Table 4, Additional file 4 table
S4); 1. increased more in AFL than ASL (51 genes), 2.
increased more in ASL than AFL (26 genes) 3.
decreased more in ASL than in AFL (51 genes), and 4.
decreased more in AFL than ASL (27 genes).
For GO analysis to examine the interaction between

infection and feeding regime, both those genes that
responded at a greater or decreased level were com-
bined. Fourty eight GO biological processes were signifi-
cantly altered ie. had a different magnitude in infected
fish depending on if they were fed or starved before the
infection (Table 5) and included genes involved in
immune function, protein metabolism, lipid metabolism
and cellular homeostasis.
Genes encoding proteins that are secreted into plasma

were affected to the greatest extent between ASL and
AFL. Complement components H, B and C1 were more
induced in AFL whereas complement C7 showed greater
up regulation in ASL. A number of major acute phase
protein genes, serum amyloid A (SAA), serotransferrin
and b 2 microglobulin (b 2 M) were all highly up regu-
lated to a significantly greater magnitude than in the
AFL group, suggesting a greater increase in production
of these proteins. Hepcidin also had a 3.8 fold greater
increase in ASL than AFL showing again that the ASL
group responded differently to the AFL group. It is also
of note that both SAA, hepcidin and serotransferrin
were decreased in expression in the starved group (PSL).
This additional increase in the ASL group compared to
AFL may be a compensatory increase due to the
decreased expression of these genes in the starved fish.
Cell surface receptors including Toll like receptor 5 was
up regulated to a greater extent in ASL than AFL,
whereas there was a less clear picture with the C type
lectins. Thus, maltose binding lectin was down regulted
in ASL to a greater degree than in AFL whereas a C
type lectin receptor A was more highly up regulated in
ASL than AFL.

Genes in the steroid biosynthesis/cholesterol pathway
which includes IIP isomerase, steroidogenic acute regu-
latory protein and lathersterol oxidase were up regulated
to a greater extent in the AFL. Expression of genes
related to amino acid metabolism were reduced in both
ASL and AFL, but a greater reduction was seen in serine
pyruvate amino transferase and tyrosine amino transfer-
ase where there was a significantly greater reduction in
ASL fish.

Confirmation of expression by real time PCR
Real time PCR analysis was performed on a number of
genes for confirmation of microarray data (Table 6). All
the genes were those that showed a significant increase
in expression following the infection challenges, and
represented genes related to different aspects of the
immune response.
These were SAA, Toll like receptor 5, hepcidin, JunB,

CAAT, COUP, C type lectin and precerebellin. The
qPCR expression was normalized using elongation factor
1 a as this was not found to be modulated in expression
by microarray analysis. For all genes the expression pat-
tern showed the same direction of response between
microarray and real time PCR analysis, however the
magnitude of the expression differences varied between
the microarray and qPCR. In general greater differences
were observed from real time expression data than from
microarray data. For example, a 47 fold increase was
found for hepcidin AFL in samples by microarray analy-
sis but ~100 fold difference was found when these sam-
ples were examined by qPCR. Similar differences were
also found for SAA. The reason for the difference
is likely to be the different platforms being used and
different protocols for cDNA synthesis and equipment.

Discussion
Both infection and food withdrawal have major conse-
quences to whole animal physiology with alterations
occurring in many cellular processes across numerous
tissues. Central to metabolism is the liver, which carries
out many processes related to energy metabolism, synth-
esis and secretion of serum proteins and immune
responses. During infection the liver has a number of
essential roles, in particular the production of acute
phase response proteins (APR) [33] as well as specialized
liver specific macrophages, the Kupffler cells [34]. Both
starvation and infection have been examined in fish, but
rarely has the interaction of these two processes been
investigated. A considerable amount of literature is
available on the transcriptional response to starvation in
different fish species, however care needs to be taken
when interpreting the results as many factors including,
prior feeding [26], stress [35], energy reserves [36] and
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Table 4 Genes responding differently to infection between fed and starved fish

TRAITS IDENTIFIER1 ACC2 AFL/
PFL3

ASL/
PSL4

Interaction5 IDENTITY6

FC A FC B FC C

Increased more in AFL than ASL

liv_dis_D3C06_abe_tra_sub_0p_11N AM049619 16.06 6.01 2.67 (Q40313) Caffeoyl-CoA O-methyltransferase (EC 2.1.1.104)

eye_opk_20I02_osl_sgp_std_5p_11S CO471610 7.56 2.97 2.54 (P27797) Calreticulin precursor (CRP55) (Calregulin) (HACBP)
(ERp60)

mus_mfo_13B12_fou_sal_nrp_5p_12M DW591886 5.60 2.36 2.37 (P36871) Phosphoglucomutase-1 (EC 5.4.2.2)

bra_opk_07F18_osl_sgp_std_5p_11S CK875291 5.41 1.22 4.43 (O35760) Isopentenyl-diphosphate delta-isomerase 1 (EC
5.3.3.2)

spl_opk_16G20_osl_sgp_std_5p_11C CK893548 5.08 2.31 2.20 (P11941) Lysozyme C II precursor (EC 3.2.1.17)

liv_opk_12J23_osl_sgp_std_5p_11C CK888142 4.94 1.95 2.54 AF232215 Salvelinus fontinalis steroidogenic acute regulatory
protein (StAR)

liv_lrr_06F01_gal_sal_std_5p_11C No Acc 4.62 1.84 2.51 (O88803) Leukocyte cell-derived chemotaxin 2 precursor

spl_opk_16I18_osl_sgp_std_5p_11S CK893722 3.54 1.77 2.01 OMLYRNA O.mykiss mRNA for lysozyme II

liv_stb_J4D07_sti_tra_sub_0p_11C AM397498 2.65 1.09 2.43 (P08603) Complement factor H precursor (H factor 1)

liv_lrr_04C03_gal_sal_std_5p_11C BI468056 2.46 -1.03 2.54 (P04186) Complement factor B precursor (EC 3.4.21.47)

liv_opk_12E12_osl_sgp_std_5p_11S CK888813 2.02 -1.13 2.29 (P98093) Complement C3-1

Increased more in ASL than AFL

kid_aki_07D09_abe_tra_sub_0p_11S AM042502 52.18 124.66 -2.39 ONHMHB2M Oncorhynchus mykiss beta-2 microglobulin
mRNA

kid_aki_05H02_abe_tra_sub_0p_11C AM042371 46.53 177.59 -3.82 (Q801Y3) Hepcidin 1 precursor

liv_ali_02G12_abe_tra_sub_0p_11C AM402598 15.77 31.84 -2.02 (P10643) Complement component C7 precursor

kid_aki_04G07_abe_tra_sub_0p_11C AM042284 13.21 36.72 -2.78 (P81491) Serum amyloid A-5 protein

liv_opk_12G04_osl_sgp_std_5p_11C CK889070 9.80 32.12 -3.28 (Q9JLF7) Toll-like receptor 5 precursor

liv_dis_D4D03_abe_tra_sub_0p_11N AM049704 4.72 14.51 -3.07 toll-like leucine-rich repeat protein precursor

liv_opk_12D07_osl_sgp_std_5p_11C CK888622 3.69 7.44 -2.02 (O15431) High-affinity copper uptake protein 1 (hCTR1)
(Copper transporter 1)

liv_dis_D4A07_abe_tra_sub_0p_11N AM049678 3.09 7.36 -2.38 C type lectin receptor A

liv_ali_04B05_abe_tra_sub_0p_11C AM402715 1.22 3.08 -2.51 (P80429) Serotransferrin II precursor

ova_oyr_05A10_gal_sal_std_5p_11C BM414000 1.19 3.24 -2.73 (P62916) Transcription initiation factor IIB (General
transcription factor TFIIB)

bra_snb_06F02_osl_tra_nrc_5p_11C EG647964 1.12 3.21 -2.87 (Q4AEH7) Glutathione peroxidase 2 (EC 1.11.1.9)

Decreased more in ASL than AFL

liv_opk_12M05_osl_sgp_std_5p_11C CK888589 -2.46 -6.49 2.64 (P31029) Serine–pyruvate aminotransferase mitochondrial
precursor (EC 2.6.1.51)

liv_opk_12L05_osl_sgp_std_5p_11C CK888371 -2.47 -5.16 2.09 (P30613) Pyruvate kinase isozymes R/L (EC 2.7.1.40)

liv_opk_12I06_osl_sgp_std_5p_11S CK889439 -2.68 -7.71 2.88 (P04694) Tyrosine aminotransferase (EC 2.6.1.5)

tes_opk_15A07_osl_sgp_std_5p_11S CK897836 -2.79 -7.95 2.85 (Q93088) Betaine–homocysteine S-methyltransferase (EC
2.1.1.5)

ova_oyr_04D02_gal_sal_std_5p_11S BM414075 -4.93 -23.18 4.71 (Q8BTW8) CDK5 regulatory subunit associated protein 1

Decreased more in AFL than ASL

liv_lrr_01C06_gal_sal_std_5p_11C No Acc -2.09 1.40 -2.93 (P04186) Complement factor B precursor (EC 3.4.21.47)

tes_tsr_02G05_gal_sal_std_5p_11C BM414288 -2.10 1.44 -3.03 (O00750) Phosphatidylinositol-4-phosphate 3-kinase (EC
2.7.1.154)

mus_amu_05D01_abe_tra_sub_0p_11C AM412040 -2.31 -1.05 -2.19 CHK1 checkpoint homolog (S. pombe)

gil_oss_G6N16_osl_sal_std_5p_11C CK877483 -2.31 1.40 -3.23 nuclear factor kappa-B 1

spl_sts_20D01_sti_sal_std_5p_11C AJ425823 -2.54 1.09 -2.77 rRNA promoter binding protein
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sexual maturation status [37] can alter the profile of the
response and are impacted by husbandry, developmental
and environmental parameters.
Our results showed that both starvation and infection

lead to large transcriptional responses. We used 12
microarray slides per experimental group which allowed
robust statistical analysis to be performed [38]. All data
presented was highly significant at P < 0.001 following
correction for multiple tests. Additionally we only con-
sidered genes that had a greater than 2 fold difference
in expression to help interpret the results. Following
starvation, GO analysis showed a number of biological
processes to be significantly altered. On examination,
genes encoding proteins involved in protein and amino
acid metabolism, fatty acid and steroid metabolism,
immune function and general energy metabolism were
both increased and decreased, whereas genes relating to
blood and ion transport, lipid metabolism and energy
metabolism were down regulated following starvation.
The liver is a tissue with very high and variable rates

of protein synthesis and degradation [39,40]. During
starvation the liver receives reduced levels of free amino
acids from digestion, and a multitude of hormonal sig-
nals mainly from growth hormone and insulin like
growth factor [41] which when reduced result in
decreased protein synthesis rates. The decrease in pro-
tein synthesis rates begins with reduced transcription as
seen by the reduction in transcriptional machinery
including ribosomal RNA binding proteins and tran-
scription initiation factors. In mammals [19,20] and fish
[30] protein synthesis is depressed following reduction
in protein intake which appears to be a conserved
response. Although both synthesis and degradation are
decreased during starvation, the balance between synth-
esis and degradation shifts towards greater relative
degradation [25,42,43], and in turn the reduced protein
synthesis levels are reflected in the lower quantities of
serum proteins synthesised and secreted [44]. Protein
degradation, similar to protein synthesis is a tightly con-
trolled process [45], with two key pathways of protein
degradation down regulated in the starved fish, namely
genes relating to the ubiquitin proteasome pathway of
degradation [46] and lysosomal pathway enzymes

including cathepsin D. Although the ubiquitin protea-
some pathway in mammals is most often viewed as
important in muscle tissue [47] clearly the general
decreased transcription of genes in liver in the present
study show it is an important pathway in liver tissue in
fish. A gene encoding the calcium dependant cysteine
protease, calpain-1 was found increased in the starved
fish, which demonstrates proteolytic pathways are inde-
pendently regulated with each pathway targeting differ-
ent proteins for destruction.
Both protein synthesis and degradation are energy

demanding processes and it is highly likely reduced pro-
tein turnover acts as an energy conserving mechanism.
Following infection there was a rise in genes relating to
protein turnover, with those genes relating to both pro-
tein synthesis and degradation being up regulated in
both the AFL and ASL groups. This would lead to
increased demand for ATP production and also in the
case of starved animals an increased supply of free
amino acids as substrates for protein synthesis. It would
be expected that this would have a greater energetic
impact on the starved animals which already have
reduced energy reserves. Catabolism of amino acids was
found increased in starved fish which could suggest
further oxidation of amino acids leading to gluconeo-
genesis and subsequent oxidation [48]. In the diseased
fish there was a marked decrease in genes related to
amino acid catabolism which could be explained by
amino acids being used for increased protein synthesis,
however amino acid modification is increased by amino
acid transferases and amino acid methylases which may
be involved in amino acid biosynthesis. Control of
amino acid biosynthesis and oxidation can be dramati-
cally altered by food deprivation [49] and infection [50]
in mammals, with redistribution of amino acids, particu-
larly those required for synthesis of inflammatory
response proteins (such as APR proteins) which have a
different amino acid composition to proteins synthesized
during normal growth and metabolism.
During normal growth the liver is a major producer of

plasma proteins including serum albumin [51], apolipo-
proteins [52] and other blood associated proteins which
represent a considerable part of the transcription and

Table 4 Genes responding differently to infection between fed and starved fish (Continued)

spl_sts_17H08_sti_sal_std_5p_11C AJ425625 -3.60 -1.07 -3.37 (P63326) 40S ribosomal protein S10

ova_opk_10D15_osl_sgp_std_5p_11C CK891273 -5.23 -1.14 -4.60 (Q18268) Phosphodiesterase delta-like protein

int_oss_T6A03_osl_sal_std_5p_11C CK884084 -9.32 -1.27 -7.36 rRNA promoter binding protein

List of mRNAs found to respond to the bacterial infection in a differential manner depending on prior feeding regime. The genes were differentially expressed
with P < 0.001 following correction for multiple tests. Only those with a two fold difference in response are shown. 1Indicates the unique identifier for the
microarray clone on the microarray, 2Accession number of the sequence deposited to GenBank, when “No Acc” the sequence can be obtained from the TRAITS
web page as described in materials. 3Fold change in gene expression between diseased fed and uninfected fed (numbers in italics indicate they are non
significant at P < 0.001). 4Fold change in gene expression between diseased starved and uninfected starved (numbers in italics indicate they are non significant
at P < 0.001). 5The fold difference in the response to the disease challenge as result of the prior feeding regime. 6Identity of the cDNAs following BlastX or
BlastN. Full list shown in Additional file 2 Table S3.
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Table 5 GO Biological processes significantly altered in infected fish depending on prior feeding regime

GO Identifier1 Term2 q3 m4 p5

Immune related

GO:0002376 immune system process 9 135 0.08

GO:0009605 response to external stimulus 9 137 0.08

GO:0006952 defense response 8 110 0.08

GO:0006954 inflammatory response 7 70 0.03

GO:0002253 activation of immune response 4 25 0.03

GO:0006956 complement activation 4 22 0.02

GO:0002526 acute inflammatory response 6 39 0.01

GO:0048583 regulation of response to stimulus 5 52 0.08

GO:0002541 activation of plasma proteins involved in acute inflammatory response 4 22 0.02

GO:0006959 humoral immune response 4 28 0.04

GO:0002684 positive regulation of immune system process 4 30 0.04

GO:0048584 positive regulation of response to stimulus 4 29 0.04

GO:0050776 regulation of immune response 4 35 0.08

GO:0050778 positive regulation of immune response 4 26 0.04

Protein metabolism

GO:0016485 protein processing 4 31 0.05

GO:0051604 protein maturation 4 32 0.06

GO:0051605 protein processing by peptide bond cleavage 4 29 0.04

GO:0032880 regulation of protein localization 3 12 0.02

GO:0051222 positive regulation of protein transport 3 12 0.02

GO:0070201 regulation of establishment of protein localization 3 12 0.02

GO:0051223 regulation of protein transport 3 12 0.02

GO:0060341 regulation of cellular localization 3 20 0.07

GO:0045786 negative regulation of cell cycle 3 22 0.08

Lipid and glycerol metabolism

GO:0045834 positive regulation of lipid metabolic process 3 20 0.07

GO:0006638 neutral lipid metabolic process 3 8 0.00

GO:0006639 acylglycerol metabolic process 3 8 0.00

GO:0006641 triglyceride metabolic process 3 7 0.00

GO:0006662 glycerol ether metabolic process 3 8 0.00

GO:0018904 organic ether metabolic process 3 8 0.00

Cellular homeostasis

GO:0048518 positive regulation of biological process 13 242 0.10

GO:0032879 regulation of localization 7 53 0.01

GO:0051239 regulation of multicellular organismal process 6 63 0.05

GO:0050793 regulation of developmental process 6 41 0.01

GO:0022603 regulation of anatomical structure morphogenesis 6 27 0.00

GO:0051094 positive regulation of developmental process 5 19 0.00

GO:0045766 positive regulation of angiogenesis 5 14 0.00

GO:0045765 regulation of angiogenesis 5 19 0.00

GO:0051049 regulation of transport 4 33 0.07

GO:0051272 positive regulation of cellular component movement 3 11 0.01

GO:0051050 positive regulation of transport 3 16 0.04

GO:0030334 regulation of cell migration 3 17 0.04
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translation occurring in the liver. During starvation
there was a marked decrease in the transcription of
these proteins. Both a and b globins were down regu-
lated in the starved animals, reflecting the presumed
decrease in whole animal metabolism and decreased
oxygen demand. They were also further decreased when
the starved animals were immune challenged (ASL
group), but the globins were not decreased in the fish
which were fed before infection (AFL group). Serum
albumin was depressed in starved fish (1.7 fold, data not
shown) as also observed in mammals fed low protein
diets [53]. The modest decrease in serum albumin in
starved fish showed a further decrease in the ASL group
which could indicate decreases in total circulating pro-
tein. The decrease in circulating globins and serum
albumin was also observed in brook trout following bac-
terial infection [54] and ascribed to a reduction in tran-
scription and potentially additional catabolism induced
by the inflammation. In mammals reduced circulating
serum albumin levels correlates with increased suscept-
ibility to infection [55] which may also be the case in
fish. In parallel to serum albumin, apoliproteins, the
major lipid and cholesterol transporters were reduced
following infection. It is likely this was brought about by
either reduction in lipid metabolism and transport or to
a down regulation of these genes to make way for the
synthesis of APR proteins.
The greatest increase in transcription in both AFL and

ASL groups was for genes related to the APR as has
been widely reported in a number of previous studies in
liver [4,5,28,29,56]. There was a trend for there to be a
greater increase in the ASL as seen for SAA, serotrans-
ferrin, b 2 microglobulin and a major antimicrobial pep-
tide (hepcidin) which is often increased in parallel with
the APR following bacterial challenge [57]. Interestingly,

SAA, serotransferrin and hepcidin were all decreased in
the starved fish suggesting the starved fish were down
regulating their constitutively expressed immune mole-
cules, most likely as an energy conserving mechanism.
Upon infection the fish needed to dramatically increase
production of the APR proteins and appear to sacrifice
the transcription of normal plasma proteins as seen for
serum albumin, globins and apoliproteins. These dra-
matic changes were likely to have more major conse-
quences for the physiology of the fish in the ASL group
than the AFL group. One further APR protein of note is
precerebellin [58]. The mRNA for this gene was
increased following starvation in uninfected fish, sug-
gesting that there is a requirement for this protein to be
maintained at a higher constitutive level, although to
date the exact function of the protein remains unknown.
The APR is predominantly stimulated by cytokines, in
particular IL-6 which acts via its receptor gp130/IL-6R
to transduce the signal and stimulate STAT transcrip-
tion factors to target responsive genes. A number of
transcription factors were increased in expression fol-
lowing the infection, including CAAT/enhancer binding
protein (also termed C/EBP or nuclear factor IL-6)
which binds to promoters of APR proteins and IL-6 tar-
get genes [59]. Although c/EBP increases APR transcrip-
tion it also binds to the promoter of serum albumin
decreasing its expression [60]. Toll like receptors (Toll
like 5 and a Toll like leucine rich repeat protein) which
are related to IL-1 family receptors, signal via NF�B and
are key in eliciting an immune response [61], were
increased in ASL and AFL. As with several APR pro-
teins, the increase in these cell surface receptors was
greater in ASL for both genes which could help explain
the magnitude of expression of the APR genes. A
further inflammatory regulatory gene, suppressor of

Table 6 Real time PCR analysis of genes selected for confirmation of microarray data

Group: SAA TRL 5 Hepcidin JunB CAAT/EBP COUP C type lectin Precerebellin

AFL vs PFL 31.7 ± 4.4* 17.2 ± 4.6* 100.0 ± 20.7* 18.1 ± 3.3* 2.5 ± 0.4 3.0 ± 1.5 3.6 ± 0.6* 15.9 ± 7.5*

ASL vs PSL 128.2 ± 43.8 60.5 ± 26.8*0 424.5 ± 66.2* 8.7 ± 1.4* 5.6 ± 3.0 0.9 ± 0.5* 4.3 ± 2.0* 27.1 ± 13.6*

PSL vs PFL -6.6 ± 3.7 -1.0 ± 0.3 -1.5 ± 0.4 -0.6 ± 0.3 -1.0 ± 0.6 -13.4 ± 7.7 -1.1 ± 0.2 -0.5 ± 0.2*

Candidate gene expression in liver RNA isolated from Atlantic salmon fed or starved prior to bacterial infection. Values are fold increase (± sem). The groups are:
AFL fish that were fed on normal diet prior to bacterial infection compared to fed uninfected fish, PFL. ASL: fish that were starved for 28 days prior to infection
compared to uninfected starved fish PSL. PSL uninfected starved fish compared to uninfected fed fish, PFL. Gene expression was determined by real time PCR
and normalized to the elongation factor 1a gene. Statistical analysis of expression data was by t-test, * indicates P < 0.05.

Table 5 GO Biological processes significantly altered in infected fish depending on prior feeding regime (Continued)

GO:0030335 positive regulation of cell migration 3 9 0.01

GO:0040012 regulation of locomotion 3 17 0.04

GO:0040017 positive regulation of locomotion 3 9 0.01

GO:0051270 regulation of cellular component movement 3 20 0.07

Gene ontology (GO) identifiers over represented in genes found differentially expressed following infection depending on prior feeding regime. For this analysis
both increased and decreased genes were included. 1Gene ontology identifier, 2Gene Ontology term, 3number of times the GO term is present in the gene list,
4number of times the GO term is present on the filtered array list, 5statistical enrichment for GO term. Only GO terms that appear 3 or more times are shown.
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cytokine signalling 1 (SOCS1) [62], was decreased in the
ASL group. SOCS1 functions to attenuate the inflamma-
tory response to cytokines, hence the decrease in ASL
may be a further indication that these fish do not nega-
tively regulate their inflammatory response to the same
degree as in fed fish.
The effects of malnutrition on the APR in rats showed

that animals on low protein diets had higher levels of
APR transcripts in the liver [63] which was interpreted
as a low level inflammatory response and hence a pre-
servation of the APR during malnutrition. However
other studies suggest an attenuated APR and cytokine
response in humans which can lead to increased mor-
bidity following infection [64]. Protein malnourishment
in mammals can activate NFkB, leading to inflammation,
however our results in fish do not find this to be the
case, and in fact the transcription factors controlling
these pathways were down regulated, with little evidence
for increased transcription of inflammatory response
genes in the starved fish.
Despite the depletion of protein reserves the starved

fish were still able to mount an APR, or at least induce
expression of the genes. Our results suggest the ASL
potentially had a greater magnitude of APR than the
AFL group, but the APR alone is no indicator of the
outcome of an infection.
The removal of free radicals and toxins are achieved

in part by antioxidants and we observed a number of
antioxidant encoding genes being both increased and
decreased during infection. In mammals that were on a
restricted calorie intake a number of different isoforms
of glutathione peroxidase were both increased and
decreased [20]. In fish we have observed similar results
with super oxide dismutase and glutathione peroxidase
3 increased in starved fish whereas glutathione peroxi-
dase 2 was decreased following starvation. This may
indicate these genes are controlled differently with glu-
tathione peroxidase 3 perhaps having a greater role in
detoxifying products of amino acid catabolism. Follow-
ing infection glutathione peroxidase 2 was increased in
both ASL and AFL groups which would indicate a
requirement to remove reactive products of increased
protein turnover and oxidation [65]. Several different
glutathione-s-transferases were found reduced in expres-
sion in the ASL fish. Interestingly glutathione-s-transfer-
ase activity was down regulated in rainbow trout
following 6 weeks starvation [66], a considerably longer
time of starvation than in the present study indicating
the decrease in the activity of this enzyme may be accel-
erated by infection.
The complement system which has major roles in

innate and acquired immune defences has components
differentially expressed following infection in both
the ASL and AFL groups of fish. Activation of the

complement system during innate immune responses is
via the “alternative pathway” or “lectin pathway” [67],
with pathogen recognition resulting in increased tran-
scription of complement components. Once activated
the complement factors help neutralise pathogens by
lysis and phagocytosis, and also act as inducers of
inflammation [68]. Complement factors C3-1, C7, B, H
and C1q were all increased which is an expected
response to acute bacterial infection. However a number
of complement factors were found to be down regulated
after infection in the ASL group. Components C4 and
C1q were both decreased in expression in the ASL
group, and both are major factors of the classical com-
plement pathway [69] involved in the binding of immu-
noglobulin molecules to pathogens during an adaptive
immune response. As the major response in this study
is an innate response it is possible that this part of the
pathway is being attenuated, particularly in the ASL
group that has less energy reserves. However C6 was
found down regulated in AFL, which is surprising as it
is directly involved in the pathogen membrane attack
complex and several complement B genes were found
increased and decreased following infection. The differ-
ential expression of complement factors can be antici-
pated, as shown in trout infected with Listonella
anguillarum where C7 was increased but C3 compo-
nents down regulated [70] suggesting the control of the
complement cascade is complicated with different com-
ponents being independently regulated.
Cholesterol and fatty acid metabolism was altered as a

result of both starvation and infection. In starvation,
several key rate limiting genes involved in the choles-
terol biosynthesis pathway were significantly up regu-
lated (Fig. 3). This would indicate a major increase in
cholesterol biosynthesis, suggesting the fish are attempt-
ing to maintain circulating levels of cholesterol. In fasted
cod cholesterol in high density lipoprotein (HDL)
increased in serum whereas there was a decrease in low
density lipoprotein (LDL) [71]. Interestingly in the
cholesterol pathway isopentyl pyrophosphase delta iso-
merase was increased in the AFL group, as was a steroi-
dogenic acute regulatory factor. However, one of the
final enzymes in the production of cholesterol, 7 dehy-
drocholesterol reductase was down regulated in the ASL
fish indicating major differences in cholesterol metabo-
lism between ASL and AFL groups, which was further
supported by the reduction of a number of apolipopro-
teins (Fig. 3) in ASL, that are responsible for lipid and
cholesterol transport. The peroxisome proliferator acti-
vated receptors (PPARs) are nuclear hormone receptors
that act as transcription factors and are critical regula-
tors of lipid and energy homeostasis [72], several of
which have recently been described in fish [73]. In our
experiments PPARa was increased following infection in
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both AFL and ASL, indicating increased lipid metabo-
lism within the peroxisome. However two enzymes
which have activity within the peroxisome were down
regulated in the ASL fish, a trans enoyl CoA isomerise
and peroxisomal bifunctional enzyme, both involved in
fatty acid biosynthesis and metabolism. Potentially the
observed changes in lipid metabolism and peroxisomal
activity are related to production of eicosanoids, which
have a major role in the control of inflammation [74].
Although the precise mechanisms for the reduction in
immune gene expression and other biological pathways

following starvation are not known, it is likely these are
attributable to hormonal factors including glucocorti-
coids which are altered following starvation [75] and
also have major impacts on the immune system [76].

Conclusions
Our transcriptome analysis has demonstrated that star-
vation in salmon has profound effects on biological pro-
cesses in the liver, with protein, lipid and steroid
metabolism being affected. Equally the acute bacterial
infection results in a massive increase in APR proteins,

Acetyl -CoA

3-Hydroxymethyl-Glutaryl-CoA

Isopentyl pyrophosphatase Dimethyl pyrophosphate

Mevalonate

Farnesyl pyrophosphate

Squalene

Squalene 2,3,- epoxide

Lathosterol

7-dihydro cholesterol

Cholesterol

DHEA

Steroid hormones

Hydroxymethyl-Glutaryl-CoA synthetase

Isopentyl pyrophosphatase delta isomerase

Squalene synthetase

Squalene mono-oxygenase

7-dihydro cholesterol reductase

Lathosterol oxidase

17 hydroxyl steroid dehydrogenase
Apolipoprotein AI-1

Apolipoprotein B 100

Apolipoprotein H

Plasma lipoproteins
& Cholesterol transport

Cu1

ACu2

Cu

Cu

Cu

Bd

Bd

Bd

Bd

Bd

Figure 3 Genes altered in the cholesterol biosynthesis pathway in starved and infected fish. Diagram shows key pathway of cholesterol
metabolism. Enzymes circled in blue were found to be differentially expressed during microarray analysis. Those proteins boxed in red are also
found altered in expression. 1Cu indicate up regulated in PSL relative to PFL, 2ACu indicates up regulated in AFL and PSL relative to PFL and, 3Bd
indicates down regulated in ASL group relative to AFL. Expression levels are shown in supplementary Table S1.

Martin et al. BMC Genomics 2010, 11:418
http://www.biomedcentral.com/1471-2164/11/418

Page 15 of 20



and has impacts on protein turnover and cholesterol
metabolism. The reallocation of and control of amino
acids from normal physiological functions to production
of APR proteins is probably the greatest effect we have
observed. The starved fish have generally decreased
transcription of immune genes but following infection
they attempt to recover this, although they have less cir-
culating plasma proteins and hence may have more dif-
ficulty in achieving this and potentially expend
considerably more protein and energy reserves attempt-
ing to deal with the pathogen. This experiment has used
an extreme model (starvation and infection) and only
examines the mRNA responses for those genes present
on the microarray. Future experiments could incorpo-
rate additional physiological and immunological para-
meters. The results presented here may help predict
how fish will respond to infection or vaccination on
specific diets and the importance of high protein feeds
during times of a potential immune challenge.

Methods
Fish maintenance and challenge
Juvenile mixed sex Atlantic salmon were maintained in
250 L freshwater tanks at the University of Aberdeen,
UK, fish facilities. Water was held at a constant 12°C,
pH 7.60 (± 0.05) and 90% (± 1%) of oxygen saturation.
The fish were individually marked on the ventral surface
by alcian blue dye, which enabled recognition of indivi-
duals. Initially the fish were fed ad libitum (Nutreco
feed). At the beginning of the experiment fish were
separated randomly into two tanks, in one tank fish
were fed ad libitum as before and in the other tank they
were not fed for 4 weeks. The initial and final weight
and length were recorded and were used to calculate
condition factor (K, 100 * BW/FL-3) where BW is body
weight in g and FL is fork length in mm. Specific
growth rate (SGR) was calculated from the equation:
SGR = ((LnBW2 - LnBW1)/t) × 100 where BW2 is the
final weight, BW1 is the initial weight and t is time
between W1 and W2 in days. Following the 4 week trial
fish were anaesthetised with bezocaine (Sigma 20 mg l-
1) and injected with 100 μl of a genetically attenuated
(aro A-) strain of Aeromonas salmonicida (Brivax II[77])
(109 CFU ml-1) in PBS or 100 μl of PBS as control. Fish
were returned to separate tanks, either infected or con-
trol. The fish were then sacrificed 24 h post challenge
and liver tissue was removed immediately and stored in
RNAlater (Ambion) at 4°C for 24 h then placed at -20°C
until RNA extraction. A total of 96 fish were used in
the trial, split into four groups of 24, denoted as AFL
(Aeromonas infected/fed), ASL (Aeromonas infected/
starved), PFL (PBS control/fed) and PSL (PBS control/
starved).

RNA isolation
Liver tissue (100 mg) stored in RNAlater was blotted on
tissue paper to remove any excess liquid. The tissue was
then homogenised in RNA STAT60 (AMS Biotechnol-
ogy) according to the manufacturer’s instructions for
purification of total RNA. After precipitation, RNA was
resuspended in sterile RNase free water (Sigma). Further
RNA purification was performed using RNeasy cleanup
columns (Qiagen) according to the manufacturer’s pro-
tocol. RNA was eluted from these columns in water and
the concentration adjusted to 2.5 μg μL-1. The integrity
of the RNA was determined by electrophoresis (Agilent
Bioanalyser 2100) and concentration measured by spec-
trometry (ND-1000, NanoDrop Technologies). RNA was
stored at -80°C until required.
Microarray hybridisation and analysis
For microarray analysis 6 pools of RNA were made,
each pool containing RNA from 4 different fish chosen
randomly from each group. Concentration and quality
was rechecked as described above. RNA was reverse
transcribed using a FAIRPLAY II cDNA post labelling
kit (Stratagene) according to the manufacturer’s instruc-
tions and labelled separately with both Cy3 or Cy5 (GE
HealthCare; PA23001, PA25001) to allow for a swap
protocol. All reverse transcriptions were carried out at
the same time on 96 well plates to reduce technical var-
iation. Briefly 20 μg total RNA was reverse transcribed
after being primed with oligo dT. Following reverse
transcription the RNA template was hydrolysed using 1
M NaOH for 15 min and then neutralised with 1 M
HCl. The cDNA was ethanol precipitated overnight. The
cDNA pellets were washed in 80% ethanol and air dried
before being resuspended in 5 μl 2× coupling buffer.
Once the cDNA had fully dissolved (after at least 30
min) 5 μl Cy dye was added to each tube and incubated
in the dark for 30 min. (Pre-aliquotted Cy3 and Cy5
dyes were resuspended in 45 μl DMSO prior to being
added to the coupling buffer.) To remove unincorpo-
rated dye, the labelled cDNA (total volume 10 μl) was
passed through a DyeEx 2.0 spin column (Qiagen). Dye
incorporation was checked by spectrophotometry (ND-
1000) and by electrophoresis of labelled cDNA on a
mini-gel and visualisation by microarray scanner (Perkin
Elmer ScanArray 5000XL). For hybridisation, 20 μl of
labelled sample (10 μl Cy3 and 10 μl Cy5) was added to
85 μl hybridisation buffer (Ambion), 10 μl poly(A)
potassium salt (Sigma; 10 mg ml-1) and 5 μl ultrapure
BSA (Ambion;10 mg ml-1).
Hybridizations were performed on a Gene TAC Hyb

Station (Genomic solutions) for 16 h at 42°C. Following
the hybridisations slides were washed with 1× SSC 10
min at 60°C, 1× SSC +0.2% SDS 10 min at 60°C, 0.1 ×
SSC + 0.2% SDS 10 min at 42°C. Slides were then rinsed
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in isopropanol and dried by centrifugation before being
scanned. All 48 slides were hybridised at the same time
to reduce any technical artefacts that may occur.
The slides were scanned on an Axon 4200A scanner

(Axon Instruments) at a resolution of 10 μm and saved
as *.TIF files. Initial image analysis was by GenPix (ver-
sion 5.1, Axon instruments) program. The array images
were edited to ensure that the GAL (Gene Associated
List) files were correctly orientated and that any abnor-
mal hybridization signals were flagged as bad and the
image output saved as *.gpr files. Image output files
were imported into the R statistical environment [78]
using the BioConductor Limma package [79] for prepro-
cessing and further analysis. Individual spot quality
weights were derived based on flags generated by the
GenPix software and those spots flagged as bad were
assigned a weighting of zero in subsequent analysis.
Spot intensities were background corrected using the
normexp method with an offset of 50 to avoid zero or
negative intensity values [80]. Intensity dependent loess
normalization was performed to balance any dye bias
and print-tip effect within each array [81]. Quantile

normalization was performed to stabilize the experimen-
tal variances across replicate arrays. Differential expres-
sion of individual genes was assessed using linear
modelling and empirical Bayes methods [79]. The linear
model included the effects of bacterial infection (Aero-
monas infected and PBS control), feeding regime (feed-
ing and fasting) and the interaction between bacterial
infection and feeding regime (equivalent to a two-way
analysis of variance). Specific comparisons of treatment
groups were made by extracting the appropriate con-
trasts from the linear model. Comparisons were based
on a robust t statistics in which the standard errors of
the estimated log fold changes were moderated across
genes using an empirical Bayes approach [82]. Multiple
testing was accounted for by controlling the false dis-
covery rate (FDR) at 5% [83]. Clones were assigned as
being differentially expressed if both the FDR adjusted P
values were less than 0.001 and a greater than two fold
change in expression level. Details of the TRAITS/SGP
microarray are available at European Bioinformatics
Institute (EBI) ArrayExpress platform http://www.ebi.ac.
uk/arrayexpress under accession number A-MEXP-664.

Table 7 Primers for real time PCR analysis

Primer name Gene name Accession number Primer sequence Annealing temp product size

Exs1F1 Hepcidin AF542965.1 GCTGTTCCTTTCTCCGAGGTG 55°C 163

Exs1R1 GACAGCAGTTGCAGCACAAAC

sTRL5F1 TRL 5 AY628755.1 GACCCCGGTGTGGCTGAA 55°C 310

sTRL5R1 TGGCTGATTTGTTTTACGCTGT

Exs5F1 Jun B CA056715.1 TACTGCACTGTTGGGACAGC 55°C 171

Exs5R1 GTTCAGTATGCCCCGAGTGT

Exst10F1 CAAT/EBP DW550698 CAGCGGGTGTTAAGATCCAT 55°C 200

Exst10R1 GCAGCAGGAGGATCCAAGTA

Exs22F COUP TF CK887094.1 CATCGAAAGCCTGCAGGAGAAATC 55°C 165

Exs22R CCTACCAAGCGGACGAAGAACAGC

Exs3F1 Precerebellin CB511158.1 GAGGGAACTGACAGCCAGAG 55°C 246

Exs3R1 TTCCCAACATTGCAAGTGAA

Exs2F1 C-type lectin CB516930 AATCAGTTTGGCAAGCAGCAGA 55°C 374

Exs2R1 AAGCGATTTGAGATGTTTTAGTG

Exs14F SAA BQ037050.1 CCCTGCAGGTGCTAAAGACAT 55°C 186

Exs14R CCTCGACCACTGGAACCCTGAA

EF1AEF ELF-1a AF321836.1 CAAGGATATCCGTCGTGGCA 55°C 327

EF1aER ACAGCGAAACGACCAAGAGG

PCR primers for real time PCR analysis to assay gene expression of cDNAs found to be differentially expressed by the diet and infection experiments. Amplified
cDNA was monitored by Sybr green (BioRad) incorporation on an Opticon real time PCR machine.
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The raw hybridisations data have been deposited at
ArrayExpress under accession number (E-MEXP-2496).
All experimental procedures for array construction,
hybridisation and analysis comply with MIAME guide-
lines [84].
Analysis of gene ontology
Enrichment for specific gene ontology (GO) categories
was performed on all those cDNA features that had
associated GO identifiers using the GOEAST program
[85]. Fisher’s exact test was used within the GOEAST
program to determine if GO identifiers occurred more
often in a group than would appear by chance. For GO
analysis only biological process GO identifiers were con-
sidered that occurred more than 4 times.
Real time PCR
All RNA samples for real time PCR were taken from the
same pool of material as used for microarray analysis.
RNA (2 μg) was denatured (65°C, 10 min) in the pre-
sence of 1 μl oligo dT17 primer (500 ng μl-1), left at
room temperature for 5 min to allow annealing, then
kept on ice. cDNA was synthesised using 15 U Bioscript
reverse transcriptase (Bioline, UK) in the presence of
dNTPs (final concentration 200 μM each), at 42°C for 1
h in a final volume of 20 μl. The cDNA was diluted to
100 μl and 3 μl used as template for PCR using primers
designed against the Atlantic salmon genes of interest
(Table 7). cDNA amplification using ready-prepared 2×
SYBR Green PCR master mix (Biorad) was performed in
25 μL volumes on a white BioRad 96 well PCR plate
covered with transparent film, and an Opticon qPCR
machine was used for monitoring cDNA amplification. A
negative control (no template) reaction was also per-
formed for each primer pair. Efficiency of amplification
was determined for each primer pair using 10 fold dilu-
tions (1, 10, 100 & 1000 fold dilutions). Elongation factor
1a was used for normalization of expression, previously
validated for real time PCR [86]. PCR conditions for all
gene assays were 95°C for 5 min followed by 94°C for
15 s, 57°C for 15 s, 72°C for 20 s for a total of 35 cycles.
The fluorescence signal output was measured and
recorded at 78°C during each cycle for all wells. Melting
curves (1°C steps between 75°C - 95°C) ensured that only
a single product had been amplified in each reaction.
A sample from the serial dilution was separated on an
ethidium bromide stained agarose gel, to confirm that a
single band of correct size was amplified.
To determine the relative expression level of candidate

genes the method described by Paffle [87] was employed
using elongation factor 1a as house keeping gene. The
efficiency of the PCR reaction for each primer set was
measured on the same plate as the experimental sam-
ples. The efficiency was calculated as E = 10(-1/s) where
s is the slope generated from the serial dilutions, when
Log dilution is plotted against ΔCT (threshold cycle

number). For all real time PCRs six replicates were
performed and statistical analysis performed by t-test.

Additional material

Additional file 1: Table S1. Full list of genes altered significantly in
following infection and starvation.

Additional file 2: Table S2. GO Biological processes enriched following
starvation and infection.

Additional file 3: Table S3. Genes altered significantly in liver by
infection.

Additional file 4: Table S4. Full list of genes responding differently to
infection between fed and starved fish.
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