A Human-Curated Annotation of the *Candida albicans* Genome

Burkhard R. Braun¹, Marco van het Hoog², Christophe d'Enfert³, Mikhail Martchenko², Jan Dungan⁴, Alan Kuo⁴, Diane O. Inglis¹, M. Andrew Uhl¹, Hervé Hogues², Matthew Berriman⁵, Michael Lorenz⁶, Anastasia Levitin², Ursula Oberholzer², Catherine Bachewich², Doreen Harcus², Anne Marcil², Daniel Dignard², Tatiana louk², Rosa Zito², Lionel Frangeul⁷, Fredj Tekaia⁸, Kim Rutherford⁵, Edwin Wang², Carol A. Munro⁹, Steve Bates⁹, Neil A. Gow⁹, Lois L. Hoyer¹⁰, Gerwald Köhler⁴, Joachim Morschhäuser¹¹, George Newport⁴, Sadri Znaidi¹², Martine Raymond¹², Bernard Turcotte¹³, Gavin Sherlock¹⁴, Maria Costanzo¹⁴, Jan Ihmels¹⁵, Judith Berman¹⁶, Dominique Sanglard¹⁷, Nina Agabian⁴, Aaron P. Mitchell¹⁸, Alexander D. Johnson¹, Malcolm Whiteway², André Nantel^{2*}

1 Department of Microbiology and Immunology, University of California, San Francisco, California, United States of America, 2 Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada, 3 Unité Postulante Biologie et Pathogénicité Fongiques, INRA USC 2019, Institut Pasteur, Paris, France, 4 Department of Stomatology, University of California, San Francisco, California, United States of America, 5 The Sanger Centre, Cambridge, United Kingdom, 6 Department of Microbiology and Molecular Genetics, Utah-Houston Medical School, Houston, Texas, United States of America, 7 Plate-Forme Intégration et Analyse Génomique, Institut Pasteur, Paris, France, 8 Unité de Génétique Moléculaire des Levures, Institut Pasteur, Paris, France, 9 School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom, 10 Department of Veterinary Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America, 11 Institut für Molekulare Infektionsbiologie, Universität Wurzburg, Wurzburg, Germany, 12 Institut de Recherches Cliniques de Montreal, Montreal, Quebec, Canada, 13 Department of Medicine, Royal Victoria Hospital, McGill University, Montreal, Quebec, Canada, 14 Department of Genetics, Stanford University School of Medicine, Palo Alto, California, United States of America, 15 Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel, 16 Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America, 17 Institute of Microbiology, University Hospital Lausanne, Lausanne, Switzerland, 18 Department of Microbiology and Institute of Cancer Research, Columbia University, New York, New York, United States of America

Recent sequencing and assembly of the genome for the fungal pathogen *Candida albicans* used simple automated procedures for the identification of putative genes. We have reviewed the entire assembly, both by hand and with additional bioinformatic resources, to accurately map and describe 6,354 genes and to identify 246 genes whose original database entries contained sequencing errors (or possibly mutations) that affect their reading frame. Comparison with other fungal genomes permitted the identification of numerous fungus-specific genes that might be targeted for antifungal therapy. We also observed that, compared to other fungi, the protein-coding sequences in the *C. albicans* genome are especially rich in short sequence repeats. Finally, our improved annotation permitted a detailed analysis of several multigene families, and comparative genomic studies showed that *C. albicans* has a far greater catabolic range, encoding respiratory Complex 1, several novel oxidoreductases and ketone body degrading enzymes, malonyl-CoA and enoyl-CoA carriers, several novel amino acid degrading enzymes, a variety of secreted catabolic lipases and proteases, and numerous transporters to assimilate the resulting nutrients. The results of these efforts will ensure that the *Candida* research community has uniform and comprehensive genomic information for medical research as well as for future diagnostic and therapeutic applications.

Citation: Braun BR, van het Hoog M, d'Enfert C, Martchenko M, Dungan J, et al. (2005) A human-curated annotation of the Candida albicans genome. PLoS Genet 1(1): e1.

Introduction

Candida albicans is a commonly encountered fungal pathogen responsible for infections generally classed as either superficial (thrush and vaginitis) or systemic (such as lifethreatening blood-borne candidiasis) [1,2]. Its life cycle has fascinating aspects that have generated great excitement over the last decade, with an influx of workers and new molecular techniques brought to bear on long-standing problems [3]. Topics of particular interest are the organism's capacity to shift into several different phenotypic states, some with distinct roles in infection, and its recently discovered capacity to mate, providing at least part of a sexual cycle, although population genetic studies indicate that it is still largely a clonal diploid population. Other special adaptations for infection include a battery of externally displayed proteins and secreted digestive enzymes; complex interactions with the host immune system normally keep C. albicans at bay as a minor part of the mucosal flora [1,4,5].

Here, we report a detailed annotation of the genome sequence of this organism, bringing the previously available raw sequence to a new level of stability and usability. The genome of *C. albicans* has previously been shotgun sequenced to a level of 10.9-fold coverage [6]. However the assembly of

Received January 10, 2005; Accepted March 14, 2005; Published June 17, 2005 DOI: 10.1371/journal.pgen.0010001

Copyright: © 2005 Braun et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abbreviations: ABC, ATP-binding cassette; CGD, Candida Genome Database; e-value, expect value; EC, Enzyme Commission; GO, Gene Ontology; IPF, individual protein file; NR, non-redundant; ORF, open reading frame; SGD, Saccharomyces Genome Database; SGTC, Stanford Genome Technology Center; STR, short tandem repeat; TMS, transmembrane segment

Editor: Michael Snyder, Yale University, United States of America

*To whom correspondence should be addressed. E-mail: andre.nantel@nrc-cnrc.gc.ca

Synopsis

Candida albicans is a commonly encountered fungal pathogen usually responsible for superficial infections (thrush and vaginitis). However, an estimated 30% of severe fungal infections, most due to Candida, result in death. Those who are most at risk include individuals taking immune-suppressive drugs following organ transplantation, people with HIV infection, premature infants, and cancer patients undergoing chemotherapy. Current therapies for this pathogen are made more difficult by the significant secondary effects of anti-fungal drugs that target proteins that are also found in the human host.

Recent sequencing and assembly of the genome for the fungal pathogen C. albicans used simple automated procedures for the identification of putative genes. Here, we report a detailed annotation of the 6,354 genes that are present in the genome sequence of this organism, essentially writing the dictionary of the C. albicans genome.

Comparison with other fungal genomes permitted the identification of numerous fungus-specific genes that are absent from the human genome and whose products might be targeted for antifungal therapy. The results of these efforts will thus ensure that the Candida research community has uniform and comprehensive genomic information for medical research, for the development of functional genomic tools as well as for future diagnostic and therapeutic applications.

this sequence faced special difficulties because the organism is diploid but with little or no gene exchange in the wild. Thus homologous chromosomes show substantial divergence, and many genes are present as two distinctive alleles. This required that the assembly process be aware of the diploid status and be prepared to segregate reads into two alleles for any section of the genome. At the same time, the genome is rich in recently diverged gene families that are easily confused with alleles. This task was further complicated by the absence of a complete physical map of the C. albicans genome. Nevertheless, this arduous assembly process resulted in a dataset (assembly 19, with 266 primary contigs over eight chromosomes) that has already yielded a number of significant advances including the production of DNA microarrays [7], libraries of systematic gene knockouts [8], large-scale transposon mutagenesis [9], and the ability of many individual researchers to identify novel genes using bioinformatic tools [10]. Unfortunately, due to the mostly computational methods used in its development, the current genome assembly still contains a significant number of predicted genes that are fragmented, overlapping, or otherwise erroneous. As a consequence, different groups have been using different methods for the identification and classification of C. albicans genes, which has hindered communication and complicated comparisons between large-scale datasets.

Following the publication of these early functional genomics studies, it was realized that the needs of the C. albicans research community would be better served by a unified gene nomenclature. The results of this community-based effort were initially based on the version 19 computational assembly and preliminary annotation produced independently by various research groups. We used visual inspection of 11,615 putative coding sequences and various bioinformatic tools to refine the quality and description of each open reading frame (ORF).

In all, we provide unique identifiers, coordinates, names, and descriptions for 6,354 genes. With the exception of certain large gene families, we have not annotated the portion of the assembly 19 DNA that was set aside as secondary alleles, instead concentrating on the primary sequence that forms one haploid genome equivalent. Investigation of the identity and relative divergence of all alleles will be an important further project for the C. albicans genome, as will finishing and linking the small number of gaps that remain in the primary sequence. In addition, we describe a variety of gene families and we discuss insights into virulence. Finally, we use comparative genomics to point out a variety of additional insights that are illuminated by the high-quality annotation provided here. This project serves as a model for community-based annotation that could be applied by other research communities that wish to improve on automated sequencing pipeline output that may be available for their organisms of interest.

Results/Discussion

The Annotation Process

Compilation of Candida annotation data. As detailed in Materials and Methods, we used assembly version 19 of the C. albicans genome [6] to identify 11,615 putative ORFs. These included genes encoding proteins greater than 150 aa as well as genes encoding smaller proteins of 50-149 aa that have a coding function greater than 0.5 as determined with a GeneMark matrix [11]. These ORFs were then compared to the set of 7,680 C. albicans ORFs defined by the Stanford Genome Technology Center (SGTC), thus permitting their classification using the same systematic identifiers of the format orf19.n [6]. The 3,936 novel ORFs without an orf19.ncounterpart were assigned a new reference number of the format orf 19.n.i where orf 19.n is the five-prime closest (contig-wise) ORF defined by the SGTC and i is an integer that varies between one and the number of novel ORFs found in the orf19.n to orf19.(n + 1) interval. To simplify correlation with previously published data that use the orf6.n or earlier nomenclatures, we have produced a Web-accessible translation tool (http://candida.bri.nrc.ca).

Positional information for each ORF was merged with data from a variety of different sources, including the SGTC (http://www-sequence.stanford.edu/group/candida/index.html), CandidaDB (http://genolist.pasteur.fr/CandidaDB; [12]), the Agabian laboratory (http://agabian.ucsf.edu/canoDB/ anno.php), and the Johnson/Fink laboratories [13], whose annotation data had been updated with a Magpie annotation [7]. This large dataset was then reformatted into EMBL-style files, thus allowing for input in the Artemis annotation software [14]. Volunteer annotators accessed a custom-made database to reserve and download EMBL files containing sequence and annotation data for each of the 266 DNA sequence contigs. To help in validating various and sometimes conflicting sources of information, translated protein sequences from putative C. albicans ORFs were compared to putative protein sequences extracted from five fungal genomes—Saccharomyces cerevisiae [15,16], Schizosaccharomyces pombe [17], Neurospora crassa [18], Aspergillus nidulans (Aspergillus nidulans Database, http://www-genome.wi.mit.edu/annotation/

fungi/aspergillus/), and Magnaporthe grisea (Magnaporthe grisea Database, http://www-genome.wi.mit.edu/annotation/fungi/magnaporthe/)—as well as to the genomes of five other eukaryotes—Arabidopsis thaliana [19], Drosophila melanogaster [20], Caenorhadbitis elegans [21], Mus musculus [22], and Homo sapiens [23]—and the GenBank non-redundant (NR) protein database. Comparisons against the translated C. albicans genome were also performed to help identify overlapping genes and putative gene families.

To help interpret such a large number of sequence comparisons, we organized sequence similarity data in a Web-accessible database using a novel visualization concept whereby we used a colorimetric display to indicate BLAST similarity, which was easy and rapid to scan visually (Figure 1). The annotators could thus rapidly determine which genes are potentially unique to C. albicans (e.g., orf19.4741 and orf19.4786), those that are members of gene families (e.g., orf19.4736 and orf19.4779), genes that only have homologs in fungal genomes (e.g., orf19.4756 and orf19.4778), or those with homologs in all eukaryotic genomes (e.g., orf19.4732 and orf19.4784). Finally, a strong hit against the complete NR database, but not in the other genomes (orf19.4772 and orf19.4800), allowed us to identify C. albicans genes that had already been described and submitted to the sequence databases prior to the publication of assembly orf19. Clicking on the relevant boxes opened an additional window containing the precompiled sequence alignments, thus permitting the validation of interesting observations. These visualization tools and the results of sequence comparisons are available at http://candida.bri.nrc.ca/candida/index.cfm?page=blast.

The coordinates and annotations for all 11,615 putative ORFs were thus verified, corrected, and (if necessary) rewritten by the annotators. We removed ORFs smaller than 300 bp with no significant sequence similarity to other genes, either within the *C. albicans* genome or in the sequence databases. In cases where two ORFs overlapped by more than 50%, the smallest gene was removed unless it showed even a slight sequence similarity to another gene in the sequence databases. In other cases, we encountered two, or more, contiguous ORFs that obviously were part of the same gene.

Figure 1. Visualization of Protein Sequence Similarities

Sample from a Web page used by annotators of the *C. albicans* genome to visualize the significance of the best hit from whole-proteome BLASTP searches. Each putative ORF was compared to the NR database, the *Candida* ORF list itself (Ca19; showing results from the four top hits), and amino acid sequences from the proteomes of *S. cerevisiae* (Sac), *S. pombe* (S.p), *M. grisea* (Mag), *N. crassa* (Neu), *H. sapiens* (H.S), *M. musculus* (M.m), *D. melanogaster* (Dro), *C. elegans* (C.e), and *A. thaliana* (A.t). The BLASTP *e*-value from the top hit was converted to a color scale as indicated. Examples of *C. albicans* genes with interesting similarity patterns are indicated.

DOI: 10.1371/journal.pgen.0010001.g001

These interruptions were usually due to unidentified introns or presumed sequencing errors. In these cases, we decided to merge the relevant gene fragments into a single entry. A total of 5,262 ORF entries were thus removed from the database, or merged with neighboring ORFs, leaving 6,354 confirmed genes. Sequence and/or annotation data can be obtained in Dataset S1 or at http://candida.bri.nrc.ca.

A nomenclature for C. albicans genes. Following consultations with the C. albicans research community during the fifth and sixth American Society for Microbiology Conferences on Candida and Candidiasis, it was agreed that C. albicans gene names should follow the format established for S. cerevisiae [24]. Gene names consist of three letters (the gene symbol) followed by an integer (e.g., ADE12); the gene symbol should be an acronym for, or relate to, the gene function, gene product, or mutant phenotype. It is preferable that a given gene symbol have only one meaning, so that all genes using that symbol are related in some way, for instance, by sharing a function, participating in a shared pathway, or belonging to the same gene family. In addition, gene symbols that are used in S. cerevisiae gene names should retain the same meaning when used for *C. albicans* genes. The prefix 'Ca' has sometimes been used on gene names to denote that a gene is derived from C. albicans; however, while the use of prefixes adds clarity to discussions of genes from different species that share a name (e.g., comparing CaURA3 to ScURA3), the prefix is not considered part of the gene name proper. Finally, allele designations and deletion symbols should come after the gene name (ICG1-8 and $icg1\Delta$ for example). For more details on genetic nomenclature, see the Candida Genome Database (CGD; [25]) Web page on this topic (http://www.candidagenome. org/Nomenclature.html).

Wherever possible, genes that are orthologous between C. albicans and S. cerevisiae should share the same name. We have provided 3,409 suggested names (in the SuggGene field of the EMBL files) for many C. albicans ORFs based on their orthology to S. cerevisiae genes; these are not yet considered the standard C. albicans gene names, but rather provide guidance for investigators wishing to name these genes. CGD assigns standard names to C. albicans genes for which there are published data (the PubGene field). The annotation contains 355 such entries. Generally, CGD considers the first published name in the correct format to be the standard name; common usage and uniqueness are also considered. All names that have been used for a gene are collected in CGD, regardless of their format, so that information from the literature can be traced to the correct gene. In the current annotation, additional published gene names have been placed in the Synonym field.

Public access to the data. The complete annotation dataset, results of BLAST sequence similarity searches, and the identification of conserved protein domains can be obtained from our Web page (http://candida.bri.nrc.ca/). Furthermore, CGD (http://www.candidagenome.org), funded by the National Institute for Dental and Craniofacial Research of the National Institutes of Health, will curate the scientific literature and provide tools for accessing and analyzing the *C. albicans* genome sequence. In addition, CGD will act as a central repository for gene names and modifications, as approved by the *C. albicans* research community at the American Society for Microbiology *Candida* and Candidiasis meeting in Austin, Texas, in March 2004. CGD itself will not

name *C. albicans* genes, but instead will act as a clearinghouse for the standard gene names and aliases, as the *Saccharomyces* Genome Database (SGD) does for the *S. cerevisiae* community. CGD hopes that researchers will follow CGD's gene nomenclature guidelines (see above) and keep CGD informed of any new gene names. Prior to publication, researchers may reserve a gene name, which will then become the standard name upon publication. Finally, the CandidaDB database (http://genolist.pasteur.fr/CandidaDB) [12], which has provided an annotation of the *C. albicans* genome sequence since January 2001, will be updated to take into account the complete annotation dataset and will continue to provide tools for accessing and analyzing the *C. albicans* genome sequence complementary to those available at the CGD and the Biotechnology Research Institute.

Content and General Statistics

As detailed in Tables 1 and 2, we identified 6,354 genes in version 19 of the C. albicans genome assembly. This number is certain to change slightly with time as more data come to light. For instance, 80 of these genes are probably duplicates, having almost identical counterparts near the extremities of sequence contigs. Novel genes may also lie in unsequenced/ unassembled gaps between the DNA sequence contigs. We identified 246 genes containing mutations or sequencing errors that result in a frameshift, or the insertion of a stop codon, that will have to be confirmed through resequencing. In the meantime, these elements have been joined as a single ORF entry and tagged with the entry "sequencing error?" inside their Note field. We have also identified 190 genes truncated at the ends of contigs, only 35 of which have an identical counterpart on a potentially overlapping contig. New information will be continuously integrated into the community data as it is submitted.

The mean protein coding length of 1,439 bp (480 aa) is almost identical to what has been observed in *S. cerevisiae* and *S. pombe*, while the gene density stands at one gene per 2,342 bp. Short descriptions for all gene products were provided by annotators, usually based on sequence similarity. A total of 1,218 (19.2%) genes encode unique proteins with no significant homologs in the sequence databases, a percentage almost identical to that observed in the current version of the *S. cerevisiae* annotation [16]. An additional 819 (12.9%) gene

products exhibited significant similarities to other proteins of unknown function. Furthermore, we have provided Enzyme Commission (EC) numbers and Gene Ontology (GO) terms for 1,334 and 3,586 gene products, respectively.

Intron analysis. There are 215 ORFs containing at least one intron, four of which have two introns, one gene (encoding the Hxt4p transporter) has three, and the SIN3 gene has four. A total of 43 (20.2%) of these genes encode ribosomal proteins, 63 (29.6%) encode products with enzymatic activity, and 26 (12.2%) encode trans-membrane proteins involved in small molecule transport. We measured the relative position of introns in their host ORFs and observed that a significant proportion of them are located in the 5' end of ORFs, with 32% of introns being located within the first 10% of the coding sequences. A survey of the distribution of introns in 18 eukaryotic genomes, including S. cerevisiae and H. sapiens, also indicated a similar bias in intron-poor genomes. It has been argued that this 5' bias is an indication that introns are particularly difficult to remove by cDNA recombination, because of the high activity of these genes and paucity of fulllength cDNA, and that this finding lends some support to the idea that introns are being lost more frequently than they are being gained in these lineages [26], although a more recent study of four fungal genomes suggests the presence of additional mechanisms [27].

We surveyed the intron phase distribution and found that *C. albicans* has 50.5%, 20.4%, and 29.1% of phase zero, one, and two introns, respectively. A similar result was observed in fungal, plant, and animal genomes [27,28], suggesting that a similar intron phase distribution may be present in ancient introns and that the intron loss has no preference selection on intron phases. Seventy out of 215 intron-containing ORFs have reciprocal best matches with *S. cerevisiae* genes that also contain introns. Among these 70 ORFs, 25 introns (35.7%) share the same position and the same phase. This suggests that these commonly positioned introns descended from a common ancestor, as suggested previously [29].

Analysis of protein domains. Table 3 shows the most abundant protein domains that were identified in the *C. albicans* proteome. As a comparison, we also performed this analysis on the same ten eukaryotic proteomes that were used in the BLASTP sequence comparisons. Compared to the *S.*

Table 1. Features of Completed Fungal Genomes

Species	Length (Mb)	Number of Genes	Mean Coding Length (bp)	Gene Density ^a	Coding Percent	Introns	Unique Proteins ^b	Reference
C. albicans	14.88	6,354	1,439	2,342	61.5%	224	1,218 (19.2%)	
S. cerevisiae	12.16	5,726	1,485	2,124	69.9%	272	1,104 (19.1%)	16
S. pombe	12.46	4,929	1,426	2,528	57.5%	2,034	681 (14%)	17
N. crassa	38.64	10,082	1,673	3,832	43.6%	17,139	4,140 (41%)	18
C. glabrata	12.28	5,283	1,479	2,324	65.0%	nd	nd	128
Kluyveromyces lactis	10.63	5,329	1,383	1,995	71.6%	nd	nd	128
Debaryomyces hansenii	12.22	6,906	1,167	1,769	79.2%	nd	nd	128
Yarrowia lipolytica	20.50	6,703	1,428	3,058	46.3%	nd	nd	128
Cryptococcus neoformans	19.05	6,572	1,909	2,925	65.8%	34,909	35%	129

^aNumber of base pairs in genome divided by number of genes.

^bNumber and proportion of proteins with no significant similarity to known proteins.

nd, not determine

DOI: 10.1371/journal.pgen.0010001.t001

Table 2. Statistics of the C. albicans Annotation

Parameter	Value
Number of genes	6,354
Published/reserved gene names	355
Suggested gene names	3,409
Genes with synonyms/multiple names	85
Genes in putative contig overlaps	80
Truncated genes at end of contigs	190
Sequencing errors/frameshift mutations	246
Gene product descriptions	4,317
Conserved hypothetical proteins	819
Hypothetical proteins	1,218
Products with EC numbers	1,334
Total number of EC numbers	1,463
Products with GO Terms ^a	3,438
Number of GO terms ^a	13,835

^aExcluding "unknown." DOI: 10.1371/journal.pgen.0010001.t002

pombe and *S. cerevisiae* proteomes, the *C. albicans* proteome shows a slight increase in the abundance of leucine-rich repeats (IPR001611), some zinc finger transcription factors (IPR001138), esterases/lipases (IPR000379), and *trans*-membrane transporters for polyamines (IPR002293) and for amino acids (IPR004841). If the analysis is expanded to the other fungal proteomes, only the increased abundance in leucine-rich repeats appears to be unique to *C. albicans*.

Genome-Based Identification of Antifungal Targets

One of the main arguments supporting large-scale sequencing projects for fungal pathogens is the hope of finding novel antifungal targets, particularly those that are absent from the genome of their host. Table 4 shows a list of 228 C. albicans genes that have a very strong sequence homolog (based on a top hit BLASTP expect value (e-value) < 1e⁻⁴⁵) in all five fungal genomes but no significant sequence similarity (best BLASTP *e*-value $> 1e^{-10}$) to genes in the genomes of either humans or mice. For example, this list includes FKS1, which encodes a 1,3-beta-glucan synthase that is the target for the cell wall agents called echinocandins [30]. The list includes 46 gene products that are assumed to be located on the plasma membrane, 71 that are predicted to be involved in the transport of small molecules, and 21 that appear to be involved, directly or indirectly, with cell wall synthesis. Furthermore, 41 gene products have been associated with an EC number, indicating an enzymatic activity, with phospholipases being the most abundant. The roles and sites of action of these gene products suggest that they would be both accessible and theoretically amenable to inhibition by small molecules.

Short Tandem Repeats

Short tandem repeats (STRs), also called short sequence repeats or microsatellite DNA, play an important role in evolution and have been used to characterize population variability. Although they can arise through DNA polymerase slippage and unequal recombination, whole-genome analysis has suggested that additional mechanisms for the control of STR production/correction remain to be identified [31–33]. Jones et al. [6] scanned the *C. albicans* genome for STRs of unit sizes between two and five and identified 1,940 trinucleotide

repeats in their ORF sequences. To confirm that this high STR frequency is indeed a hallmark of the *C. albicans* genome, we used a statistical approach to measure repeat frequencies in four completed fungal genomes with an emphasis on STRs that affect protein sequences. We used randomized genome sequences to calculate the probability that each potential STR (including mutations that may arise following the amplification event) is nonrandom, and used only those with greater than 95% probability.

As can be seen in Datasets S2-S5 and Table 5, the STR frequencies in C. albicans and N. crassa are significantly greater than the frequencies observed in S. cerevisiae and S. pombe. Repeats that occur inside coding sequences are further characterized in Table 5. As would be expected, repeats with a modulo of three are more common in coding sequences, although we note that species with the greatest STR frequency have the smallest proportion of repeats that would break a reading frame. While coding sequence STRs in C. albicans and the other fungi most commonly encode for repeats of glutamine, asparagine, glutamic acid, and aspartic acid, we note that some of the repeats that are prevalent in C. albicans genes are distinct. Repeats of the ACT (threonine) and TCA (serine) codons are known to be especially rare in most taxa [31,33]. Correlating STR distribution with Gene Ontology annotations shows that a significant proportion of the C. albicans genes whose products are classified as DNAbinding proteins or cytoskeletal elements also contain STRs. Several gene products have been shown to play a role in the generation/correction of novel STRs in eukaryotes [34]. A comparison of the aa sequences of Rad51p, Rad52p, Mre1p, Hpr5p, and Pob3p from C. albicans, S. cerevisiae, S. pombe, and N. crassa did not reveal any significant correlation that could be associated with changes in the STR distribution. The high proportion of STRs in C. albicans genes argues that this organism would make a better model than S. cerevisiae for studying the creation and elongation of these elements that cause a variety of neuromuscular pathologies in humans. Our observations further indicate that future studies on STR frequency in eukaryotic genomes should include a broader spectrum of fungal genomes. The S. cerevisiae genome has been used as the fungal representative in comparative studies published to date [31-33].

Identification of Spurious Genes

Some of the 6,354 predicted ORFs are likely to be spurious. We used data from S. cerevisiae to model an approach that combines gene length, gene homology, and gene expression data to search for spurious gene candidates. Theoretically, genes with no sequence similarity and with expression profiles that do not correlate with other known genes are much more likely to be spurious. In an earlier study, spurious genes in S. cerevisiae were identified by sequence comparison between four closely related yeast species [16]. Most did not have orthologs with other eukaryotes, were of short length, and had expression profiles that were not significantly correlated with those of other genes in the genome (Figure 2A and 2B). Combining both the criteria of sequence homology and expression correlation produced a list of S. cerevisiae candidate genes that was highly enriched for ORFs that were considered to be spurious based on the separate sequence comparison between the closely related species. We repeated this homology/expression/length analysis on genes

Table 3. Number, Abundance Ranking, and Proportion of Gene Products Containing the Indicated Interpro Protein Domain in C. albicans and Other Eukaryotes

Interpro	Description	C. alb- icans	S. cer- evisiae	S. pombe	A. niger	M. grisea	N. crassa	A. thaliana	C. elegans	D. mela- nogaster	M. musculus	H. sapiens
		124 (1)	126 (1)	120 (2)	140 (4)	146 (2)	1.42 (1)	1 146 (1)	1.015 (2)	472 (1)	F02 (C)	700 (4)
IPR011009	Protein kinase-like	124 (1) 1.95%	136 (1) 2.19%	129 (2) 2.59%	140 (4) 1.47%	146 (3) 1.31%	142 (1) 1.41%	1,146 (1) 3.98%	1,015 (2) 3.05%	472 (1) 2.64%	592 (6) 2.33%	700 (4) 2.76%
IPR008938	ARM repeat fold	112 (2) 1.76%	109 (6) 1.76%	131 (1) 2.63%	116 (12) 1.22%	108 (11) 0.97%	120 (5) 1.19%	390 (12) 1.35%	384 (16) 1.15%	270 (7) 1.51%	364 (11) 1.43%	388 (13) 1.53%
IPR011046	WD40-like	111 (3) 1.74%	120 (3) 1.93%	121 (3) 2.43%	125 (9) 1.31%	105 (12) 0.95%	120 (4) 1.19%	267 (23) 0.93%	310 (18) 0.93%	245 (11) 1.37%	278 (22) 1.10%	326 (20) 1.29%
IPR000719	Protein kinase	105 (4)	123 (2)	109 (5)	117 (11)	117 (7)	126 (2)	1,122 (2)	908 (3)	401 (3)	572 (7)	678 (5)
IPR001680	G protein beta	1.65% 100 (5)	1.98% 101 (8)	2.19% 119 (4)	1.23% 126 (8)	1.05% 114 (9)	1.25% 121 (3)	3.90% 297 (18)	2.73% 283 (22)	2.24% 238 (12)	2.25% 286 (19)	2.68% 333 (19)
	WD40 repeat Serine/threonine	1.57% 96 (6)	1.63% 114 (4)	2.39% 105 (6)	1.32% 102 (17)	1.03% 99 (14)	1.20% 99 (7)	1.03% 1,068 (3)	0.85% 829 (4)	1.33% 359 (4)	1.13% 509 (8)	1.32% 635 (6)
IPR002290	protein kinase	1.51%	1.84%	2.11%	1.07%	0.89%	0.98%	3.71%	2.49%	2.01%	2.01%	2.51%
IPR008271	Serine/threonine protein kinase, active site	92 (7) 1.44%	111 (5) 1.79%	94 (8) 1.89%	86 (19) 0.90%	78 (27) 0.70%	80 (13) 0.79%	848 (5) 2.95%	453 (12) 1.36%	253 (9) 1.42%	322 (14) 1.27%	415 (10) 1.64%
IPR001138	Fungal transcriptional regulatory protein, N-terminal	76 (9) 1.19%	53 (16) 0.85%	31 (24) 0.62%	217 (2) 2.27%	122 (6) 1.10%	93 (9) 0.92%	1 (3125) 0%	_	_	_	1 (3209) 0%
IPR003593	AAA ATPase	75 (10)	82 (9)	69 (11)	107 (15)	92 (16)	93 (10)	322 (16)	185 (41)	160 (24)	136 (52)	172 (43)
IPR007114	Major facilitator	1.18% 71 (11)	1.32% 62 (14)	1.39% 52 (14)	1.12% 293 (1)	0.83% 175 (1)	0.92% 115 (6)	1.12% 107 (66)	0.56% 211 (34)	0.89% 139 (30)	0.54% 88 (88)	0.68% 97 (85)
	superfamily	1.11% 71 (12)	1% 63 (13)	1.05% 70 (10)	3.07% 112 (13)	1.58% 86 (19)	1.14% 82 (12)	0.37% 623 (7)	0.63% 218 (32)	0.78% 184 (18)	0.35% 225 (30)	0.38% 245 (31)
IPR008941	TPR-like	1.11%	1.02%	1.41%	1.17%	0.77%	0.81%	2.16%	0.65%	1.03%	0.89%	0.97%
IPR001410	DEAD/DEAH box helicase	65 (13) 1.02%	78 (10) 1.26%	68 (12) 1.37%	71 (29) 0.74%	71 (33) 0.64%	74 (16) 0.73%	156 (41) 0.54%	178 (43) 0.53%	99 (49) 0.55%	117 (66) 0.46%	126 (63) 0.50%
IPR001650	Helicase, C-terminal	63 (14) 0.99%	76 (11) 1.23%	67 (13) 1.35%	70 (30) 0.73%	73 (31) 0.66%	70 (18) 0.69%	153 (43) 0.53%	165 (52) 0.50%	101 (44) 0.56%	110 (68) 0.43%	120 (68) 0.47%
IPR001611	Leucine-rich repeat	62 (15) 0.97%	14 (98) 0.23%	13 (95) 0.26%	16 (142) 0.17%	14 (157) 0.13%	16 (104) 0.16%	556 (8) 1.93%	158 (55) 0.47%	174 (19) 0.97%	261 (24) 1.03%	288 (25) 1.14%
IPR000504	RNA-binding region RNP-1 (RNA recognition motif)	60 (16) 0.94%	65 (12) 1.05%	86 (9) 1.73%	81 (24) 0.85%	81 (24) 0.73%	76 (15) 0.75%	346 (14) 1.20%	266 (23) 0.80%	296 (6) 1.66%	305 (17) 1.20%	333 (18) 1.32%
IPR000379	Esterase/lipase/ thioesterase	54 (17) 0.85%	37 (22) 0.60%	26 (33) 0.52%	103 (16) 1.08%	115 (8) 1.04%	76 (14) 0.75%	237 (25) 0.82%	223 (28) 0.67%	165 (22) 0.92%	118 (65) 0.47%	112 (73) 0.44%
IPR007087	Zinc finger, C ₂ H ₂ type	53 (18) 0.83%	53 (15) 0.85%	34 (20) 0.68%	84 (20) 0.88%	99 (13) 0.89%	97 (8) 0.96%	190 (29) 0.66%	389 (15) 1.17%	433 (2) 2.42%	712 (4) 2.81%	879 (1) 3.47%
IPR000345	Cytochrome c heme-binding site	43 (19) 0.68%	39 (21) 0.63%	37 (17) 0.74%	61 (35) 0.64%	80 (25) 0.72%	51 (26) 0.51%	281 (19) 0.98%	238 (27) 0.71%	202 (16) 1.13%	262 (23) 1.03%	303 (24) 1.20%
IPR001841	Zinc finger, RING	41 (20)	35 (26)	46 (16)	38 (54)	48 (41)	52 (23) 0.52%	489 (10)	261 (24)	159 (25)	293 (18)	339 (17)
IPR009057	Homeodomain-like	0.64% 40 (21)	0.56% 33 (31)	0.92% 27 (31)	0.40% 67 (31)	0.43% 128 (5)	42 (31)	1.70% 490 (9)	0.78% 404 (14)	0.89% 210 (15)	1.15% 362 (12)	1.34% 397 (11)
	General substrate	0.63% 38 (22)	0.53% 39 (20)	0.54% 29 (27)	0.70% 128 (7)	1.15% 75 (30)	0.42% 52 (24)	1.70% 88 (87)	1.21% 101 (85)	1.17% 95 (51)	1.43% 38 (230)	1.57% 45 (202)
IPR005828	transporter Nucleic-acid-binding	0.60% 38 (23)	0.63% 41 (18)	0.58% 51 (15)	1.34% 44 (50)	0.68% 45 (43)	0.52% 45 (30)	0.31% 268 (22)	0.30% 92 (91)	0.53% 70 (61)	0.15% 112 (67)	0.18% 94 (86)
IPR008994	OB-fold	0.60%	0.66%	1.02%	0.46%	0.41%	0.45%	0.93%	0.28%	0.39%	0.44%	0.37%
IPR002048	Calcium-binding EF-hand	38 (24) 0.60%	26 (45) 0.42%	33 (21) 0.66%	41 (51) 0.43%	37 (57) 0.33%	46 (28) 0.46%	269 (2%1) 0.93	219 (31) 0.66%	172 (20) 0.96%	286 (20) 1.13%	321 (21) 1.27%
IPR002293	Amino acid/polyamine transporter l	37 (25) 0.58%	25 (49) 0.40%	21 (47) 0.42%	58 (36) 0.61%	26 (85) 0.23%	18 (90) 0.18%	18 (459) 0.06%	32 (283) 0.10%	27 (211) 0.15%	26 (337) 0.10%	23 (411) 0.09%
IPR005225	Small GTP-binding	37 (26)	43 (17)	35 (19)	35 (61)	38 (54)	38 (36)	128 (53)	118 (72)	117 (34)	163 (39)	180 (39)
	protein domain Sugar transporter	0.58% 35 (27)	0.69% 40 (19)	0.70% 23 (40)	0.37% 107 (14)	0.34% 61 (34)	0.38% 47 (27)	0.44% 109 (64)	0.35% 70 (130)	0.65% 76 (60)	0.64% 49 (168)	0.71% 58 (142)
IPR005829	superfamily	0.55%	0.64%	0.46%	1.12%	0.55%	0.47%	0.38%	0.21%	0.43%	0.19%	0.23%
IPR004841	Amino acid permease- associated region	34 (28) 0.53%	24 (52) 0.39%	21 (48) 0.42%	48 (47) 0.50%	25 (89) 0.23%	18 (91) 0.18%	18 (470) 0.06%	30 (295) 0.09%	27 (203) 0.15%	25 (367) 0.10%	22 (418) 0.09%
IPR001440	TPR repeat	34 (29) 0.53%	33 (29) 0.53%	37 (18) 0.74%	53 (43) 0.56%	42 (47) 0.38%	38 (35) 0.38%	152 (44) 0.53%	125 (69) 0.38%	108 (36) 0.60%	151 (46) 0.60%	160 (47) 0.63%
IPR001993	Mitochondrial	33 (30)	34 (28)	23 (38)	36 (60)	36 (60)	35 (40)	61 (140)	59 (160)	69 (63)	58 (135)	61 (137)
	substrate carrier	0.52%	0.55%	0.46%	0.38%	0.32%	0.35%	0.21%	0.18%	0.39%	0.23%	0.24%

Numbers represent how many gene products have the given domain. Ordered ranking of each domain is given in parentheses. Percentages represent the proportion of gene products that contain at least one of the domains. DOI: 10.1371/journal.pgen.0010001.t003

Table 4. Genes from *C. albicans* with a Strong Homolog in the *S. cerevisiae*, *S. pombe*, *A. niger*, *M. grisea*, and *N. crassa* genomes but Absent from the *H. sapiens* and *M. musculus* Genomes

Systematic ID	Name	Product
orf19.2929	GSL2	1,3-Beta-D-qlucan synthase subunit
orf19.2495	FKS1	1,3-Beta-glucan synthase; target for echinocandin antifungal drugs
orf19.1517	1131	2-Dehydro-3-deoxy-phosphoheptonate aldolase
orf19.6086	LEU4	2-lsopropylmalalate synthase
orf19.3106	MET16	3'-Phosphoadenylylsulfate reductase
orf19.99	MET 222	
		3'(2')5'-Bisphosphate nucleotidase, possibly involved in salt tolerance and methionine synthesis
orf19.4060	ARO4	3-Deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase isoenzyme
orf19.2269	40410	3-Phosphoserine phosphatase
orf19.5113	ADH2	Alcohol dehydrogenase
orf19.309	DAL5	Allantoate permease
orf19.3208	DAL6	Allantoate permease
orf19.5023	DAL7	Allantoate permease
orf19.5859	DAL8	Allantoate permease
orf19.6522		Allantoate permease
orf19.6956	DAL9	Allantoate permease
orf19.313	DAL4	Allantoin permease
orf19.1663	KRE2	Alpha-1,2-mannosyltransferase
orf19.1665	KTR1	Alpha-1,2-mannosyltransferase involved in N- and O-linked glycosylation
orf19.1375	LEU6	Alpha-isopropylmalate synthase
orf19.2810	AAP1	Amino acid permease
orf19.3795	AGP3	Amino acid permease
orf19.4679	AGP2	Amino acid permease
orf19.5672	MEP2	Ammonia permease
orf19.7428	APN1	Apurinic/apyrimidinic endonuclease/3'-repair diesterase
orf19.111	CAN1	Arginine permease
orf19.97		<u> </u>
	CAN2	Arginine permease
orf19.1235	HOM3	Aspartate kinase (L-aspartate 4-P-transferase)
orf19.6959	HOM32	Aspartate kinase (L-aspartate 4-P-transferase); L-aspartate 4-P-transferase
orf19.1559	HOM2	Aspartate-semialdehyde dehydrogenase; threonine and methionine pathway
orf19.4026	HIS1	ATP phosphoribosyltransferase
orf19.5970	HPR5	ATP-dependent DNA helicase involved in DNA repair
orf19.7213		ATP-dependent RNA helicase
orf19.5604	MDR1	Benomyl/methotrexate resistance protein
orf19.7670		Ca ²⁺ /H ⁺ antiporter conserved in fungi
orf19.5796	SHE9	Causes growth arrest when overexpressed
orf19.5531	CDC37	Cell division control protein
orf19.807	CHS5	Chitin biosynthesis protein
orf19.5188	CHS1	Chitin synthase
orf19.7298	CHS2	Chitin synthase 2
orf19.5384	CHS8	Chitin synthase 8
orf19.2946	HNM4	Choline permease
orf19.1170		Chorismate mutase
orf19.1986	ARO2	Chorismate synthase
orf19.3489	ARO22	•
	AnUZZ	Concerned hypothetical membrane protein
orf19.5932		Conserved hypothetical membrane protein
orf19.1240		Conserved hypothetical protein
orf19.246		Conserved hypothetical protein
orf19.2703		Conserved hypothetical protein
orf19.3288		Conserved hypothetical protein
orf19.4907		Conserved hypothetical protein
orf19.5342		Conserved hypothetical protein
orf19.5541		Conserved hypothetical protein
orf19.5605		Conserved hypothetical protein
orf19.5667	MNR2	Conserved hypothetical protein; putative ion transporter
orf19.1427		Conserved hypothetical transporter
rf19.988		Conserved membrane protein
rf19.778	PIL1	Conserved protein
orf19.1989	DCW1	Defective cell wall
orf19.2445	DIP5	Dicarboxylic amino acid permease
orf19.579	FOL1	Dihydroneopterin aldolase, dihydro-6-hydroxymethylpterin pyrophosphokinase
orf19.4040	ILV3	Dihydroxyacid dehydratase
orf19.843	iL13	DNA repair exonuclease
orf19.3417	ACF2	Endo-1,3-beta-glucanase; involved in actin polymerization
orf19.3066	ACF3	, ,
orf19.3066 orf19.979	ACF3 FAS1	Endo-1,3-beta-glucanase Fatty-acyl-CoA synthase, beta chain

Table 4. Continued

orf19.2075 orf19.5285 orf19.5286 orf19.6618 orf19.6682 orf19.5658 orf19.1232 orf19.1799 orf19.3195 orf19.4304 orf19.6659 orf19.2990	DFG5 PST3 YCP4 FBA1 OSM1 MNN10 VRG4 GAP6	Filamentous growth, cell polarity, and elongation Flavodoxin Flavodoxin Fructose-bisphosphate aldolase Fumarate reductase flavoprotein subunit Mannosyltransferase GDP-mannose transporter into the lumen of the Golgi
orf19.5285 orf19.5286 orf19.4618 orf19.6882 orf19.5658 orf19.1232 orf19.1799 orf19.3195 orf19.4304 orf19.6659 orf19.2990	PST3 YCP4 FBA1 OSM1 MNN10 VRG4 GAP6	Flavodoxin Flavodoxin Fructose-bisphosphate aldolase Fumarate reductase flavoprotein subunit Mannosyltransferase GDP-mannose transporter into the lumen of the Golgi
orf19.5286 orf19.4618 orf19.6882 orf19.5658 orf19.1232 orf19.1799 orf19.3195 orf19.4304 orf19.6659 orf19.2990	YCP4 FBA1 OSM1 MNN10 VRG4 GAP6	Flavodoxin Fructose-bisphosphate aldolase Fumarate reductase flavoprotein subunit Mannosyltransferase GDP-mannose transporter into the lumen of the Golgi
orf19.4618 orf19.6882 orf19.5658 orf19.1232 orf19.1799 orf19.3195 orf19.4304 orf19.6659 orf19.2990	FBA1 OSM1 MNN10 VRG4 GAP6	Fructose-bisphosphate aldolase Fumarate reductase flavoprotein subunit Mannosyltransferase GDP-mannose transporter into the lumen of the Golgi
orf19.6882 orf19.5658 orf19.1232 orf19.1799 orf19.3195 orf19.4304 orf19.6659 orf19.2990	OSM1 MNN10 VRG4 GAP6	Fumarate reductase flavoprotein subunit Mannosyltransferase GDP-mannose transporter into the lumen of the Golgi
orf19.5658 orf19.1232 orf19.1799 orf19.3195 orf19.4304 orf19.6659 orf19.2990	MNN10 VRG4 GAP6	Mannosyltransferase GDP-mannose transporter into the lumen of the Golgi
orf19.1232 orf19.1799 orf19.3195 orf19.4304 orf19.6659 orf19.2990	VRG4 GAP6	GDP-mannose transporter into the lumen of the Golgi
orf19.1232 orf19.1799 orf19.3195 orf19.4304 orf19.6659 orf19.2990	VRG4 GAP6	GDP-mannose transporter into the lumen of the Golgi
orf19.1799 orf19.3195 orf19.4304 orf19.6659 orf19.2990	GAP6	·
orf19.3195 orf19.4304 orf19.6659 orf19.2990		General amino acid permease
orf19.4304 orf19.6659 orf19.2990		General amino acid permease
orf19.6659 orf19.2990		•
orf19.2990	GAP1	General amino acid permease
	GAP5	General amino acid permease
orf19.1719	XOG1	Glucan 1,3-beta-glucosidase
	SGA1	Glucoamylase
orf19.5815	SCT2	Glycerol-3-phosphate acyltransferase
orf19.1289	SCT1	Glycerol-3-phosphate O-acyltransferase
orf19.1978	GIT2	Glycerophosphoinositol permease
orf19.1979	GIT3	Glycerophosphoinositol permease
		· · · ·
orf19.1980	GIT4	Glycerophosphoinositol permease
orf19.377	PHR3	Glycophospholipid
orf19.4035	GAS1	Glycosylphosphatidylinositol anchored surface protein
orf19.2862	RIB1	GTP cyclohydrolase II, first step in riboflavin biosynthesis
orf19.2626	RGD2	GTPase activating protein
orf19.730	RGD3	GTPase activating protein (GAP) for Rho
orf19.1422	FZO1	GTPase required for biogenesis of mitochondria
orf19.6387	HSP104	Heat shock protein 104
orf19.1193	GNP2	High-affinity glutamine permease
orf19.7565	GNP3	High-affinity glutamine permease
rf19.7566	GNP1	High-affinity glutamine permease
orf19.2337	ALP1	High-affinity permease for basic amino acids
orf19.3222		Highly conserved hypothetical protein
orf19.3395		Highly conserved hypothetical protein
orf19.2350		Highly conserved hypothetical protein, MFS family transporter
	LUD1	
orf19.4940	HIP1	Histidine permease
orf19.5639	HIS4	Histidinol dehydrogenase
orf19.4506	LYS22	Homocitrate synthase
orf19.772	LYS21	Homocitrate synthase
orf19.923	THR1	Homoserine kinase
orf19.2618	MET2	Homoserine O-acetyltransferase
orf19.2987		Hypothetical membrane protein
orf19.5505	HIS7	Imidazole glycerol phosphate synthase; histidine biosynthesis
orf19.183	HIS3	Imidazoleglycerol-phosphate dehydratase
orf19.3355	ISN1	Inosine 5'-monophosphate 5'-nucleotidase
orf19.4379	PRP13	Integral membrane mitochondrial protein
orf19.1112	BUD7	Involved in bud-site selection
orf19.6068	SVF1	Involved in diauxic shift
orf19.5986	THI4	Involved in thiamine biosynthesis pathway and DNA repair
orf19.2179	ARN1	Iron-siderophore transporter
		· · · · · · · · · · · · · · · · · · ·
orf19.6844	ICL1	Isocitrate lyase
orf19.3412	ATG15	Lipase involved in autophagy
orf19.5839	PDR17	Lipid biosynthesis and multidrug resistance
orf19.3149	LSP1	Long-chain base; stimulates phosphorylation
orf19.1614	MEP1	Low-affinity high-capacity ammonium permease
orf19.600	TRK1	Low-affinity potassium transporter
orf19.3663	PHO91	Low-affinity phosphate transporter
orf19.3622	ANP1	Mannan 8; Golgi mannosyltransferase required for protein glycosylation
		, , , ,
orf19.3171	ACH1	Mannose-containing glycoprotein that binds concanavalin A; acetyl-CoA hydrolase
orf19.4494	KTR2	Mannosyltransferase
orf19.1010	KTR3	Mannosyltransferase involved in O- and N-linked glycosylation
orf19.7158		Member of allantoate permease family
orf19.2160	NAG4	Membrane transporter
orf19.2170		Membrane transporter
orf19.4805	RSN1	•
		Membrane transporter
orf19.4737	DHA12	Membrane transporter of the MFS-MDR family
orf19.7391	OCH1	Membrane-bound alpha-1,6-mannosyltransferase
orf19.5811	MET1	Methionine metabolism; siroheme synthase; uroporphyrin-3 C-methyltransferase
orf19.2551	MET6	Methionine-synthesizing 5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase
orf19.339	NDE1	Mitochondria-directed NADH dehydrogenase

Table 4. Continued

Systematic ID	Name	Product
orf19.2956	MGM101	Mitochondrial genome maintenance protein
orf19.4351	PRP12	Mitochondrial inner membrane protein
orf19.88	ILV5	Mitochondrial ketol-acid reductoisomerase
orf19.2597	MRS2	Mitochondrial magnesium ion transporter, essential for splicing of group II introns
orf19.3422	FMP27	Mitochondrial protein
orf19.2115		Molybdopterin-converting factor
orf19.943	FET33	Multicopper ferro-O ₂ -oxidoreductase
orf19.6577	TPO1	Multidrug resistance protein
orf19.7148	TPO2	Multidrug resistance proteins; polyamine transport protein
orf19.4779	11 02	Multidrug resistance transporter
orf19.304		Multidrug-resistance-type transporter
orf19.367	CNH1	Na ⁺ /H ⁺ antiporter
orf19.5713	NDE1	NADH dehydrogenase
orf19.125	EBP1	NADH denydrogenase NADH: flavin oxidoreductase (old yellow enzyme)
orf19.3612	PST2	
orf19.2192	GDH2	NADH: quinone oxidoreductase; 1,4-benzoquinone reductase
		NAD-specific glutamate dehydrogenase
orf19.3443	OYE2	NAPDH dehydrogenase (old yellow enzyme)
orf19.3433	OYE23	NAPDH dehydrogenase (old yellow enzyme), isoform 2
orf19.7176	NPT1	Nnicotinate phosphoribosyltransferase
orf19.2055	NPL6	Nuclear protein localization factor
orf19.176		Oligopeptide transporter
orf19.2292	OPT4	Oligopeptide transporter protein
orf19.3746	OPT2	Oligopeptide transporter protein
orf19.3749	OPT3	Oligopeptide transporter protein
orf19.4655	OPT6	Oligopeptide transporter protein
orf19.5121	OPT5	Oligopeptide transporter protein
orf19.5673	OPT7	Oligopeptide transporter protein
orf19.2602	OPT1	Oligopeptide transporter specific for tetra- and pentapeptides
orf19.6500	ECM40	Ornithine acetyltransferase
orf19.1291	ABZ1	Para-aminobenzoate synthase (PABA)
orf19.4704	ARO1	Pentafunctional arom polypeptide
orf19.3718	70107	Peptide transporter
orf19.34	GIT1	Permease involved in the uptake of glycerophosphoinositol (GroPlns)
orf19.6081	PHR2	
	PHR1	pH-regulated cell wall protein
orf19.3829		pH-regulated GPI-anchored membrane protein that is required for morphogenesis
orf19.169	CHO2	Phosphatidyl-ethanolamine N-methyltransferase
orf19.1027	PDR16	Phosphatidylinositol transfer protein; drug resistance
orf19.677	CHO1	Phosphatidylserine synthase
orf19.5102	PLB5	Phospholipase B/lysophospholipase
orf19.6594	PLB4	Phospholipase B/lysophospholipase
orf19.689	PLB1	Phospholipase B/lysophospholipase
orf19.690	PLB2	Phospholipase B/lysophospholipase
orf19.7484	ADE1	Phosphoribosyl-amidoimidazole-succinocarboxamide synthetase
orf19.5906	ADE2	Phosphoribosylamino-imidazole-carboxylase; purine biosynthesis
orf19.4381	VTC2	Polyphosphate synthetase
orf19.3363	VTC4	Polyphosphate synthetase
orf19.1504		Potential patatin-like phospholipase
orf19.5426		Predicted esterase of the alpha-beta hydrolase superfamily
orf19.4605	TYR1	Prephenate dehydrogenase; tyrosine biosynthesis
orf19.2945	PUT4	Proline permease
orf19.7577	MSS51	Protein involved in maturation of COX1 and COB mRNA
orf19.6520		Putative allantoate permease
orf19.5995	MCA1	Putative cysteine protease
orf19.1607	ALR1	Putative divalent cation transporter
orf19.2798		Putative helicase
orf19.4475	MNT4	Putative mannosyltransferase
orf19.5029	MODF	Putative membrane protein
orf19.685	YHM1	Putative mitochondrial carrier protein
orf19.4446		Putative permease
orf19.5031	SSK1	Putative reponse regulator two-component phosphorelay gene
orf19.2151	SEY1	Putative stress-related vesicular transport protein
orf19.3232	00.012	Putative transporter
orf19.4608	PDC12	Pyruvate decarboxylase I
orf19.4650	ILV6	Regulatory subunit of acetolacetate synthase
orf19.1311	SPO75	Related to yeast sporulation protein
orf19.7383	MNN9	Required for complex glycosylation
orf19.4024	RIB5	Riboflavin synthase

Table 4. Continued

Systematic ID	Name	Product
orf19.6727	RIT1	Ribosyltransferase of initiator tRNA methionine
orf19.5071	NRP1	RNA-binding Ran zinc finger protein
orf19.1789.1	LYS1	Saccharopine dehydrogenase
orf19.1631	ERG6	S-adenosyl-methionine delta-24-sterol-C-methyltransferase
orf19.1474	SLA1	SH3 domain protein involved in assembly of cortical actin cytoskeleton
orf19.3693	GAS12	Similar to GPI-anchored surface protein GAS1
orf19.4151	SPO1	Similar to phospholipase B
orf19.473	TPO4	Sperimidine transporter
orf19.341	TPO3	Spermidine exporter, MDR-type pump
orf19.5827	BUB2	Spindle body component required for cell cycle arrest in response to loss of microtubule function
orf19.2947	SNZ1	Stationary phase protein
orf19.1203	SRO77	Suppressor of defect in the small GTPase Rho3p
orf19.277	THI6	Thiamin-phosphate pyrophosphorylase and hydroxyethylthiazole kinase
orf19.889	THI20	Thiamine biosynthesis; phosphomethylpyrimidine kinase
orf19.4290	TRR1	Thioredoxin reductase
orf19.3038	TPS2	Threalose-6-phosphate phosphatase
orf19.814	SSY1.5	Transcriptional regulator of multiple amino acid permeases
orf19.4335	TNA1	Transporter of nicotinic acid
orf19.6640	TPS1	Trehalose-6-phosphate synthase
orf19.6511	TRL1	tRNA ligase
orf19.7205	DUR7	Urea active transport protein
orf19.781	DUR3	Urea active transport protein
orf19.5677	DUR4	Urea permease
orf19.405	VCX1	Vacuolar H ⁺ /Ca ²⁺ exchanger
orf19.3344	VPS17	Vacuolar sorting protein
orf19.6324	VID27	Vacuole import and degradation
orf19.6738	VAN1	Vanadate resistance protein
orf19.4621		Weak similarity to pig tubulin-tyrosine ligase

DOI: 10.1371/journal.pgen.0010001.t004

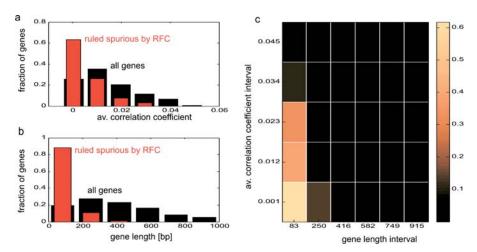


Figure 2. Identification of Spurious Genes

Assessing criteria that identify candidate spurious genes in S. cerevisiae, using a reference set of known spurious genes [16].

(A) For every gene in *S. cerevisiae*, the average Pearson correlation coefficient with all other genes was calculated. Shown are histograms of the correlations associated with genes characterized as spurious in the reading frame conservation test ([16]; red) and all genes in the genome (black). (B) The distribution of gene lengths is shown for genes characterized as spurious (red) and for all genes of the genome (black).

(C) Assessing the likelihood of being spurious as a function of gene length and correlation score. Shown is the proportion of spurious genes out of all genes whose length and correlation score fall into each of the intervals. The proportion is color-coded according to the color bar shown. S. cerevisiae genes with an ortholog in C. albicans were excluded from the analysis.

DOI: 10.1371/journal.pgen.0010001.g002

of the *C. albicans* genome. *C. albicans* genes with an ortholog in other eukaryotes are assumed to be real and were excluded as candidates (510 of 513 *S. cerevisiae* genes ruled spurious by the reading frame conservation test [16] had no ortholog in *C. albicans*). In the above analysis, approximately 1,000 gene

expression experiments were analyzed for *S. cerevisiae* [35], while approximately 200 currently available experiments were analyzed for *C. albicans* (see Materials and Methods). Table S1 includes a ranked list of the 349 *C. albicans* genes that are the most likely to be spurious.

Table 5. Frequency and Characteristics of Short Tandem Repeats in the Coding Sequences of Fungal Genomes

in coding sequence	Characteristic	S. pon	nbe	S. c	ere	evisiae	2	C. a	lbio	ans	N.	cro	ıssa	
in coding sequence Number of genes Percent of genes with one or more STR95S														
Number of genes with one or more STR95s	Number of STR95s ^a													
Percent of genes with one or more STR95s	in coding sequence													
STR95s 4.5% 15.7% 41.5% 46.8% Number of STR of the indicated periodicity in coding sequences 32 179 457 514 1 32 179 457 514 2 2 8 18 15 3 64 445 3,697 6,876 4 6 3 35 74 5 7 1 27 31 6 78 304 1,316 2,140 7 2 3 8 16 8 5 1 7 23 9 52 163 469 924 10 0 8 6 17 11 0 7 1 14 12 6 127 288 376 13 0 0 2 4 14 0 0 2 4 14 0 0	Number of genes	4,9	984			5,888				6,354		1	0,082	
STR95s	Percent of genes													
Number of STR of the indicated periodicity in coding sequences 1														
of the indicated periodicity in coding sequences 1 32 179 457 514 2 2 2 8 18 15 3 3 64 445 3,697 6,876 4 6 3 335 74 5 7 1 27 31 6 78 304 1,316 2,140 8 5 7 1 7 27 31 6 7 2 2 3 8 66 8 5 1 7 2 3 66 8 5 5 1 7 2 3 66 8 5 5 1 7 2 3 66 8 5 5 1 7 2 3 66 8 6 5 1 7 2 3 66 8 6 78 304 1,316 2,140 10 0 8 6 6 77 23 9 52 163 469 924 10 0 0 8 6 6 77 11 14 12 6 127 288 376 13 0 0 7 1 114 12 6 127 288 376 13 0 0 0 2 2 4 14 0 0 0 2 2 4 14 0 0 0 2 2 4 14 0 0 0 0 2 2 4 14 0 0 0 0 2 2 4 14 0 0 0 0 2 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 16 0 0 0 0 0 0 0 0 0 17 0 0 0 0 0 0 0 0 0 18 0 0 0 0 0 0 0 0 0 18 0 0 0 0 0 0 0 0 0 18 0 0 0 0 0 0 0 0 0 18 0 0 0 0 0 0 0 0 0 18 0 0 0 0 0 0 0 0 0 18 0 0 0 0 0 0 0 0 0 19 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 10 0 0 0			4.5%			15.79	6			41.59	%		46.8	3%
periodicity in coding sequences 1 32 179 457 514 2 2 2 8 18 18 15 3 64 445 3,697 6,876 4 6 3 3 35 74 5 7 1 27 31 6 78 304 1,316 2,140 7 2 3 8 8 16 8 5 1 7 7 23 9 52 163 469 924 10 0 0 8 6 6 17 11 0 7 23 9 52 163 469 924 10 0 0 7 1 1 14 12 6 127 288 376 13 0 0 7 1 1 14 12 6 6 127 288 376 13 0 0 0 2 4 45 14 0 0 0 0 2 0 0 11 15 0 0 44 45 122 16 0 0 0 0 0 0 0 0 11 17 0 0 0 0 0 0 0 0 0 11 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0														
1 32 179 457 514 2 2 2 8 18 18 15 3 64 445 3,697 6,876 4 6 3 355 74 5 7 1 27 31 6 78 304 1,316 2,140 7 2 3 8 16 8 5 1 7 23 8 5 1 7 23 9 52 163 469 924 10 0 0 8 6 6 17 11 0 7 23 9 52 163 469 924 10 0 0 7 1 1 14 12 6 127 288 376 13 0 0 0 2 4 4 14 0 0 0 2 2 4 14 0 0 0 2 2 4 15 0 0 44 45 122 16 0 0 0 1 14 45 122 16 17 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 17 0 0 0 0 0 0 0 0 18 0 0 0 0 0 0 0 0 0 18 0 0 0 0 0 0 0 0 0 18 0 0 0 0 0 0 0 0 0 18 0 0 0 0 0 0 0 0 0 18 0 0 0 0 0 0 0 0 0 18 0 0 0 0 0 0 0 0 0 18 0 0 0 0 0 0 0 0 0 18 0 0 0 0 0 0 0 0 0 18 0 0 0 0 0 0 0 0 0 0 16 0 0 0 0 0 0 0 0 0 17 0 0 0 0 0 0 0 0 0 18 0 0 0 0 0 0 0 0 0 0 18 0 0 0 0 0 0 0 0 0 0 18 0 0 0 0 0 0 0 0 0 0 19 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0														
1 32 179 457 514 1 2 2 2 8 18 18 15 3		I												
2			22			470								
3 64 445 3,697 6,876 4 4 6 3 3 35 74 1 27 31 6 6 78 304 1,316 2,140 7 7 2 3 8 8 16 8 5 1 7 7 23 9 9 52 163 469 924 910 0 8 8 6 17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1														
4 6 3 3 35 74 5 7 1 27 31 6 78 304 1,316 2,140 7 2 3 8 16 8 5 1 77 23 9 52 163 469 924 10 0 0 8 6 17 11 0 7 23 9 52 163 469 924 10 0 0 8 6 17 11 1 0 7 1 1 14 12 6 127 288 376 13 0 0 0 2 4 4 14 0 0 0 0 2 4 4 15 122 16 0 0 44 45 122 16 0 0 0 0 1 1 17 0 0 0 0 0 0 1 15 0 0 44 45 122 16 0 0 0 0 0 0 0 0 1 17 0 0 0 0 0 0 0 0 18 0 0 0 0 0 0 0 0 18 0 0 0 0 0 0 0 0 19 0 0 0 0 0 0 0 19 0 0 0 0 0 0 0 19 0 0 0 0 0 0 0 19 0 0 0 0 0 0 0 19 0 0 0 0 0 0 0 19 0 0 0 0 0 0 0 19 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 10 0 0 0														
5														
6														
7														
8	6													
9														
10	8													
111 0 0 7 1 1 14 12 6 127 288 376 13 0 0 0 2 44 14 0 0 0 2 2 4 14 0 0 0 2 2 0 15 0 44 45 122 16 0 0 0 0 0 0 1 17 0 0 0 0 0 0 0 18 0 0 0 0 0 0 0 18 0 0 0 0 0 0 0 18 0 0 0 0 0 0 0 19 0 0 0 0 0 19 0 0 0 0 0 0 19 0 0 0 0 0 0 19 0 0 0 0 0 0 19 0 0 0 0 0 0 10 0 0 0 0 0 10 0 0 0 0 0 10 0 0 0														
12 6 127 288 376 13 0 0 0 2 44 14 0 0 0 0 2 0 15 15 0 44 45 122 16 0 0 0 0 0 0 1 17 0 0 0 0 0 0 0 18 0 0 0 0 0 0 0 18 0 0 0 0 0 0 0 0 18 0 0 0 0 0 0 0 0 19 0 0 0 0 0 0 0 10 0 0 0 0 0 0 10 0 0 0 0	10													
13	11		0			7				1				
14 0 0 0 12 0 12 0 15 122 16 0 44 45 122 16 0 0 0 0 0 0 1 17 17 0 0 0 0 0 0 0 0 0 18 0 0 0 0 0 0 0 0 0	12		6			127				288			376	
15 0 44 45 122 16 0 0 0 0 0 1 17 0 0 0 0 0 0 1 18 0 14 47 51 19 0 0 0 0 0 0 0 20 0 0 0 0 0 0 Proportion of Modulo3 repeats 78.7% 83.9% 91.4% 93.7% Distribution of encoded amino acids sequences in trinucleotide repeats (rank, amino acid, number) 5 A 122 6 A 562 9 A 1,942 4 A 8,198 C — 19 C 17 19 C 68 19 C 103 4 D 153 4 D 1,334 5 D 4,599 6 D 6,141 1E 276 3 E 1,351 3 E 5,553 2 E 8,824 16 F 10 18 F 21 17 F 225 17 F 445 9 G 77 10 G 250 8 G 2,493 3 G 8,205 12 H 20 11 H 208 11 H 1,109 12 H 1,900 15 I 15 I 15 I 5 I 71 14 I 589 15 I 626 3 K 158 7 K 472 10 K 1,837 9 K 4,282 13 L 18 14 L 87 12 L 771 14 L 1,395 14 M 16 17 M 53 18 M 181 16 M 523 8 N 88 2 N 1,369 2 N 6,448 10 N 3,717 6 P 109 9 P 304 7 P 2,504 7 P 5,085 7 Q 97 1 Q 1,942 1 Q 7,805 1 Q 9,389 11 R 34 12 R 113 15 R 486 11 R 2,155 2 S 207 5 S 1,099 4 S 4,706 5 S 7,881 10 T 43 8 T 394 6 T 4,518 8 T 5,072 12 V 20 13 V 89 13 V 615 13 V 1,539 W — W — 20 W 33 20 W 82 17 Y 8 16 Y 60 16 Y 399 18 Y 384	13		0			0				2			4	
16	14		0			0				2			0	
17 0 0 0 0 0 0 0 0 18 0 0 0 0 0 0 0 0 0 0	15		0			44				45			122	
18	16		0			0				0			1	
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	17		0			0				0			0	
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	18		0			14				47			51	
Proportion of Modulo3 repeats 78.7% 83.9% 91.4% 93.7% 93.7% Distribution of encoded amino acids sequences in trinucleotide repeats (rank, amino acid, number) 5 A 122 6 A 562 9 A 1,942 4 A 8,198 C — 19 C 17 19 C 68 19 C 103 4 D 153 4 D 1,334 5 D 4,599 6 D 6,141 1 E 276 3 E 1,351 3 E 5,553 2 E 8,824 16 F 10 18 F 21 17 F 225 17 F 445 9 G 77 10 G 250 8 G 2,493 3 G 8,205 12 H 20 11 H 208 11 H 1,109 12 H 1,900 15 I 15 I 55 I 71 14 I 589 15 I 626 3 K 158 7 K 472 10 K 1,837 9 K 4,282 13 L 18 14 L 87 12 L 771 14 L 1,395 14 M 16 17 M 53 18 M 181 16 M 523 8 N 88 2 N 1,369 2 N 6,448 10 N 3,717 6 P 109 9 P 304 7 P 2,504 7 P 5,085 7 Q 97 1 Q 1,942 1 Q 7,805 1 Q 9,389 11 R 34 12 R 113 15 R 486 11 R 2,155 2 S 207 5 S 1,099 4 S 4,706 5 S 7,881 10 T 43 8 T 394 6 T 4,518 8 T 5,072 12 V 20 13 V 89 13 V 615 13 V 1,539 W — W — 20 W 33 20 W 82 17 Y 8 16 Y 60 16 Y 399 18 Y 384	19		0			0				0			0	
Modulo3 repeats 78.7% 83.9% 91.4% 93.7% Distribution of encoded amino acids sequences in trinucleotide repeats (rank, amino acid, number) 5 A 122 6 A 562 9 A 1,942 4 A 8,198 C — 19 C 17 19 C 68 19 C 103 4 D 153 4 D 1,334 5 D 4,599 6 D 6,141 1 E 276 3 E 1,351 3 E 5,553 2 E 8,824 16 F 10 18 F 21 17 F 225 17 F 445 9 G 77 10 G 250 8 G 2,493 3 G 8,205 12 H 20 11 H 208 11 H 1,109 12 H 1,900 15 I 15 I 55 I 71 14 I 589 15 I 626 3 K 158 7 K 472 10 K 1,837 9 K 4,282 13 L 18 14 L 87 12 L 771 14 L 1,395 14 M 16 17 M 53 18 M 181 16 M 523 8 N 88 2 N 1,369 2 N 6,448 10 N 3,717 6 P 109 9 P 304 7 P 2,504 7 P 5,085 7 Q 97 1 Q 1,942 1 Q 7,805 1 Q 9,389 11 R 34 12 R 113 15 R 486 11 R 2,155 2 S 207 5 S 1,099 4 S 4,706 5 S 7,881 10 T 43 8 T 394 6 T 4,518 8 T 5,072 12 V 20 13 V 89 13 V 615 13 V 1,539 W — W — 20 W 33 20 W 82 17 Y 8 16 Y 60 16 Y 399 18 Y 384	20		0			0				0			0	
Distribution of encoded amino acids sequences in trinucleotide repeats (rank, amino acid, number) 5 A 122 6 A 562 9 A 1,942 4 A 8,198 C — 19 C 17 19 C 68 19 C 103 4 D 153 4 D 1,334 5 D 4,599 6 D 6,141 1 E 276 3 E 1,351 3 E 5,553 2 E 8,824 16 F 10 18 F 21 17 F 225 17 F 445 9G 77 10 G 250 8 G 2,493 3 G 8,205 12 H 20 11 H 208 11 H 1,109 12 H 1,900 15 I 15 I 15 I 5 I 71 14 I 589 15 I 626 3 K 158 7 K 472 10 K 1,837 9 K 4,282 13 L 18 14 L 87 12 L 771 14 L 1,395 14 M 16 17 M 53 18 M 181 16 M 523 8 N 88 2 N 1,369 2 N 6,448 10 N 3,717 6 P 109 9 P 304 7 P 2,504 7 P 5,085 7 Q 97 1 Q 1,942 1 Q 7,805 1 Q 9,389 11 R 34 12 R 113 15 R 486 11 R 2,155 2 S 207 5 S 1,099 4 S 4,706 5 S 7,881 10 T 43 8 T 394 6 T 4,518 8 T 5,072 12 V 20 13 V 89 13 V 615 13 V 1,539 W — W — 20 W 33 20 W 82 17 Y 8 16 Y 60 16 Y 399 18 Y 384	Proportion of													
encoded amino acids sequences in trinucleotide repeats (rank, amino acid, number) 5 A 122 6 A 562 9 A 1,942 4 A 8,198 C — 19 C 17 19 C 68 19 C 103 4 D 153 4 D 1,334 5 D 4,599 6 D 6,141 1 E 276 3 E 1,351 3 E 5,553 2 E 8,824 16 F 10 18 F 21 17 F 225 17 F 445 9 G 77 10 G 250 8 G 2,493 3 G 8,205 12 H 20 11 H 208 11 H 1,109 12 H 1,900 15 I 15 15 15 I 71 14 I 589 15 I 626 3 K 158 7 K 472 10 K 1,837 9 K 4,282 13 L 18 14 L 87 12 L 771 14 L 1,395 14 M 16 17 M 53 18 M 181 16 M 523 8 N 88 2 N 1,369 2 N 6,448 10 N 3,717 6 P 109 9 P 304 7 P 2,504 7 P 5,085 7 Q 97 1 Q 1,942 1 Q 7,805 1 Q 9,389 11 R 34 12 R 113 15 R 486 11 R 2,155 2 S 207 5 S 1,099 4 S 4,706 5 S 7,881 10 T 43 8 T 394 6 T 4,518 8 T 5,072 12 V 20 13 V 89 13 V 615 13 V 1,539 W — W — 20 W 33 20 W 82 17 Y 8 16 Y 60 16 Y 399 18 Y 384	Modulo3 repeats		78.7%	,		83.9	9%			91.	4%		93.	.7%
acids sequences in trinucleotide repeats (rank, amino acid, number) 5 A 122	Distribution of													
in trinucleotide repeats (rank, amino acid, number) 5 A 122 6 A 562 9 A 1,942 4 A 8,198 C — 19 C 17 19 C 68 19 C 103 4 D 153 4 D 1,334 5 D 4,599 6 D 6,141 1 E 276 3 E 1,351 3 E 5,553 2 E 8,824 16 F 10 18 F 21 17 F 225 17 F 445 9G 77 10 G 250 8 G 2,493 3 G 8,205 12 H 20 11 H 208 11 H 1,109 12 H 1,900 15 I 15 I 15 I 71 14 I 589 15 I 626 3 K 158 7 K 472 10 K 1,837 9 K 4,282 13 L 18 14 L 87 12 L 771 14 L 1,395 14 M 16 17 M 53 18 M 181 16 M 523 8 N 88 2 N 1,369 2 N 6,448 10 N 3,717 6 P 109 9 P 304 7 P 2,504 7 P 5,085 7 Q 97 1 Q 1,942 1 Q 7,805 1 Q 9,389 11 R 34 12 R 113 15 F 486 11 R 2,155 2 S 207 5 S 1,099 4 S 4,706 5 S 7,881 10 T 43 8 T 3,94 6 T 4,518 8 T 5,072 12 V 20 13 V 89 13 V 615 13 V 1,539 W — W — 20 W 33 20 W 82 17 Y 8 16 Y 60 16 Y 399 18 Y 384	encoded amino													
repeats (rank, amino acid, number) 5 A 122 6 A 562 9 A 1,942 4 A 8,198 C — 19 C 17 19 C 68 19 C 103 4 D 153 4 D 1,334 5 D 4,599 6 D 6,141 1E 276 3 E 1,351 3 E 5,553 2 E 8,824 16 F 10 18 F 21 17 F 225 17 F 445 9G 77 10 G 250 8 G 2,493 3 G 8,205 12 H 20 11 H 208 11 H 1,109 12 H 1,900 15 I 15 15 15 I 71 14 I 589 15 I 626 3 K 158 7 K 472 10 K 1,837 9 K 4,282 13 L 18 14 L 87 12 L 771 14 L 1,395 14 M 16 17 M 53 18 M 181 16 M 523 8 N 88 2 N 1,369 2 N 6,448 10 N 3,717 6 P 109 9 P 304 7 P 2,504 7 P 5,085 7 Q 97 1 Q 1,942 1 Q 7,805 1 Q 9,389 11 R 34 12 R 113 15 R 486 11 R 2,155 2 S 207 5 S 1,099 4 S 4,706 5 S 7,881 10 T 43 8 T 394 6 T 4,518 8 T 5,072 12 V 20 13 V 89 13 V 615 13 V 1,539 W — W — 20 W 33 20 W 82 17 Y 8 16 Y 60 16 Y 399 18 Y 384	acids sequences													
amino acid, number) 5 A 122 6 A 562 9 A 1,942 4 A 8,198 C — 19 C 17 19 C 68 19 C 103 A D 153 4 D 1,334 5 D 4,599 6 D 6,141 1E 276 3 E 1,351 3 E 5,553 2 E 8,824 16 F 10 18 F 21 17 F 225 17 F 445 9G 77 10 G 250 8 G 2,493 3 G 8,205 12 H 20 11 H 208 11 H 1,109 12 H 1,900 15 I 15 I 5 I 71 14 I 589 15 I 626 3 K 158 7 K 472 10 K 1,837 9 K 4,282 13 L 18 14 L 87 12 L 771 14 L 1,395 14 M 16 17 M 53 18 M 181 16 M 523 8 N 88 2 N 1,369 2 N 6,448 10 N 3,717 6 P 109 9 P 304 7 P 2,504 7 P 5,085 7 Q 97 1 Q 1,942 1 Q 7,805 1 Q 9,389 11 R 34 12 R 113 15 R 486 11 R 2,155 2 S 207 5 S 1,099 4 S 4,706 5 S 7,881 10 T 43 8 T 394 6 T 4,518 8 T 5,072 12 V 20 13 V 89 13 V 615 13 V 1,539 W — W — 20 W 33 20 W 82 17 Y 8 16 Y 60 16 Y 399 18 Y 384	in trinucleotide													
C — 19 C 17 19 C 68 19 C 103 4 D 153 4 D 1,334 5 D 4,599 6 D 6,141 1E 276 3 E 1,351 3 E 5,553 2 E 8,824 16 F 10 18 F 21 17 F 225 17 F 445 9 G 77 10 G 250 8 G 2,493 3 G 8,205 12 H 20 11 H 208 11 H 1,109 12 H 1,900 15 I 15 15 I 71 14 I 589 15 I 626 3 K 158 7 K 472 10 K 1,837 9 K 4,282 13 L 18 14 L 87 12 L 771 14 L 1,395 14 M 16 17 M 53 18 M 181 16 M 523 8 N 88 2 N 1,369 2 N 6,448 10 N 3,717 6 P 109 9 P 304 7 P 2,504 7 P 5,085 7 Q 97 1 Q 1,942 1 Q 7,805 1 Q 9,389 11 R 34 12 R 113 15 R 486 11 R 2,155 2 S 207 5 S 1,099 4 S 4,706 5 S 7,881 10 T 43 8 T 394 6 T 4,518 8 T 5,072 12 V 20 13 V 89 13 V 615 13 V 1,539 W — W — 20 W 33 20 W 82 17 Y 8 16 Y 60 16 Y 399 18 Y 384	repeats (rank,													
4 D 153	amino acid, number			6				9		1,942	4		8,198	
1E 276 3 E 1,351 3 E 5,553 2 E 8,824 16 F 10 18 F 21 17 F 225 17 F 445 9G 77 10 G 250 8 G 2,493 3 G 8,205 12 H 20 11 H 208 11 H 1,109 12 H 1,900 15 I 15 15 I 71 14 I 589 15 I 626 3 K 158 7 K 472 10 K 1,837 9 K 4,282 13 L 18 14 L 87 12 L 771 14 L 1,395 14 M 16 17 M 53 18 M 181 16 M 523 8 N 88 2 N 1,369 2 N 6,448 10 N 3,717 6 P 109 9 P 304 7 P 2,504 7 P 5,085 7 Q 97 1 Q 1,942 1 Q 7,805 1 Q 9,389 11 R 34 12 R 113 15 R 486 11 R 2,155 2 S 207 5 S 1,099 4 S 4,706 5 S 7,881 10 T 43 8 T 394 6 T 4,518 8 T 5,072 12 V 20 13 V 89 13 V 615 13 V 1,539 W — W — 20 W 33 20 W 82 17 Y 8 16 Y 60 16 Y 399 18 Y 384				19	C	17		19	C	68	19	C	103	
16 F 10 18 F 21 17 F 225 17 F 445 9 G 77 10 G 250 8 G 2,493 3 G 8,205 12 H 20 11 H 208 11 H 1,109 12 H 1,900 15 I 15 15 I 71 14 I 589 15 I 626 3 K 158 7 K 472 10 K 1,837 9 K 4,282 13 L 18 14 L 87 12 L 771 14 L 1,395 14 M 16 17 M 53 18 M 181 16 M 523 8 N 88 2 N 1,369 2 N 6,448 10 N 3,717 6 P 109 9 P 304 7 P 2,504 7 P 5,085 7 Q 97 1 Q 1,942 1 Q 7,805 1 Q 9,389 11 R 34 12 R 113 15 R 486 11 R 2,155 2 S 207 5 S 1,099 4 S 4,706 5 S 7,881 10 T 43 8 T 394 6 T 4,518 8 T 5,072 12 V 20 13 V 89 13 V 615 13 V 1,539 W — W — 20 W 33 20 W 82 17 Y 8 16 Y 60 16 Y 399 18 Y 384				4							6	D	6,141	
9 G 77 10 G 250 8 G 2,493 3 G 8,205 12 H 20 11 H 208 11 H 1,109 12 H 1,900 15 I 15 15 I 71 14 I 589 15 I 626 3 K 158 7 K 472 10 K 1,837 9 K 4,282 13 L 18 14 L 87 12 L 771 14 L 1,395 14 M 16 17 M 53 18 M 181 16 M 523 8 N 88 2 N 1,369 2 N 6,448 10 N 3,717 6 P 109 9 P 304 7 P 2,504 7 P 5,085 7 Q 97 1 Q 1,942 1 Q 7,805 1 Q 9,389 11 R 34 12 R 113 15 R 486 11 R 2,155 2 S 207 5 S 1,099 4 S 4,706 5 S 7,881 10 T 43 8 T 394 6 T 4,518 8 T 5,072 12 V 20 13 V 89 13 V 615 13 V 1,539 W — W — 20 W 33 20 W 82 17 Y 8 16 Y 60 16 Y 399 18 Y 384			276	3		1,351		3		5,553	2		8,824	
12 H 20 11 H 208 11 H 1,109 12 H 1,900 15 I 15 I 15 I 71 14 I 589 15 I 626 3 K 158 7 K 472 10 K 1,837 9 K 4,282 13 L 18 14 L 87 12 L 771 14 L 1,395 14M 16 17 M 53 18 M 181 16 M 523 8 N 88 2 N 1,369 2 N 6,448 10 N 3,717 6 P 109 9 P 304 7 P 2,504 7 P 5,085 7 Q 97 1 Q 1,942 1 Q 7,805 1 Q 9,389 11 R 34 12 R 113 15 R 486 11 R 2,155 2 S 207 5 S 1,099 4 S 4,706 5 S 7,881 10 T 43 8 T 394 6 T 4,518 8 T 5,072 12 V 20 13 V 89 13 V 615 13 V 1,539 W — W — 20 W 33 20 W 82 17 Y 8 16 Y 60 16 Y 399 18 Y 384		16 F	10					17	F	225	17			
15 15 15 71 14 589 15 626 3 K 158 7 K 472 10 K 1,837 9 K 4,282 13 L 18 14 L 87 12 L 771 14 L 1,395 14 M 16 17 M 53 18 M 181 16 M 523 8 N 88 2 N 1,369 2 N 6,448 10 N 3,717 6 P 109 9 P 304 7 P 2,504 7 P 5,085 7 Q 97 1 Q 1,942 1 Q 7,805 1 Q 9,389 11 R 34 12 R 113 15 R 486 11 R 2,155 2 S 207 5 S 1,099 4 S 4,706 5 S 7,881 10 T 43 8 T 3,94 6 T 4,518 8 T 5,072 12 V 20 13 V 89 13 V 615 13 V 1,539 W W W Q Q W 33 20 W 82 17 Y 8 16 Y 60 16 Y 3,99 18 Y 3,84		9 G	77	10	G	250		8	G	2,493	3	G	8,205	
3 K 158 7 K 472 10 K 1,837 9 K 4,282 13 L 18 14 L 87 12 L 771 14 L 1,395 14 M 16 17 M 53 18 M 181 16 M 523 8 N 88 2 N 1,369 2 N 6,448 10 N 3,717 6 P 109 9 P 304 7 P 2,504 7 P 5,085 7 Q 97 1 Q 1,942 1 Q 7,805 1 Q 9,389 11 R 34 12 R 113 15 R 486 11 R 2,155 2 S 207 5 S 1,099 4 S 4,706 5 S 7,881 10 T 43 8 T 394 6 T 4,518 8 T 5,072 12 V 20 13 V 89 13 V 615 13 V 1,539 W — W — 20 W 33 20 W 82 17 Y 8 16 Y 60 16 Y 399 18 Y 384		12 H	20	11	Н	208		11	Н	1,109	12	Н	1,900	
13 L 18 14 L 87 12 L 771 14 L 1,395 14 M 16 17 M 53 18 M 181 16 M 523 8 N 88 2 N 1,369 2 N 6,448 10 N 3,717 6 P 109 9 P 304 7 P 2,504 7 P 5,085 7 Q 97 1 Q 1,942 1 Q 7,805 1 Q 9,389 11 R 34 12 R 113 15 R 486 11 R 2,155 2 S 207 5 S 1,099 4 S 4,706 5 S 7,881 10 T 43 8 T 394 6 T 4,518 8 T 5,072 12 V 20 13 V 89 13 V 615 13 V 1,539 W — W — 20 W 33 20 W 82 17 Y 8 16 Y 60 16 Y 399 18 Y 384		15 I	15	15	1	71		14	1	589	15	-1	626	
14 M 16 17 M 53 18 M 181 16 M 523 8 N 88 2 N 1,369 2 N 6,448 10 N 3,717 6 P 109 9 P 304 7 P 2,504 7 P 5,085 7 Q 97 1 Q 1,942 1 Q 7,805 1 Q 9,389 11 R 34 12 R 113 15 R 486 11 R 2,155 2 S 207 5 S 1,099 4 S 4,706 5 S 7,881 10 T 43 8 T 394 6 T 4,518 8 T 5,072 12 V 20 13 V 89 13 V 615 13 V 1,539 W — W — 20 W 33 20 W 82 17 Y 8 16 Y 60 16 Y 399 18 Y 384		3 K	158	7	Κ	472		10	K	1,837	9	K	4,282	
8 N 88 2 N 1,369 2 N 6,448 10 N 3,717 6 P 109 9 P 304 7 P 2,504 7 P 5,085 7 Q 97 1 Q 1,942 1 Q 7,805 1 Q 9,389 11 R 34 12 R 113 15 R 486 11 R 2,155 2 S 207 5 S 1,099 4 S 4,706 5 S 7,881 10 T 43 8 T 394 6 T 4,518 8 T 5,072 12 V 20 13 V 89 13 V 615 13 V 1,539 W — W — 20 W 33 20 W 82 17 Y 8 16 Y 60 16 Y 399 18 Y 384		13 L	18	14	L	87		12	L	771	14	L	1,395	
6 P 109 9 P 304 7 P 2,504 7 P 5,085 7 Q 97 1 Q 1,942 1 Q 7,805 1 Q 9,389 11 R 34 12 R 113 15 R 486 11 R 2,155 2 S 207 5 S 1,099 4 S 4,706 5 S 7,881 10 T 43 8 T 394 6 T 4,518 8 T 5,072 12 V 20 13 V 89 13 V 615 13 V 1,539 W — W — 20 W 33 20 W 82 17 Y 8 16 Y 60 16 Y 399 18 Y 384		14 M	16	17	M	53		18	M	181	16	Μ	523	
7 Q 97 1 Q 1,942 1 Q 7,805 1 Q 9,389 11 R 34 12 R 113 15 R 486 11 R 2,155 2 S 207 5 S 1,099 4 S 4,706 5 S 7,881 10 T 43 8 T 394 6 T 4,518 8 T 5,072 12 V 20 13 V 89 13 V 615 13 V 1,539 W — W — 20 W 33 20 W 82 17 Y 8 16 Y 60 16 Y 399 18 Y 384		8 N	88	2	Ν	1,369		2	Ν	6,448	10			
11 R 34 12 R 113 15 R 486 11 R 2,155 2 S 207 5 S 1,099 4 S 4,706 5 S 7,881 10 T 43 8 T 394 6 T 4,518 8 T 5,072 12 V 20 13 V 89 13 V 615 13 V 1,539 W — W — 20 W 33 20 W 82 17 Y 8 16 Y 60 16 Y 399 18 Y 384		6 P	109	9				7	Р	2,504	7	Р	5,085	
2 S 207 5 S 1,099 4 S 4,706 5 S 7,881 10 T 43 8 T 394 6 T 4,518 8 T 5,072 12 V 20 13 V 89 13 V 615 13 V 1,539 W — W — 20 W 33 20 W 82 17 Y 8 16 Y 60 16 Y 399 18 Y 384		7 Q	97	1	Q	1,942		1	Q	7,805	1	Q	9,389	
10 T 43 8 T 394 6 T 4,518 8 T 5,072 12 V 20 13 V 89 13 V 615 13 V 1,539 W — W — 20 W 33 20 W 82 17 Y 8 16 Y 60 16 Y 399 18 Y 384		11 R	34	12	R	113		15	R	486	11	R	2,155	
10 T 43 8 T 394 6 T 4,518 8 T 5,072 12 V 20 13 V 89 13 V 615 13 V 1,539 W — W — 20 W 33 20 W 82 17 Y 8 16 Y 60 16 Y 399 18 Y 384		2 S 2	207	5	S	1,099		4	S	4,706	5			
12 V 20 13 V 89 13 V 615 13 V 1,539 W — W — 20 W 33 20 W 82 17 Y 8 16 Y 60 16 Y 399 18 Y 384		10 T	43	8	Τ	394		6			8			
W — W — 20 W 33 20 W 82 17 Y 8 16 Y 60 16 Y 399 18 Y 384		12 V		13	٧						13			
17 Y 8 16 Y 60 16 Y 399 18 Y 384						_								
			8	16		60								
	Codon (and encoded													

amino acid) frequency in trinucleotide repeats >13 bp (number [percentage])

AAA (K)	2 (1.0)	6 (1.0)	21 (0.7)	3 (0.1)
AAC (N)	2 (1.0)	39 (6.5)	242 (7.8)	194 (5.5)
AAG (K)	12 (6.1)	23 (3.9)	30 (1.0)	136 (3.8)
AAT (N)	6 (3.0)	81 (13.6)	252 (8.1)	4 (0.1)
ACA (T)	2 (1.0)	0 (0.0)	132 (4.3)	61 (1.7)
ACC (T)	0 (0.0)	0 (0.0)	98 (3.2)	159 (4.5)

Table 5. Continued

Characteristic	S. pombe	S. cerevisiae	C. albicans	N. crassa
ACG (T)	0 (0.0)	0 (0.0)	1 (0.0)	20 /1 1\
ACT (T)	4 (2.0)	5 (0.8)	1 (0.0) 137 (4.4)	38 (1.1) 19 (0.5)
AGA (R)	1 (0.5)	7 (1.2)	15 (0.5)	6 (0.2)
AGC (S)	1 (0.5)	5 (0.8)	6 (0.2)	86 (2.4)
AGG (R)	0 (0.0)	1 (0.2)	2 (0.1)	20 (0.6)
AGT (S)	1 (0.5)	1 (0.2)	37 (1.2)	14 (0.4)
ATA (I)	0 (0.0)	2 (0.3)	5 (0.2)	1 (0.0)
ATC (I)	0 (0.0)	1 (0.2)	3 (0.1)	8 (0.2)
ATG (M)	0 (0.0)	1 (0.2)	14 (0.5)	8 (0.2)
ATT (I)	1 (0.5)	1 (0.2)	6 (0.2)	0 (0.0)
CAA (Q)	7 (3.6)	71 (11.9)	623 (20.1)	270 (7.6)
CAC (H)	0 (0.0)	2 (0.3)	22 (0.7)	51 (1.4)
CAG (Q)	1 (0.5)	48 (8.1)	54 (1.7)	326 (9.2)
CAT (H)	3 (1.5)	4 (0.7)	37 (1.2)	21 (0.6)
CCA (P)	5 (2.5)	7 (1.2)	109 (3.5)	89 (2.5)
CCC (P)	0 (0.0)	0 (0.0)	2 (0.1)	0 (0.0)
CCG (P)	0 (0.0)	0 (0.0)	0 (0.0)	68 (1.9)
CCT (P)	11 (5.6)	8 (1.3)	14 (0.5)	79 (2.2)
CGA (R)	0 (0.0)	0 (0.0)	3 (0.1)	3 (0.1)
CGC (R)	0 (0.0)	0 (0.0)	0 (0.0)	8 (0.2)
CGG (R)	0 (0.0)	0 (0.0)	0 (0.0)	2 (0.1)
CGT (R)	3 (1.5)	0 (0.0)	2 (0.1)	4 (0.1)
CTA (L)	0 (0.0)	0 (0.0)	5 (0.2)	1 (0.0)
CTC (L)	0 (0.0)	0 (0.0)	0 (0.0)	21 (0.6)
CTG (L/S)	0 (0.0)	0 (0.0)	7 (0.2)	13 (0.4)
CTT (L)	0 (0.0)	0 (0.0)	4 (0.1)	0 (0.0)
GAA (E)	48 (24.4)	97 (16.3)	371 (12.0)	125 (3.5)
GAC (D)	1 (0.5)	18 (3.0)	30 (1.0)	113 (3.2)
GAG (E)	4 (2.0)	8 (1.3)	29 (0.9)	257 (7.2)
GAT (D)	25 (12.7)	67 (11.2)	235 (7.6)	103 (2.9)
GCA (A)	4 (2.0)	7 (1.2)	25 (0.8)	62 (1.7)
GCC (A)	0 (0.0)	0 (0.0)	4 (0.1)	119 (3.4)
GCG (A)	0 (0.0)	0 (0.0)	1 (0.0)	57 (1.6)
GCT (A)	19 (9.6)	14 (2.3)	70 (2.3)	167 (4.7)
GGA (G)	0 (0.0)	0 (0.0)	18 (0.6)	131 (3.7)
GGC (G)	0 (0.0)	0 (0.0)	1 (0.0)	110 (3.1)
GGG (G)	0 (0.0)	0 (0.0)	2 (0.1)	2 (0.1)
GGT (G)	3 (1.5)	14 (2.3)	124 (4.0)	196 (5.5)
GTA (V)	0 (0.0)	0 (0.0)	2 (0.1)	0 (0.0)
GTC (V)	0 (0.0) 0 (0.0)	0 (0.0)	0 (0.0)	7 (0.2)
GTG (V)	1 (0.5)	0 (0.0) 5 (0.8)	5 (0.2) 13 (0.4)	17 (0.5)
GTT (V)				4 (0.1) 0 (0.0)
TAA (*) TAC (Y)	0 (0.0) 0 (0.0)	0 (0.0) 1 (0.2)	0 (0.0)	
TAC (†)	0 (0.0)	0 (0.0)	3 (0.1) 1 (0.0)	1 (0.0) 0 (0.0)
TAT (Y)		0 (0.0)	7 (0.2)	0 (0.0)
TCA (S)	2 (1.0) 1 (0.5)	12 (2.0)	122 (3.9)	56 (1.6)
TCC (S)	4 (2.0)	8 (1.3)	10 (0.3)	152 (4.3)
TCG (S)	2 (1.0)	2 (0.3)	8 (0.3)	27 (0.8)
TCT (S)	16 (8.1)	19 (3.2)	77 (2.5)	110 (3.1)
TGA (*)	0 (0.0)	0 (0.0)	2 (0.1)	0 (0.0)
TGC (C)	0 (0.0)	0 (0.0)	2 (0.1)	0 (0.0)
TGG (C)	0 (0.0)	0 (0.0)	4 (0.1)	3 (0.1)
TGT (C)	1 (0.5)	1 (0.2)	0 (0.0)	0 (0.0)
TTA (L)	0 (0.0)	5 (0.8)	16 (0.5)	0 (0.0)
TTC (F)	0 (0.0)	1 (0.2)	3 (0.1)	4 (0.1)
TTG (L)	0 (0.0)	0 (0.0)	9 (0.3)	6 (0.1)
TTT (F)	4 (2.0)	4 (0.7)	26 (0.8)	5 (0.2)
	1 (2.0)	. (0.7)	20 (0.0)	3 (0.1)

^aSTRs with a less than 5% chance of being random DOI: 10.1371/journal.pgen.0010001.t005

Multigene Families

Many putative and demonstrated virulence factors of C. albicans are members of large multigene families. Well-known examples of such families encode secreted aspartyl proteinases [36,37]), agglutinins [38], secreted lipases [39], highaffinity iron transporters [40], and ferric reductases [41]. Members of each of these families are differentially expressed as a function of the yeast-hyphae transition, phenotypic switching, or timing during experimental infection. Also, each of these families is large relative to the corresponding homolog or family of homologs in S. cerevisiae, leading to the concept that expansion of many C. albicans gene families may be an adaptation to a commensal lifestyle and may be, in part, responsible for C. albicans's unusual ability to occupy a variety of host niches.

The sequencing of the genome provides an opportunity to survey the global occurrence and extent of multigene families as a first step in assessing their contribution to colonization and disease. We devised a purely computational method to define a comprehensive list of multigene families using NCBI-BLAST and custom Perl scripts. Each translated ORF in the annotated ORF set was compared to every other ORF in the set; if an ORF pair's BLAST alignment had an expectation value less than $1e^{-30}$ and a length greater than 60% of the length of the longer of the two ORFs, then the two ORFs were considered to be members of the same family. A transitive closure rule was applied to ensure that each ORF had membership in one and only one family. In all, 23% of the ORFs were members of families, a percentage comparable to that seen in other eukaryotes [18]. The approach yielded 451 families, with an average of 3.27 members each; 13 of the families have ten or more members, while the largest family has 39 members, consisting of proteins with possible leucinerich repeat domains.

A striking difference between C. albicans and S. cerevisiae is the manner in which they acquire nutrients from the environment. In addition to the well-described secreted aspartyl proteinases, lipases, and high-affinity iron transporters, C. albicans possesses expanded families of acid sphingomyelinases (with four genes per haploid genome), phospholipases B (six genes), oligopeptide transporters (seven genes), and amino acid permeases (23-24 genes). Another striking difference is the emphasis by C. albicans on respiratory catabolism, as reflected in expanded families of peroxisomal enzymes. These include families of acyl-CoA oxidases (three genes), 3-ketoacyl-CoA thiolases (four genes), acyl-CoA thioesterases (three or four genes), fatty acid-CoA synthases (five genes), and glutathione peroxidases (four genes).

Additional families that may pertain to colonization or pathogenesis include those encoding the estrogen-binding protein OYE1 (seven genes), the fluconazole-resistance transporter FLU1 (13 genes), and the vacuolar protein PEP3/VPS16 (four genes), whose Aspergillus homolog is required for nuclear migration and polarized growth.

The ATP-binding cassette transporter superfamily. The ATP-binding cassette (ABC) protein superfamily represents one of the largest protein families known to date among available genome sequences. These proteins share similar molecular architecture with the presence of at least one conserved ABC domain and the presence of membranespanning segments (transmembrane segments [TMSs]). The ABC domain typically contains Walker A and Walker B motifs and an ABC signature motif. The ABC domain and TMSs can be arranged in a duplicated forward (TMS₆-ABC)₂ or reverse (ABC-TMS₆)₂ topology, however "half size" ABC proteins also exist. As indicated in Table 6, the C. albicans genome contains

at least 27 genes with ABC domains that include these topologies. These genes have been categorized, according to a classification established in S. cerevisiae, into six subfamilies (the MDR, PDR, MRP/CFTR, ALD, YEF3, and RLI subfamilies) [42]. The MDR, PDR, MRP/CFTR, and ALD subfamilies likely all encode transporter proteins, while the other subfamilies, YEF3 and RLI, generally lack TMSs and are considered as non-transporter ABC proteins. The C. albicans ABC proteins fall neatly into the categories developed for S. cerevisiae, and they are also present in approximately the same numbers (with the exception of the MRP/CFTR subfamily; see below). The predicted topology of each protein detailed in Table 6 is also largely comparable between the two yeast species. Among the 27 ABC proteins so far identified in C. albicans, the functions of only nine have been previously characterized. The largest group of known ABC transporters belongs to the CDR gene family, among which are CDR1 and CDR2, two genes upregulated in azole-resistant clinical isolates that function in multidrug resistance [43-45]. CDR3 and CDR4 have been shown to function as phospholipid flippases and their expression is controlled by the white-opaque switching system [46,47]. Four MRP/CFTR-like transporters are present in C. albicans, and among them three show the NH₂-terminal extension with additional transmembrane segments that is typical for many MRP-like transporters (see Table 6). For unknown reasons, homologs of additional members of this family, such as the S. cerevisiae genes ScYBT1, ScNFT1, and ScVMR1, are lacking in C. albicans [42,48]. Interestingly, the vacuolar MRP-like transporter encoded by MLT1 has been implicated in virulence [49]. Since MRP/CFTR transporters are often involved in detoxification of heavy metals or xenobiotics, the presence or absence of discontinuous alleles of some ABC transporter genes (e.g., orf19.6383) may indicate strain differences in ABC transporter function and resulting susceptibility to environmental stresses. Most of the ABC transporter genes listed in Table 6 were given names through their closest homologs in *S. cerevisiae*; however, the functional assignments of these genes awaits further investigation.

The ALS family. The ALS genes encode large cell-surface glycoproteins that function in host-pathogen interactions [50,51]. The ALS genes are composed of three domains: a 5' domain that is approximately 1,300 bp in length and relatively conserved in sequence across the family, a central domain composed entirely of tandemly repeated copies of a 108-bp sequence, and a 3' domain of variable length and sequence that encodes a serine/threonine-rich portion of the protein [50]. Efforts to characterize the ALS genes started independently of the C. albicans genome project [38,52–54]) and were aided greatly by information that emerged as the genome sequencing effort progressed [55-57]. Table 7 lists the current ORFs that correspond to genes in the ALS family. The ALS family includes eight different genes [55], each with an extensive degree of allelic variability, sometimes within a given strain (Table 7) or across the wider population of C. albicans isolates [58-60]. Because of sequence assembly difficulties, mainly attributable to the length and repetitive nature of sequences within the ALS central domain, only three of ALS ORFs in this project are in agreement with ALS gene sequences derived independently of the genome project and reported in the literature (Table 7). The annotation effort described here did not edit the underlying assembly 19 sequence. However, gap sequencing that is presently being

Table 6. Genes Encoding Members of the ABC Transporter Family

ORF	Subfamily ^a	Topology	Contig	Length (Base Pairs)	Suggested or Published Name ^b	Product/Note	References
orf19.6000	PDR	(ABC-TMS ₆) ₂	Contig19–10236	1,502	CDR1	ABC transporter, multidrug resistance protein	43
orf19.5958	PDR	(ABC-TMS ₆) ₂	Contig19-10236	1,500	CDR2	ABC transporter, multidrug resistance protein	45
orf19.1313	PDR	(ABC-TMS ₆) ₂	Contig19-10109	1,501	CDR3	ABC transporter, opaque-specific, merged with orf19.1312	41,130
orf19.5079	PDR	(ABC-TMS ₆) ₂	Contig19-10218	1,491	CDR4	ABC transporter, white-specific	41,131
orf19.918	PDR	(ABC-TMS ₆) ₂	Contig19-10079	1,513	CDR5	ABC transporter, merged with orf19.919	_
orf19.5759	PDR	(ABC-TMS ₆) ₂	Contig19-10233	1,496	SNQ2	ABC transporter	_
orf19.3120	PDR	ABC-TMS ₆	Contig19-10166	580	orf19.3120	Possible half-size ABC transporter, best similarity with YOL075c	_
orf19.4531	PDR	TMS ₇ -ABC-TMS ₆ -ABC	Contig19-10209	1,275	orf19.4531	ABC transporter, best similarity with YOL 075c	_
orf19.459	PDR	TMS ₂ -ABC-TMS ₇	Contig19-10052	1,039	ADP1	ABC transporter	_
orf19.1077	MDR	TMS ₆ -ABC	Contig19-10090	751	ATM1	ABC transporter, putative half-size mitochondrial transporter	_
orf19.2615	MDR	TMS ₆ -ABC	Contig19-10151	685	MDL1	ABC transporter, putative half-size mitochondrial transporter	_
orf19.13043	MDR	TMS ₆ -ABC	Contig19-20230	783	MDL2	ABC transporter, putative half-size mitochondrial transporter, fragmented allele orf19.5599–orf19.5600	_
orf19.7440	MDR	(TMS ₆ -ABC) ₂	Contig19-2514	1,324	HST6	ABC transporter, putative pheromone transporter	132
orf19.1783	MRP/CFTR	(TMS ₆ -ABC) ₂	Contig19–10125	1,487	YOR1	ABC transporter, closely related to S. cerevisiae YOR1 transporter, merged with orf19.1784, continuous allele sequence not confirmed	133
orf19.5100	MRP/CFTR	TMS ₅ -(TMS ₆ -ABC) ₂	Contig19-10218	1,606	MLT1	Vacuolar ABC transporter, best similarity with ScBPT1	49
orf19.6383	MRP/CFTR	TMS ₅ -(TMS ₆ -ABC) ₂	Contig19–10247	1,490	orf19.6383	ABC transporter, merged with orf19.6382, continuous allele sequence confirmed in some strains, best similarity with ScBPT1	G. Köhler, unpublished
orf19.6478	MRP/CFTR	TMS ₅ -(TMS ₆ -ABC) ₂	Contig19-10248	1,581	YCF1	ABC transporter, closely related to S. cerevisiae YCF1 transporter	_
orf19.7500	ALD	TMS ₆ -ABC	Contig19-2516	769	PXA1	ABC transporter, putative half-size peroxisomal transporter	_
orf19.5255	ALD	TMS ₆ -ABC	Contig19-10223	668	PXA2	ABC transporter, putative half-size peroxisomal transporter	_
orf19.2183	YEF3	ABC ₂	Contig19-10141	610	KRE30	Non-transporter ABC protein, best similarity with YER036c	_
orf19.4152	YEF3	ABC ₂	Contig19-10198	1,051	CEF3	Non-transporter ABC protein, translation elongation factor 3	134
orf19.6060	YEF3	ABC ₂	Contig19-10237	752	GCN20	Non-transporter ABC protein, best similarity with YFR009w	_
orf19.7332	YEF3	ABC ₂	Contig19-2511	1,196	ELF1	Non-transporter ABC protein, elongation-like factor	135
orf19.3034	RLI	ABC ₂	Contig19-10163	623	RLI1	Non-transporter ABC protein, best similarity with YDR091c	_
orf19.388	Others	ABC	Contig19-10051	321	CAF16	Non-transporter ABC protein, best similarity with YFL028c	_
orf19.5029	Others	ABC	Contig19-10216	546	orf19.5029	Non-transporter ABC protein, best similarity with YDR061w	_

^aSubfamily nomenclature as proposed by Bauer et al. [42].

DOI: 10.1371/journal.pgen.0010001.t006

carried out and the production of a final genome assembly will correct these errors. Published ALS gene sequences can be found on the CGD Web site.

Assembly of the C. albicans genome sequence revealed the contiguous positions of ALS5, ALS1, and ALS9 on Chromosome 6, which was verified by independent studies [57].

Additional testing revealed that, in SC5314, the large alleles of ALS5, ALS1, and ALS9 occupy the same chromosome while the small alleles of each gene are found on the homologous chromosome [57]. But allelic variability and arrangement on homologous chromosomes will vary for each *C. albicans* strain. Allelic variation can be extreme for ALS genes, and is most

^bPublished names are underlined.

Table 7. Assembly 19 ORFs That Correspond to ALS Genes

Systematic ID	Gene Name	Number of Tandem Repeat Copies per Allele	Method for Determining Repeat Copy Number	Reference	Comments
	- Tunic	per /mere		nererence	Commence
orf19.5741	ALS1	8, 20	Southern blot	52	This ORF has about ten copies of the tandem repeat sequence. This number is too large for the small ALS1 allele in strain SC5314 and far too small for the large ALS1 allele. Some sequences from within the tandem repeat domain must have been assembled incorrectly.
orf19.2355	ALS2	31, 36	Southern blot	L. L. Hoyer, unpublished	This ORF encodes about 24 copies of the tandem repeat sequence, making it too short to be either allele from strain SC5314. However, the remainder of the coding region is intact and correctly assigned as ALS2.
orf19.1816	ALS3	9, 12	DNA sequencing	57	This ORF is missing the 3' end of the coding region. The ORF has almost 12 copies of the tandem repeat sequence and corresponds to the large ALS3 allele in strain SC5314. Its name should be ALS3-1. DNA sequences of both ALS3 alleles were derived outside of the genome sequencing effort and are available in Gen-Bank (ALS3-1 accession number AY223552; ALS3-2 accession number AY223551).
orf19.1097	ALS4	18, 36	Southern blot	L. L. Hoyer, unpublished	This sequence contains about 48 copies of the tandem repeat sequence. ALS4 allele sizes in strain SC5314 are estimated by Southern blot to have 18 or 36 copies of the repeated sequence. The ORF is missing the 3' end of the gene. It is possible that this ORF has the 5' end of ALS4 fused to the 3' end of ALS2.
orf19.2121	ALS4	18, 36	Southern blot	L. L. Hoyer, unpublished	This ORF starts at amino acid 252 of the ALS4 sequence and contains about 20 copies of the tandem repeat sequence. Since the Southern blotting method, by which ALS4 alleles sizes were judged, has some error, it is possible that this sequence is the smaller SC5314 allele, ALS4–2. There is a stop codon in the middle of the sequence due to a frameshift that reads HHL* and then resumes with the correct APSTET sequence. A DNA sequence for ALS4–2 is available in GenBank (accession number AF272027) and includes 20 tandem repeat copies.
orf19.4555	ALS4	18, 36	Southern blot	L. L. Hoyer, unpublished	This ORF encodes about 36 copies of the tandem repeat sequence, which is the correct number for the larger ALS4 allele (ALS4–1) from strain SC5314. The ORF has a frame shift within the tandem repeat domain that prematurely truncates a repeat copy and adds ETSKLHGYHN*. The reading frame then resumes with another repeat copy, but in the middle of the consensus sequence.
orf19.5736	ALS5	4, 5	PCR/acrylamide gel; DNA sequencing of both alleles	L. L. Hoyer, unpublished	This ORF contains about four copies of the tandem repeat sequence, and represents the small ALS5 allele (ALS5-2) from strain SC5314. ALS5-2 is found on the same chromosome as the short allele of ALS1 (ALS1-2) and the short allele of ALS9 (ALS9-2). The sequence of ALS5-2 was derived independently of the genome project and is deposited in GenBank (accession number AY227439). The sequence of the large ALS5 allele (ALS5-1) has GenBank accession number AY227440.
orf19.7414	ALS6	4, 4	PCR/acrylamide gel; DNA sequence of one allele	L. L. Hoyer, unpublished	The corresponding sequence from strain SC5314 is GenBank accession number AY225310, which was derived independently of the genome sequencing project. Both <i>ALS6</i> alleles in strain SC5314 have the same number of tandem repeat copies.
orf19.7400	ALS7	15, 15	PCR and genome sequence	59	This ORF has about 15 copies of the tandem repeat sequence, which is correct for both alleles from strain SC5314.
orf19.5742	ALS9–1	14, 17	DNA sequencing	57	This ORF should be ALS9–1 as defined by Zhao et al. [57] but has the wrong 5' end matched with the correct ALS9–1 3' end. The correct sequence for ALS9–1 from strain SC5314 is GenBank accession number AY269423. ALS9–1 should be on the same chromosome copy as ALS1–1 and ALS5–1. Separate alleles of ALS1 and ALS5 were not maintained in the genome assembly process.
orf19.45	ALS9–2	14, 17	DNA sequencing	57	The closest match to this ORF is ALS9–2, but this ORF is only a partial sequence. It is likely that the rest of ALS9–2 was collapsed into ALS9–1 and this sequence is left since it does not directly match ALS9–1. The ALS9–2 sequence should be on the same chromosome copy as ALS1–2 (closest match is orf19–5741) and ALS5–2 (orf19.5736). The correct sequence for ALS9–2 in SC5314 is GenBank accession number AY269422.
orf19.79	Unknown			50	This ORF is composed entirely of tandem repeat sequences that come from ALS1, ALS2, ALS3, or ALS4. These four genes have tandem repeat sequences that cross-hybridize by Southern blotting and comprise one subfamily of the ALS genes.

DOI: 10.1371/journal.pgen.0010001.t007

commonly associated with the tandem repeat domain, although it is also present within other domains of the coding region [56,57,59]. Presenting the sequence of a single ALS allele, as done in these annotation data, loses the sense of allelic diversity that can have a significant effect on evaluation of ALS protein function. For example, testing the two ALS3 alleles from strain SC5314 in a common adhesion assay format showed that the allele with more

tandem repeat copies produced a protein with greater adhesive capability than the smaller allele [60]. Table 7 notes GenBank entries for *ALS* alleles from strain SC5314 that aid understanding of allelic diversity for the various *ALS* genes.

The MEP family. Members of the MEP gene family encode ammonium permeases and, along with the OPT family described below, feature prominently in our list of fungalspecific genes. They thus represent potentially interesting targets for the development of antifungal drugs. Experimental evidence suggests that MEP1 and MEP2 encode the only specific ammonium permeases in C. albicans, since $\Delta mep1$ $\Delta mep2$ double mutants exhibited no detectable ammonium uptake and were unable to grow at ammonium concentrations below 5 mM [61], a phenotype that is similar to that of S. cerevisiae mutants deleted for all three ammonium permeases [62,63]. The third C. albicans gene, represented by orf19.4446, encodes a protein with much lower similarity to the other ammonium permeases of C. albicans and S. cerevisiae (approximately 44% to all proteins) but might encode an ammonium permease that is not expressed under the growth conditions used in these assays.

In addition to its role in ammonium transport, Mep2p also controls nitrogen-starvation-induced filamentous growth of C. albicans. Mutants in which only the MEP2 gene was deleted grew as well as the wild-type strain at low ammonium concentrations but failed to filament under these conditions. This role of MEP2 in filamentous growth of C. albicans at low ammonium concentrations is similar to the function of its counterpart ScMEP2 in pseudohyphal growth of S. cerevisiae under limiting ammonium conditions [63]. However, in contrast to the latter, MEP2 seems to have a much broader role in filamentous growth of C. albicans since $Deltam{Mep2}$ mutants also had a filamentation defect when amino acids or urea instead of ammonium served as the limiting nitrogen source (J. Morschhäuser, personal communication).

The OPT family. Oligopeptide transporters represent another group of fungal-specific surface proteins that transport peptides of four or five amino acids in length into the cell and together with the di- and tripetide transporters allow growth when peptides are the only available nitrogen source. This is presumably the position of C. albicans cells when they have invaded host tissues and are secreting their battery of peptidases and other catabolic enzymes. The founding member of the oligopeptide transporter gene family was OPT1 from C. albicans [64]. Analysis of the C. albicans genome sequence as well as cloning of the corresponding genes demonstrated that C. albicans in fact possesses a large gene family encoding putative oligopeptide transporters. The *OPT* genes were annotated according to their decreasing similarity to OPT1. The OPT2, OPT3, and OPT4 genes are highly similar to each other. The similarity of the remaining members of the family then drops considerably, but we have detected genes now named OPT6, OPT7, and OPT8. Deletion of the OPT1 alleles in the C. albicans wild-type strain SC5314 resulted in increased resistance of the mutants to a toxic tetrapeptide, providing experimental evidence that Opt1p indeed functions as an oligopeptide transporter in C. albicans [65]. Preliminary observations indicate that at least the OPT2 to *OPT5* genes also encode functional oligopeptide transporters (O. Reuß and J. Morschhäuser, unpublished data).

Zinc cluster transcription factors. Proteins of the zinc finger superfamily represent one of the largest classes of

DNA-binding proteins in eukaryotes. Several different classes of zinc finger domains exist that differ in the arrangement of their zinc-binding residues [66]. One of these domains, which appears to be restricted to fungi, consists of the Zn(II)₂Cys₆ binuclear cluster motif in which six cysteines coordinate two zinc atoms [67,68]. S. cerevisiae possesses 54 zinc cluster factors defined by the presence of the zinc cluster signature motif CX2CX6CX5-16CX2CX6-8C, which is generally located at the N-terminus of the protein. These proteins function as transcriptional regulators involved in various cellular processes including primary and secondary metabolism (e.g., Gal4p, Ppr1p, Hap1p, Cha4p, Leu3p, Lys14p, and Cat8p), pleiotropic drug resistance (e.g., Pdr1p, Pdr3p, and Yrr1p), and meiosis (Ume6p) [68,69]. Quite often, they bind as homoor heterodimers to two CGG triplets organized as direct, indirect, or inverted repeats and separated by sequences of variable length [68,70]. A large proportion of these factors (50%) also contain a middle homology region (Fungal_trans in the Pfam Protein Families Database) located in the central portion of the protein that has been proposed to participate in DNA binding and to assist in DNA target discrimination

Analysis of the C. albicans proteome using a combination of sequence analyses tools (SMART, Pfam, and PHI-BLAST) allowed us to identify 77 binuclear cluster proteins. These factors are characterized by the presence of the zinc cluster signature motif CX₂CX₆CX₅₋₂₄CX₂CX₆₋₉C generally located at the N-terminus of the protein (72 out of 77) and with a spacing between cysteines 3-4 and 5-6 slightly different from the S. cerevisiae motif. As observed in S. cerevisiae, a large proportion of the C. albicans factors also contain a middle homology region (29 out of 77). To our knowledge, only six of the C. albicans zinc cluster genes have been characterized in detail, including SUCI, involved in sucrose utilization [71], FCR1, implicated in pleiotropic drug resistance [72], CWT1, required for cell wall integrity [73], and CZF1, FGR17, and FGR27, involved in filamentous growth [9,74]. The functions of many uncharacterized C. albicans zinc cluster factors (approximately 20%) can be inferred from the fact that they display high levels of sequence similarity (top BLASTP e-value $\leq 1e^{-20}$) with the products of S. cerevisiae genes with a known function. In the case of GAL4, however, the C. albicans homologous ORF identified (orf19.5338) encodes a significantly smaller protein (261 aa) than S. cerevisiae Gal4p (881 aa), lacking the C-terminal two-thirds of the protein that contains one of two transcriptional activating domains, and must therefore have a somewhat different function. Approximately half of the C. albicans zinc cluster genes do not appear to have homologs in S. cerevisiae (using a BLAST cutoff of $< 1e^{-20}$) and are therefore likely to participate in processes specific to C. albicans. Finally, it is noteworthy that many of the zinc cluster factors known to be involved in pleiotropic drug resistance in S. cerevisiae, such as Pdr1p, Pdr3p, Yrr1p, Yrm1p, Rds1p, and Rdrlp, do not appear to possess close structural homologs in C. albicans. Since pleiotropic drug resistance is frequently observed in C. albicans, it is likely that this organism possesses functional homologs of these genes or other novel processes that remain to be identified.

Lipid and Amino Acid Metabolism

Some of the *C. albicans* ORFs that do not have clear homologs in *S. cerevisiae* but do have homologs in other fungi,

bacteria, and/or vertebrates encode catabolic enzymes, oxidoreductases, and proteins involved in environmental sensing pathways. The list of genes that C. albicans does not share with S. cerevisiae is skewed towards enzymes involved in the catabolism of fatty acids and ketone bodies in the peroxisome. There are also numerous oxidoreductases, some of which may be involved in activating hydrophobic organic compounds as a prelude to their oxidative degradation. This metabolic arrangement may reflect, in part, the state of the common ancestor with S. cerevisiae, as also reflected in Yarrowia lipolytica, C. antartica, C. rugosa, C. tropicalis, C. maltosa, and C. deformans, which are model organisms in the study of lipases and alkane oxidation for industrial purposes. It is worth mentioning, however, that the genus Candida arose originally to identify fungi that were unclassifiable, asexual, and ascomycetous-properties that appear to correlate with parasitism and the presence of catabolic gene families, such as lipases and alkane-assimilating cytochrome P-450 enzymes. Beta-oxidation in fungi is predominantly peroxisomal, and the number of enzymes participating in the process is greater in C. albicans than in S. cerevisiae. C. albicans also encodes a related ethanolamine kinase (orf19.6912), a malonyl-CoA acyl carrier protein acyltransferase (MCT1), and an enoyl-CoA hydratase (orf19.6830) not found in S. cerevisiae. Further supplying substrates for oxidation are several enzymes encoded by C. albicans that participate in the degradation of asparagine (asparaginase; orf19.3791), cysteine (cysteine dioxygenase [CDG1] and cysteine sulfinate decarboxylase [orf19.5393]), valine (3-hydroxyisobutyrate dehydrogenase [orf19.5565]), and arginine (orf19.3498). Other catabolic enzymes come as a surprise in that they may relate to the scavenging of unsuspected carbon sources. C. albicans encodes three D-amino acid oxidases (IFG3, DAO1, and DAO2) whose substrates might be derived from bacterial cell walls, various oxidoreductases whose substrates are likely to be aromatic and aliphatic compounds not used by the host, a pathway consistent with omega oxidation of fatty acids (which would convert alkanes into alpha-omega diols, fatty acids, and dicarboxylic acids), and a benzene desulfurase (orf19.3901).

Acetyl-CoA generated in the peroxisome is transferred to the mitochondrion, where the most notable difference from S. cerevisiae is the presence of a respiratory Complex I, which can now largely be reconstructed based on sequence similarity to components found in other organisms. The importance of Complex I in the biology of C. albicans is inferred from the observation that deletion of one of its subunits results in a defect in filamentation [75] and the observation that subunit 49 is essential for vegetative growth [8]. An additional difference is the presence of two alternative oxidases that may be involved in protection against oxidative stress [76]. Thus, it is not yet clear whether the omnivorous catabolic capacity of C. albicans reflects its heritage and role as a fungal saprophyte aiding organic decomposition, or whether these capacities have been elaborated and tuned in response to the specific problem of consuming mammalian host cells.

Phospholipases. Depending on the site of attack, phospholipases are classified as phospholipase A, B, C, or D. Phospholipase A enzymes hydrolyze the 1-acyl ester (PLA₁) or the 2-acyl ester (PLA2) of phospholipids. In fungi, phospholipase B enzymes hydrolyze both acyl groups and often also have lysophospholipase activity, removing the

remaining acyl moiety on lysophospholipids [77]. Phospholipase C and phospholipase D enzymes are phosphodiesterases that cleave the glycerophosphate bond and remove the base group of phospholipids, respectively. While a major role of phospholipase function is membrane homeostasis, additional functions comprise nutrient digestion and generation of signaling molecules. Some phospholipases are toxins or components of venoms. Bacterial phospholipases have been shown to be involved in pathogenesis by promoting hemolysis, cytolysis, and tissue destruction, as well as interfering with host signal transduction [78].

As indicated in Table 8, the largest and best-characterized group of phospholipases in C. albicans is the five-member phospholipase B gene family. A related gene family is present in S. cerevisiae, albeit with three members, again reflecting the general increase in gene numbers for enzymes involved in lipid metabolism in C. albicans. All PLB proteins harbor NH₂terminal signal peptides for secretion; Plb3p, Plb4p, and Plb5p additionally contain hydrophobic COOH termini with putative GPI anchor attachment sites for localization to the plasma membrane or further processing for tethering to the cell wall [79,80]. To date, PLB1 and PLB2 are the bestcharacterized members of the gene family [81-84]. Inactivation of PLB1 [82,83] and PLB5 (S. Theiss, G. Ishdorj, M. Kretschman, C. Y. Lan, T. Nichterlein, et al., unpublished data) reduced virulence in animal models.

Putative PLC and PLD phosphodiesterases are also represented in the C. albicans genome. Orf19.6629 is a likely homolog to S. cerevisiae ScISC1, which encodes a PLC with neutral sphingomyelinase activity. Besides the recently published PLC1 gene [85], two almost identical genes encode phosphatidylinositol phospholipase C proteins (PI-PLC). The latter lack homologs in S. cerevisiae, but are similar to bacterial PI-PLCs. PLD1 was shown to be involved in the morphological transition from yeast to hyphae and required for full virulence in animal models [86]. Interestingly, the PLD1 gene product and another phospholipase-like protein (encoded by orf19.4151) show significant sequence similarity to S. cerevisiae proteins that are involved in meiosis and sporulation (ScSpo1p, ScSpo14p, and ScSpo22p). As already shown for PLD1, the ScSPO1 homolog, the functional roles of these proteins are likely to differ from their counterparts in S. cerevisiae since C. albicans has not been shown to undergo meiosis [10].

Another intriguing group of phospholipase genes in C. albicans are patatin-like phospholipases encoded by orf19.1504, orf19.5426, and orf19.6396. These proteins might account for phospholipase A activities in C. albicans that could be involved in intracellular storage or mobilization of lipids.

Sphingolipid metabolism. C. albicans also displays differences from S. cerevisiae with respect to sphingolipid metabolism. Pathways leading to and from fungal-type sphingomyelins have been studied extensively in S. cerevisiae, where by-products mediate many important structural and signaling functions that affect cell proliferation, the definition of cell membrane domains and polarity, apoptosis, and stress responses [87,88]. Many of the associated enzymes are essential and are targets of fungal toxins, and thus are candidates for anti-fungal drug development [88]. C. albicans shares the same fundamental pathways in sphingolipid biosynthesis/degradation plus four additional enzymes. Two of these, a glucosyl transferase (CGT1) and a delta-4

Table 8. Phospholipases in C. albicans

ORF	Domain (Pfam)	Contig	Length (Base Pairs)	Suggested Name/ Published Name ^a	Product/Note	References
orf19.689	Lysophospholipase catalytic domain	Contig19_10064	605	PLB1	Phospholipase B, gene in tandem with PLB2	81–83
orf19.690	Lysophospholipase catalytic domain	Contig19_10064	609	PLB2	Phospholipase B, gene in tandem with PLB1	84
orf19.1442	Lysophospholipase catalytic domain	Contig19_10119	702	PLB3	Phospholipase B, merged with orf19.1443, continuous allele sequence confirmed	G. Köhler, unpublished
orf19.6594	Lysophospholipase catalytic domain	Contig19_2449	632	PLB4	Phospholipase B	
orf19.5102	Lysophospholipase catalytic domain	Contig19_10218	754	PLB5	Phospholipase B	G. Köhler, unpublished
orf19.4151	Lysophospholipase catalytic domain	Contig19_10198	684	SPO1	Similar to <i>S. cerevisiae SPO1</i> product, a meiosis-specific protein with similarity to phospholipase B	
orf19.5506	Phosphatidylinositol-specific phospholipase C, X and Y domain	Contig19_2335	1,100	PLC1	Phospholipase C	85
orf19.5797	Phosphatidylinositol-specific phospholipase C, X domain	Contig19_10234	295	PLC2/ <u>PI-PLC</u>	Phosphatidylinositol phospholipase C, closely related to bacterial PI-PLCs, highly similar to orf19.1586 protein	136
orf19.1586	Phosphatidylinositol-specific phospholipase C, X domain	Contig19_10119	295	PLC3/ <u>PI-PLC</u>	Phosphatidylinositol phospholipase C, closely related to bacterial PI-PLCs, highly similar to orf19.5797 protein	
orf19.6629	Endonuclease/exonuclease/ phosphatase family	Contig19_10251	438	ISC1	Similar to <i>S. cerevisiae</i> YER019w product, an inositol phosphosphingolipid phospholipase C	
orf19.1161	Phospholipase D	Contig19_10097	1,710	PLD1	Phospholipase D, similar to <i>S. cerevisiae</i> SPO14 product which is required for meiosis and spore formation	86,137
orf19.1504	Patatin-like phospholipase	Contig19_10119	853	orf19.1504	Potential patatin-like phospholipase similar to Sc. pombe SPAC31G5.20c and to S. cerevisiae YOR081c	
orf19.5426	Patatin-like phospholipase	Contig19_10227	949	orf19.5426	Potential patatin-like phospholipase similar to <i>S. cerevisiae</i> YKR089c	
orf19.6396	Patatin-like phospholipase	Contig19_10247	1,386	orf19.6396	Potential patatin-like phospholipase with cyclic nucleotide binding domain, similar to <i>S. cerevisiae</i> YML059c	
orf19.13603		Contig19_20241	835	SPO22	Similar to <i>S. cerevisiae SPO22</i> product, a meiosis-specific phospholipase A2 homolog	

^aPublished names are underlined. DOI: 10.1371/journal.pgen.0010001.t008

sphingolipid desaturase (DES1), have been previously studied. The presence of glycosyl ceramides in C. albicans has been known for some time [89,90], and the gene responsible for their synthesis has been cloned and expressed in Pichia [91]. The molecules play a common role in differentiation in dimorphic fungi [92]. Homologs of the delta-4 sphingolipid desaturase enzyme include the mouse, human, and Drosophila degenerative spermatocyte proteins, which play a role in meiosis [93]; its function in C. albicans may relate to membrane structure, or the production of signaling molecules, as is the case in plants. An interesting component of sphingolipid metabolism in C. albicans is a sphingomyelin transfer protein (Het1p) similar to the Podospora anserina HET-C2 protein. The P. anserina protein is involved in self/ non-self discrimination, a fungal version of the vertebrate major histocompatibility locus [94,95]. It is possible that the protein is involved in regulating the sphingomyelin composition of C. albicans membranes, a factor that may relate to acquisition of resistance to amphotericin B and azoles [96]. Finally, C. albicans encodes four acid sphingomyelinases, two of which may be secreted, that have not been studied in fungi. Based on the actions of metazoan secreted acid sphingomyelinases, these enzymes may be involved in regulation of membrane raft formation and generation of ceramide, a second messenger that is known to regulate apoptosis in higher eukaryotes. Secreted sphingomyelinases of pathogenic bacteria, which are enzymatically similar but structurally unrelated to those of *C. albicans*, have been shown to lyse phagosomal membranes [97], facilitate entry into both phagocytic and nonphagocytic cells [98,99], act as hemolysins that abet piracy of iron from the host [100,101], and induce host cell apoptosis [102,103].

Signal Transduction

Differences in signal transduction and regulatory pathways between *C. albicans* and *S. cerevisiae* are numerous. Many of these *C. albicans*–specific genes encode proteins that are responsive to changes in the environment. They may thus be responsive to colonization of a new anatomical site (e.g., passage through the stomach), fluctuations in the availability of nutrients, or the appearance of host inflammatory reactions. Gene products falling into this category include (1) a homolog (TIP120) of a TBP-interacting protein in humans and rats, which acts as global regulator of class I, II,

and III genes in response to abrupt changes in ambient conditions [104], (2) a relative (orf 19.1798) of tuberin, a negative regulator of cell growth in response to low cellular energy levels in mammals [105], (3) a conserved group of stomatin-like proteins (orf 19.7296 and SLP2) that may play a role in mechanoreception, (4) a family of pirin homologs that obviously arose from a recent duplication event (PRN1, PRN2, PRN3, and PRN4)—these are nuclear factors whose homologs interact with the human oncogene Bcl-3 product and with an A. thaliana G protein alpha-subunit involved in regulating seed germination and early seedling development [106])—and (5) a rhomboid protein (orf 19.5234), probably located on the plasma membrane, whose homologs in eukaryotes and bacteria mediate the proteolytic release of signaling peptides from a larger precursor [107]. In addition to differences traceable to novel genes, other pathways that share components have doubtless been altered in their role and regulation, such as the mating pathway [108].

Two of the most important enzyme families that are involved in signal transduction pathways are the kinases and small GTPases. The C. albicans annotation identifies 96 protein kinases, most of which have strong orthologs in S. cerevisiae. The C. albicans genome contains two genes encoding GTPases of the heterotrimeric G protein alpha-subunit family—GPA1 and GPA2. In addition, it contains 29 small GTPases of the p21 superfamily. These include a single Ras protein (Ras1p), various members of the Rho and Rab families, the Ran1 homolog Gsp1p, and several members of the ADP ribosylation subfamily. Most of these proteins have clear S. cerevisiae orthologs. However, S. cerevisiae does not have a Rac homolog, while orf19.6237 appears to encode a C. albicans Rac protein and has thus been named RAC1. As well, orf19.5902 appears to be distantly related to Ras but lacks any strong equivalent in any organism, and has been designated Rlp1p, for Ras-like protein, while orf19.2975 is a YPT/RAB family member that has been named RAB7 because it has no clear S. cerevisiae YPT ortholog.

Conclusions

We have coordinated a community-wide effort to manually confirm, edit, and annotate 6,354 genes from assembly 19 of the C. albicans genome. This annotation includes 214 introncontaining genes, 246 genes with either missense mutations or sequencing errors, and 190 truncated genes that terminate at the ends of the sequence contigs. C. albicans genes were found to be exceptionally rich in short sequence repeats, especially compared to the genomes of S. pombe and S. cerevisiae. Correlation with transcriptional profiling data was used to identify potentially spurious genes. This improved dataset allowed the identification fungal-specific genes and permitted a detailed analysis of several large multigene families. Comparative genomic studies indicate that C. albicans is much more versatile in its production of secreted lipid- and amino-acid-degrading enzymes and in its ability to import the resulting nutrients.

Materials and Methods

Identification of C. albicans ORFs and merging of preliminary annotations. Nucleotide sequence data for assembly 19 were retrieved from the SGTC Web site (http://www-sequence.stanford.edu//group/ candida/). Assembly 19 is composed of a haploid supercontig set (contigs 19-831 to 19-10262), here referred to as the haploid set, and a allelic supercontig set (contigs 19-20001 to 19-20161), here referred to as the allelic set [6].

The CAAT-Box software package [109] was used to identify annotation-relevant ORFs in assembly orf19. A set including ORFs longer than 300 codons and a set with all intergenic regions obtained after subtraction of ORFs larger than 80 codons were created. These sets were used to build a GeneMark matrix [11] that was subsequently used to evaluate the coding probability of all ORFs in assembly 19. ORFs longer than 150 codons, and ORFs longer than 40 codons and with a GeneMark coding function greater than 0.5 [11] over their whole length, were selected and assigned a reference number of the format IPFn.i where IPF stands for individual protein file, n is an integer specific to the IPF, and i corresponds to the number of times the IPF has been modified between assembly 5, 6, and 19 of the C. albicans genome sequence. In total, 11,025 and 9,089 IPFs were selected in the haploid and allelic sets, respectively. IPFs shorter than 150 codons in the haploid set were further inspected for (1) overlaps with larger IPFs on a different frame and (2) homology to proteins in the NR database of non-redundant proteins from GenBank. IPFs that overlapped with a larger IPF or did not show a significant homolog (BLASTP e-value $< 1e^{-3}$) [110] were designated FALSORF. Of the 11,025 IPFs identified in the haploid set, 3,505 were FALSORFs.

All IPFs identified in the haploid set were compared through reciprocal BLASTP to the set of 7,680 C. albicans ORFs defined at the SGTC that uses the systematic designation orf19.n. BLASTP results were parsed using Readblast [111]. IPFs without an orf19.n counterpart were assigned a new reference number of the format orf19.n.i, where orf19.n is the closest upstream (using SGTC contig coordinates) ORF defined by the SGTC and i is an integer that varies between 1 and the number of IPFs located between orf19.n and orf19.(n + 1). For instance, if three ORFs were found between orf19.1234 and orf19.1235, these would be referred to as orf19.1234.1, orf19.1234.2, and orf19.1234.3. Taken together, 11,616 orf19 ORFs were identified in the haploid set, of which 3,936 were not present in the SGTC orf19 set.

A similar procedure was applied to the allelic set of sequences, and a total of 9,552 orf19 ORFs were identified, of which 3,012 were not present in the SGTC orf19 set. The haploid and allelic sets of orf19 ORFs were compared by reciprocal BLASTP in order to define allelic and unique sequences in the allelic set (see below).

The 11,615 orf19 ORFs identified in the haploid set were compared by reciprocal BLASTP to the 9,168 ORFs identified by the SGTC using assembly 6 of the C. albicans genome sequence (designated orf6.n). A similar reciprocal comparison was run using the set of 6,165 C. albicans proteins available in the CandidaDB database that have been defined by applying a procedure similar to that outlined above on assembly 6 and through a manual curation aiming to reach a nonredundant protein set (http://genolist.pasteur.fr/CandidaDB; [12]). Furthermore, orf19 ORFs were reciprocally compared to the S. cerevisiae proteome using data available at the SGD [112]. All data were parsed using Readblast [111], and a matrix was generated that correlated ORFs from each dataset.

We used the genome annotation tool Artemis [14], which provides very detailed annotation capability, visually mapping desired features onto the target sequence. In preparation, we loaded our heterogeneous data into the required EMBL-style files: (1) the orf19 reference (field: Assembly_ID); (2) the orf6 reference (field: old_Assembly_ID); (3) the CandidaDB entry number (field: db_xref); (4) the entry number for the Comprehensive Yeast Genome Database, which provides a detailed analysis of protein features of all entries available in CandidaDB [113] (field: db_xref); (5) the GenBank entry number for C. albicans proteins previously characterized and annotated (field: db_xref); (6) the IPF reference (field: db_xref); (7) annotation data available from CandidaDB (proposed gene name and proposed function; field: Annotator); (8) annotation data of the Agabian's laboratory based on the orf6 protein set (http://agabian.ucsf.edu/ canoDB/anno.php) (field: Annotator); (9) annotation data of the Fink's and Johnson's laboratories based on the orf6 protein set (unpublished) (field: note_AJ); (10) annotation comments available from CandidaDB (field: note_GF); (11) Pfam matches [114] obtained using the orf19 protein set (field: pfam_match); (12) Clusters of Orthologous Groups matches [115] obtained from the Comprehensive Yeast Genome Database using the CandidaDB protein set (field: COGs_MIPS); (13) EC number matches obtained from the Comprehensive Yeast Genome Database using the CandidaDB protein set (field: EC_number_MIPS); (14) S. cerevisiae closest protein including e-value, putative orthology, protein function, gene name, and alternate gene names, genome reference number obtained from SGD (field: Note); (15) GO annotation of the S. cerevisiae protein obtained from SGD (field: GO); (16) the reference of the allelic orf19 in the allelic set of sequences including supercontig number and location (field: Allele); and (17) chromosome assignment data available from the Magee's and Whiteway's laboratories (http://206.167.190.233/candida/index.cfm?page=CaChrom) (field: Chromosome).

Furthermore all ORFs were assigned a color code in order to facilitate annotation using the annotation tool Artemis [14]. All orf19 ORFs corresponding to an IPF classified as FALSORF and orf19 ORFs identified at the SGTC and not found among IPFs were color-coded in grey. orf19 ORFs with an unambiguous allele (90% identical amino acids over the whole length of the longest ORF) were color-coded in red (>150 codons) or pink (<150 codons). orf19 ORFs with a questionable allele (90% identical amino acids over the whole length of the shortest ORF) were color-coded in green (>150 codons) or pale green (<150 codons). orf19 ORFs without a clear allele (less than 90% identical amino acids over the whole length of the shortest ORF or no reciprocal match) were color-coded in blue (>150 codons) or light blue (<150 codons).

From this "master" file of sequences and their corresponding preliminary annotation, groups of contigs were selected and saved as partially annotated subsequences that were reserved and retrieved by members of the annotation consortium, and once fully annotated, were returned to a central Web site. A version of Artemis was distributed to the consortium that included a modified "options" file [116] allowing project-specific qualifiers to be used, and also featuring the *C. albicans*–specific translation Table 12 [117].

Whole genome BLAST searches and visualization of sequence homologies. ORF sequences were translated to proteins using the translation table for *C. albicans* [117], and compared using the BLASTP algorithm [118] with the NR database, the *C. albicans* proteome itself, the putative proteomes of five fungi (*S. cerevisiae, S. pombe, N. crassa, A. nidulans,* and *M. grisea)*, and the proteomes of five other eukaryotes (*A. thaliana, D. melanogaster, C. elegans, M. musculus,* and *H. sapiens*). Sequence data were obtained from the EMBL-EBI Integr8 Browser (http://www.ebi.ac.uk/integr8/EBI-Integr8-HomePage.

do) and the Broad Institute for Genome Research (http://www.broad.mit.edu/annotation/). For the most similar proteins by BLAST, negative exponents of the e-values were parsed from the output files, collected in a relational database, and visualized as a color range associated with each reference protein (see Figure 1). For this purpose, a Web-accessible visualization tool was constructed using Maromedia Cold Fusion and an Apache2 Web server. These results can be consulted at http://candida.bri.nrc.ca/candida/index.cfm?page =blast.

Bioinformatic identification of putative introns. Intron locations were predicted by constructing regular expressions based on consensus data drawn from several known introns in C. albicans (SOD1, EFB1, CMD1, CSK1, and others) as well as the extensive knowledge of the splice site consensus in S. cerevisiae [119] and matching of those expressions to the genomic DNA. Two regular expressions were used: $/(.\{15,\}?TG[AT]A[CT]G)/$ and $/(.\{700\})$ ([ATC]TACTAAC.{4,24}?[ATC][CTA]AG)(.{90})/. These incorporate several conserved aspects of mRNA splice sites including (1) the splice donor site of G(T/C)A(T/A)GT, where the initial guanine is the first residue within the intron, (2) a gap of between 15 and 700 nucleotides between the donor site and the branch point, (3) the branch point consensus sequence (A/T/C)TACTAAC, (4) a gap of between four and 24 nucleotides between the branch point and the splice acceptor site, (5) the splice acceptor site (T/A/C)(T/A/C)AG, where the final guanine is the final residue within the intron. This procedure provided landmarks that annotators could use to decide whether a gene contained introns, a decision also based on the position of nearby ORFs, on the ability of the intron/exon assembly to extend the size of the reading frame, and, most important, on the ability of the putative intron/exon assembly to improve similarity to sequences in other species. It predicted 1,297 introns in the C. albicans genome, many of which were not near ORFs or were otherwise incorrect. Nevertheless, this procedure was useful in providing markers for confirmation by the annotators.

Identification and classification of STRs. A STR was defined as a short nucleotide element (1–20 nt) repeated a number of times with a periodicity P, a length L, and a tolerated mutation window W. Since allelic indels are rare in C. albicans, we considered only mutations in STR sequences and not insertion or deletion from the consensus periodic pattern. W indicates the minimun distance between two mutations within a STR. For example, the STR "CTACAACAACAG-CAAC" has P=3, L=16, and $W\leq 10$. When two STRs overlap they are merged together defining a single STR domain. Since short STRs can randomly occur, depending on the G/C content of the genome, we established a significant threshold length $L_{\rm MIN}$ for every

periodicity P and mutation window W to represent the STR length for which the number of STR domains found in a randomized genome is less than 5% of the number found in the real genome. We call STR95 the set of all STR domains that are longer than the threshold value. In the STR95 set, every STR domain has a less than 5% chance of being a random event. With this method of setting the minimal STR length, no significant STR can be found in any randomized genome or in genomes that do not contain STRs in sufficient number to beat the odds 20 to one. More information and data can be found in Dataset S6.

Identification of spurious genes. For the calculation of gene expression correlation, we used a set of approximately 1,000 *S. cerevisiae* microarray experiments [127], and 216 genome-wide *C.* albicans expression profiles [7,13,108,120-126]. The iterative signature algorithm [35,127] was applied to the C. albicans expression data as described. We analyzed ORFs present on the arrays for which an orf19 number could be determined, including some that were subsequently removed from the final set of annotated genes. Pairwise Pearson correlation coefficients were calculated for each ORF with respect to all other ORFs across all of the experiments contained in the dataset. Random subsets of the S. cerevisiae data were generated by randomly selecting 200 experiments from the complete set of approximately 1,000 profiles. ORFs whose correlation coefficient exceeded the threshold value of 3σ with at least one other ORF in the dataset were recorded and excluded from the list of spurious gene candidates. The standard deviation σ of the background correlation of random gene pairs was measured to be $\sigma = 0.16$ for *S. cerevisiae* and $\sigma = 0.21$ for *C. albicans*. Similarly, genes possessing an ortholog in *S.* cerevisiae were excluded from the list of C. albicans candidates, and vice versa. All remaining ORFs were subsequently ordered by their length, and the 50 shortest ORFs were excluded (many of the shortest 50 genes correspond to real genes in S. cerevisiae).

Supporting Information

Dataset S1. Coordinates and All of the Annotation Fields for the 6,354 Confirmed *C. albicans* Genes, Based on the Version 19 Genome Assembly

Please note that Microsoft Excel may convert some of the gene names to dates and fail to import some of the largest fields.

Found at DOI: 10.1371/journal.pgen.0010001.sd001 (2 MB TXT).

Dataset S2. Sequence and Position of All Statistically Significant STRs in *C. albicans* Coding Sequences

Found at DOI: 10.1371/journal.pgen.0010001.sd002 (291 KB TXT).

 $\textbf{Dataset S3.} \ \, \textbf{Sequence and Position of All Statistically Significant STRs} \\ \text{ in } \textit{S. pombe Coding Sequences} \\ \\$

Found at DOI: 10.1371/journal.pgen.0010001.sd003 (11 KB TXT).

 $\begin{tabular}{ll} \textbf{Dataset S4.} Sequence and Position of All Statistically Significant STRs in S. cerevisiae Coding Sequences \\ \end{tabular}$

Found at DOI: 10.1371/journal.pgen.0010001.sd004 (66 KB TXT).

 $\textbf{Dataset S5.} \ \, \textbf{Sequence and Position of All Statistically Significant STRs} \\ \textbf{in } \textit{N. crassa} \ \, \textbf{Coding Sequences} \\$

Found at DOI: 10.1371/journal.pgen.0010001.sd005 (488 KB TXT).

Dataset S6. Detailed Description of Our STR Identification Algorithm Found at DOI: 10.1371/journal.pgen.0010001.sd006 (4 KB TXT).

Table S1. List of Potentially Spurious Genes

Found at DOI: 10.1371/journal.pgen.0010001.st001 (34 KB XLS).

Accession Numbers

The GenBank (http://www.ncbi.nlm.nih.gov/Genbank/) accession numbers for ORFs discussed in this paper are ALS3-I (AY223552), ALS3-2 (AY223551), ALS4-2 (AF272027), ALS5-I (AY227440), ALS5-2 (AY227439), strain SC5314 sequence corresponding to ALS6 (AY225310), strain SC5314 ALS9-I (AY269423), and strain SC5314 ALS9-I (AY269422).

Acknowledgments

This project, and many others that applied functional genomic techniques to the study of *C. albicans*, would not have been possible without the public release of genomic sequence data by Ted Jones, Stewart Scherer, and their colleagues at the SGTC. We also wish to

thank Keith James for Perl-scripting, Susumu Goto for corrections to the EC numbers, and numerous members of the Candida research community for their encouragements. We thank the Magnaporthe and Aspergillus Sequencing Projects of North Carolina State University and the Broad Institute of the Massachusetts Institute of Technology and Harvard (http://www.broad.mit.edu) for access to preliminary genome sequence data. Many of the annotators were supported by National Institutes of Health grant # RO1 AI49187 (to ADJ), European Comission grants # QLK2-2000-00795 and MCRTN-CT-2003-504148 (to CD), National Institute for Dental and Craniofacial Research grant # P01 DE07946 (to NA), and Canadian Institutes of Health Research grant # MOP-42516 (to MW). Finally, we gratefully acknowledge direct support for the community effort from the Pharmacia Corporation, the Burroughs Wellcome Fund, the Wellcome Trust, and the National Research Council Canada's Genome

References

- Odds FC (1994) Pathogenesis of Candida infections. J Am Acad Dermatol 31: S2–S5.
- Fradin C, Hube B (2003) Tissue infection and site-specific gene expression in Candida albicans. Adv Appl Microbiol 53: 271–290.
- Berman J, Sudbery PE (2002) Candida albicans: A molecular revolution built on lessons from budding yeast. Nat Rev Genet 3: 918–930.
- Fidel PL Jr (2002) Distinct protective host defenses against oral and vaginal candidiasis. Med Mycol 40: 359–375.
- Naglik JR, Challacombe SJ, Hube B (2003) Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol Mol Biol Rev 67: 400–428.
- Jones T, Federspiel NA, Chibana H, Dungan J, Kalman S, et al. (2004) The diploid genome sequence of *Candida albicans*. Proc Natl Acad Sci U S A 101: 7329–7334.
- Nantel A, Dignard D, Bachewich C, Harcus D, Marcil A, et al. (2002) Transcription profiling of *Candida albicans* cells undergoing the yeast to hyphal transition. Mol Biol Cell 13: 3452–3465.
- Roemer T, Jiang B, Davison J, Ketela T, Veillette K, et al. (2003) Largescale essential gene identification in *Candida albicans* and applications to antifungal drug discovery. Mol Microbiol 50: 167–181.
- Uhl MA, Biery M, Craig N, Johnson AD (2003) Haploinsufficiency-based large-scale forward genetic analysis of filamentous growth in the diploid human fungal pathogen C. albicans. EMBO J 22: 2668–2678.
- Tzung KW, Williams RM, Scherer S, Federspiel N, Jones T, et al. (2001) Genomic evidence for a complete sexual cycle in *Candida albicans*. Proc Natl Acad Sci U S A 98: 3249–3253.
- Lukashin AV, Borodovsky M (1998) GeneMark.hmm: New solutions for gene finding. Nucleic Acids Res 26: 1107–1115.
- d'Enfert C, Goyard S, Rodriguez-Arnaveilhe S, Frangeul L, Jones L, et al. (2005) CandidaDB: A genome database for *Candida albicans* pathogenomics. Nucleic Acids Res 33: D353–D357.
- Bennett RJ, Uhl MA, Miller MG, Johnson AD (2003) Identification and characterization of a *Candida albicans* mating pheromone. Mol Cell Biol 23: 8189–8201.
- Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, et al. (2000) Artemis: Sequence visualization and annotation. Bioinformatics 16: 944–945.
- Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, et al. (1996) Life with 6000 genes. Science 274: 546, 563–547.
- Kellis M, Patterson N, Endrizzi M, Birren B, Lander ES (2003) Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423: 241–254.
- Wood V, Gwilliam R, Rajandream MA, Lyne M, Lyne R, et al. (2002) The genome sequence of Schizosaccharomyces pombe. Nature 415: 871–880.
- Galagan JE, Calvo SE, Borkovich KA, Selker EU, Read ND, et al. (2003) The genome sequence of the filamentous fungus *Neurospora crassa*. Nature 422: 859–868.
- Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796–815.
- Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, et al. (2000) The genome sequence of *Drosophila melanogaster*. Science 287: 2185–2195.
- C. elegans Sequencing Consortium (1998) Genome sequence of the nematode C. elegans: A platform for investigating biology. Science 282: 2012–2018.
- Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, et al. (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420: 520–562.
- Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, et al. (2001) Initial sequencing and analysis of the human genome. Nature 409: 860– 091
- Cherry JM (1995) Genetic nomenclature guide. Saccharomyces cerevisiae. Trends Genet 1995: 11–12.
- Arnaud MB, Constanzo MC, Skrzypek MS, Binkley G, Lane C, et al. (2005) The Candida Genome Database (CGD), a community resource for Candida albicans gene and protein information. Nucleic Acid Res 33: D358–D363.
- 26. Mourier T, Jeffares DC (2003) Eukaryotic intron loss. Science 300: 1393.

and Health Initiative. This is National Research Council Canada publication #46227.

Competing interests. BRB is an employee of both Incyte and University of California at San Francisco (UCSF). Incyte played no role in this work, and the resources used were all from UCSF.

Author contributions. BRB, CD, JD, DOI, MB, ML, APM, ADJ, MW, and AN conceived and designed the experiments. BRB, MM, JD, DOI, MAV, AL, VO, CB, DH, AM, DD, TL, RZ, MW, and AN performed the experiments. BRB, MV, CD, AK, HH, MB, CAM, SB, NAG, LLH, GK, JM, GN, SZ, MR, BT, JHI, JB, DS, NA, MW, and AN analyzed the data. BRB, MV, CD, JD, AK, DOI, MAV, HH, MB, ML, LF, FT, KR, EW, GS, MC, NA, APM, ADJ, and AN contributed reagents/materials/analysis tools. BRB, CD, AK, MB, EW, NAG, LLH, GK, JM, GN, SZ, MR, BT, GS, JB, DS, ADJ, MW, and AN wrote the paper.

- 27. Nielsen CB, Friedman B, Birren B, Burge CB, Galagan JE (2004) Patterns of intron gain and loss in fungi. PLoS Biol 2: DOI: 10.1371/journal. pbio.0020422
- Fedorov A, Merican AF, Gilbert W (2002) Large-scale comparison of intron positions among animal, plant, and fungal genes. Proc Natl Acad Sci U S A 99: 16128–16133.
- Kersanach R, Brinkmann H, Liaud MF, Zhang DX, Martin W, et al. (1994) Five identical intron positions in ancient duplicated genes of eubacterial origin. Nature 367: 387–389.
- Boucher HW, Groll AH, Chiou CC, Walsh TJ (2004) Newer systemic antifungal agents: Pharmacokinetics, safety and efficacy. Drugs 64: 1997– 2020
- Toth G, Gaspari Z, Jurkat J (2000) Microsatellites in different eukaryotic genomes: Survey and analysis. Genome Res 10: 967–981.
- Katti MV, Ranjekar PK, Gupta VS (2001) Differential distribution of simple sequence repeats in eukaryotic genome sequences. Mol Biol Evol 18: 1161–1167.
- Astolfi P, Bellizzi D, Sgaramella V (2003) Frequency and coverage of trinucleotide repeats in eukaryotes. Gene 317: 117–125.
- Nag DK, Suri M, Stenson EK (2004) Both CAG repeats and inverted DNA repeats stimulate spontaneous unequal sister-chromatid exchange in Saccharomyces cerevisiae. Nucleic Acids Res 32: 5677–5684.
- Ihmels J, Friedlander G, Bergmann S, Sarig O, Ziv Y, et al. (2002)
 Revealing modular organization in the yeast transcriptional network. Nat Genet 31: 370–377.
- Magee BB, Hube B, Wright RJ, Sullivan PJ, Magee PT (1993) The genes encoding the secreted aspartyl proteinases of *Candida albicans* constitute a family with at least three members. Infect Immun 61: 3240–3243.
- White TC, Miyasaki SH, Agabian N (1993) Three distinct secreted aspartyl proteinases in *Candida albicans*. J Bacteriol 175: 6126–6133.
- Hoyer LL, Payne TL, Bell M, Myers AM, Scherer S (1998) Candida albicans ALS3 and insights into the nature of the ALS gene family. Curr Genet 33: 451–459.
- Hube B, Stehr F, Bossenz M, Mazur A, Kretschmar M, et al. (2000) Secreted lipases of *Candida albicans*: Cloning, characterisation and expression analysis of a new gene family with at least ten members. Arch Microbiol 174: 362–374.
- Ramanan N, Wang Y (2000) A high-affinity iron permease essential for Candida albicans virulence. Science 288: 1062–1064.
- Lan CY, Rodarte G, Murillo LA, Jones T, Davis RW, et al. (2004) Regulatory networks affected by iron availability in *Candida albicans*. Mol Microbiol 53: 1451–1469.
- 42. Bauer BE, Wolfger H, Kuchler K (1999) Inventory and function of yeast ABC proteins: About sex, stress, pleiotropic drug and heavy metal resistance. Biochim Biophys Acta 1461: 217–236.
- Prasad R, De Wergifosse P, Goffeau A, Balzi E (1995) Molecular cloning and characterization of a novel gene of *Candida albicans*, CDR1, conferring multiple resistance to drugs and antifungals. Curr Genet 27: 320–329.
- Sanglard D, Kuchler K, Ischer F, Pagani JL, Monod M, et al. (1995) Mechanisms of resistance to azole antifungal agents in *Candida albicans* isolates from AIDS patients involve specific multidrug transporters. Antimicrob Agents Chemother 39: 2378–2386.
- Sanglard D, Ischer F, Monod M, Bille J (1997) Cloning of Candida albicans genes conferring resistance to azole antifungal agents: Characterization of CDR2, a new multidrug ABC-transporter gene. Microbiology 143: 405– 416.
- Lan CY, Newport G, Murillo LA, Jones T, Scherer S, et al. (2002) Metabolic specialization associated with phenotypic switching in *Candida albicans*. Proc Natl Acad Sci U S A 99: 14907–14912.
- Smriti Krishnamurthy S, Dixit BL, Gupta CM, Milewski S, et al. (2002)
 ABC transporters Cdr1p, Cdr2p and Cdr3p of a human pathogen Candida albicans are general phospholipid translocators. Yeast 19: 303–318.
- Mason DL, Mallampalli MP, Huyer G, Michaelis S (2003) A region within a lumenal loop of Saccharomyces cerevisiae Ycf1p directs proteolytic processing and substrate specificity. Eukaryot Cell 2: 588–598.
- 49. Theiss S, Kretschmar M, Nichterlein T, Hof H, Agabian N, et al. (2002)

- Functional analysis of a vacuolar ABC transporter in wild-type Candida albicans reveals its involvement in virulence. Mol Microbiol 43: 571–584.
- Hoyer LL (2001) The ALS gene family of Candida albicans. Trends Microbiol 9: 176–180.
- Sheppard DC, Yeaman MR, Welch WH, Phan QT, Fu Y, et al. (2004) Functional and structural diversity in the Als protein family of *Candida albicans*. J Biol Chem 279: 30480–30489.
- Hoyer LL, Scherer S, Shatzman AR, Livi GP (1995) Candida albicans ALS1: Domains related to a Saccharomyces cerevisiae sexual agglutinin separated by a repeating motif. Mol Microbiol 15: 39–54.
- Hoyer LL, Payne TL, Hecht JE (1998). Identification of Candida albicans ALS2 and ALS4 and localization of Als proteins to the fungal cell surface. J Bacteriol 180: 5334–5343.
- Gaur NK, Klotz SA (1997) Expression, cloning, and characterization of a Candida albicans gene, ALA1, that confers adherence properties upon Saccharomyces cerevisiae for extracellular matrix proteins. Infect Immun 65: 5980

 –5904
- Hoyer LL, Hecht JE (2000) The ALS6 and ALS7 genes of Candida albicans. Yeast 16: 847–855.
- Hoyer LL, Hecht JE (2001) The ALS5 gene of Candida albicans and analysis of the Als5p N-terminal domain. Yeast 18: 49–60.
- Zhao X, Pujol C, Soll DR, Hoyer LL (2003) Allelic variation in the contiguous loci encoding *Candida albicans* ALS5, ALS1 and ALS9. Microbiology 149: 2947–2960.
- Lott TJ, Holloway BP, Logan DA, Fundyga R, Arnold J (1999) Towards understanding the evolution of the human commensal yeast *Candida albicans*. Microbiology 145: 1137–1143.
- Zhang N, Harrex AL, Holland BR, Fenton LE, Cannon RD, et al. (2003) Sixty alleles of the ALS7 open reading frame in *Candida albicans*: ALS7 is a hypermutable contingency locus. Genome Res 13: 2005–2017.
- 60. Oh SH, Cheng G, Nuessen JA, Jajko R, Yeater KM, et al. (2004) Functional specificity of *Candida albicans* Als3p proteins and clade specificity of ALS3 alleles discriminated by the number of copies of the tandem repeat sequence in the central domain. Microbiology 151: 673–681.
- Biswas K, Morschhäuser J (2005) The Mep2p ammonium permease controls nitrogen starvation-induced filamentous growth in *Candida albicans*. Mol Microbiol 56: 649–669.
- Marini AM, Soussi-Boudekou S, Vissers S, Andre B (1997) A family of ammonium transporters in Saccharomyces cerevisiae. Mol Cell Biol 17: 4282– 4293.
- Lorenz MC, Heitman J (1998) The MEP2 ammonium permease regulates pseudohyphal differentiation in Saccharomyces cerevisiae. EMBO J 17: 1236– 1247.
- Lubkowitz MA, Hauser L, Breslav M, Naider F, Becker JM (1997) An oligopeptide transport gene from *Candida albicans*. Microbiology 143: 387–396.
- Reuß O, Vik Å, Kolter R, Morschhäuser J (2004) The SAT1 flipper, an optimized tool for gene disruption in Candida albicans. Gene 341: 119–127.
- Matthews JM, Sunde M (2002) Zinc fingers—Folds for many occasions. Life 54: 351–355.
- 67. Schjerling P, Holmberg S (1996) Comparative amino acid sequence analysis of the C6 zinc cluster family of transcriptional regulators. Nucleic Acids Res 24: 4599–4607.
- Todd RB, Andrianopoulos A (1997) Evolution of a fungal regulatory gene family: The Zn(II)2Cys6 binuclear cluster DNA binding motif. Fungal Genet Biol 21: 388-405.
- Akache B, Wu K, Turcotte B (2001) Phenotypic analysis of genes encoding yeast zinc cluster proteins. Nucleic Acids Res 29: 2181–2190.
- Hellauer K, Rochon MH, Turcotte B (1996) A novel DNA binding motif
 for yeast zinc cluster proteins: The Leu3p and Pdr3p transcriptional
 activators recognize everted repeats. Mol Cell Biol 16: 6096–6102.
- Kelly R, Kwon-Chung KJ (1992) A zinc finger protein from Candida albicans is involved in sucrose utilization. J Bacteriol 174: 222–232.
- Talibi D, Raymond M (1999) Isolation of a putative Candida albicans transcriptional regulator involved in pleiotropic drug resistance by functional complementation of a pdr1 pdr3 mutation in Saccharomyces cerevisiae. J Bacteriol 181: 231–240.
- Moreno I, Pedreno Y, Maicas S, Sentandreu R, Herrero E, et al. (2003) Characterization of a *Candida albicans* gene encoding a putative transcriptional factor required for cell wall integrity. FEMS Microbiol Lett 996: 150-167
- Brown DH Jr, Giusani AD, Chen X, Kumamoto CA (1999) Filamentous growth of *Candida albicans* in response to physical environmental cues and its regulation by the unique CZF1 gene. Mol Microbiol 34: 651–662.
- McDonough JA, Bhattacherjee V, Sadlon T, Hostetter MK (2002) Involvement of Candida albicans NADH dehydrogenase complex I in filamentation. Fungal Genet Biol 36: 117–127.
- Huh WK, Kang SO (2001) Characterization of the gene family encoding alternative oxidase from Candida albicans. Biochem 1 356: 595–604.
- Ghannoum MA (2000) Potential role of phospholipases in virulence and fungal pathogenesis. Clin Microbiol Rev 13: 122–143.
- Schmiel DH, Miller VL (1999) Bacterial phospholipases and pathogenesis. Microbes Infect 1: 1103–1112.
- Eisenhaber B, Schneider G, Wildpaner M, Eisenhaber F (2004) A sensitive predictor for potential GPI lipid modification sites in fungal protein

- sequences and its application to genome-wide studies for Aspergillus nidulans, Candida albicans, Neurospora crassa, Saccharomyces cerevisiae and Schizosaccharomyces pombe. J Mol Biol 337: 243–253.
- 80. Lee SA, Wormsley S, Kamoun S, Lee AF, Joiner K, et al. (2003) An analysis of the *Candida albicans* genome database for soluble secreted proteins using computer-based prediction algorithms. Yeast 20: 595–610.
- 81. Hoover CI, Jantapour MJ, Newport G, Agabian N, Fisher SJ (1998) Cloning and regulated expression of the *Candida albicans* phospholipase B (PLB1) gene. FEMS Microbiol Lett 167: 163–169.
- Leidich SD, Ibrahim AS, Fu Y, Koul A, Jessup C, et al. (1998) Cloning and disruption of caPLB1, a phospholipase B gene involved in the pathogenicity of *Candida albicans*. J Biol Chem 273: 26078–26086.
- Mukherjee PK, Seshan KR, Leidich SD, Chandra J, Cole GT, et al. (2001) Reintroduction of the PLB1 gene into *Candida albicans* restores virulence in vivo. Microbiology 147: 2585–2597.
- 84. Sugiyama Y, Nakashima S, Mirbod F, Kanoh H, Kitajima Y, et al. (1999) Molecular cloning of a second phospholipase B gene, caPLB2 from Candida albicans. Med Mycol 37: 61–67.
- Bennett DE, McCreary CE, Coleman DC (1998) Genetic characterization of a phospholipase C gene from *Candida albicans*: Presence of homologous sequences in *Candida* species other than *Candida albicans*. Microbiology 144: 55–72.
- Hube B, Hess D, Baker CA, Schaller M, Schafer W, et al. (2001) The role and relevance of phospholipase D1 during growth and dimorphism of *Candida albicans*. Microbiology 147: 879–889.
- Dickson RC, Lester RL (2002) Sphingolipid functions in Saccharomyces cerevisiae. Biochim Biophys Acta 1583: 13–25.
- Obeid LM, Okamoto Y, Mao C (2002) Yeast sphingolipids: Metabolism and biology. Biochim Biophys Acta 1585: 163–171.
- Matsubara T, Hayashi A, Banno Y, Morita T, Nozawa Y (1987) Cerebroside of the dimorphic human pathogen, *Candida albicans*. Chem Phys Lipids 43: 1–12.
- Ghannoum MA, Janini G, Khamis L, Radwan SS (1986) Dimorphismassociated variations in the lipid composition of *Candida albicans*. J Gen Microbiol 132: 2367–2375.
- Leipelt M, Warnecke D, Zahringer U, Ott C, Muller F, et al. (2001) Glucosylceramide synthases, a gene family responsible for the biosynthesis of glucosphingolipids in animals, plants, and fungi. J Biol Chem 276: 33621–33629.
- Barreto-Bergter E, Pinto MR, Rodrigues ML (2004) Structure and biological functions of fungal cerebrosides. An Acad Bras Cienc 76: 67– 84
- Ternes P, Franke S, Zahringer U, Sperling P, Heinz E (2002) Identification and characterization of a sphingolipid delta 4-desaturase family. J Biol Chem 277: 25512–25518.
- 94. Saupe S, Descamps C, Turcq B, Begueret J (1994) Inactivation of the *Podospora anserina* vegetative incompatibility locus het-c, whose product resembles a glycolipid transfer protein, drastically impairs ascospore production. Proc Natl Acad Sci U S A 91: 5927–5931.
- Mattjus P, Turcq B, Pike HM, Molotkovsky JG, Brown RE (2003) Glycolipid intermembrane transfer is accelerated by HET-C2, a filamentous fungus gene product involved in the cell-cell incompatibility response. Biochemistry 42: 535–542.
- Mukhopadhyay K, Prasad T, Saini P, Pucadyil TJ, Chattopadhyay A, et al. (2004) Membrane sphingolipid-ergosterol interactions are important determinants of multidrug resistance in *Candida albicans*. Antimicrob Agents Chemother 48: 1778–1787.
- Gonzalez-Zorn B, Dominguez-Bernal G, Suarez M, Ripio MT, Vega Y, et al. (1999) The smcL gene of *Listeria ivanovii* encodes a sphingomyelinase C that mediates bacterial escape from the phagocytic vacuole. Mol Microbiol 33: 510–523.
- Grassme H, Gulbins E, Brenner B, Ferlinz K, Sandhoff K, et al. (1997) Acidic sphingomyelinase mediates entry of N. gonorrhoeae into nonphagocytic cells. Cell 91: 605–615.
- Hauck CR, Grassme H, Bock J, Jendrossek V, Ferlinz K, et al. (2000) Acid sphingomyelinase is involved in CEACAM receptor-mediated phagocytosis of Neisseria gonorrhoeae. FEBS Lett 478: 260–266.
- Projan SJ, Kornblum J, Kreiswirth B, Moghazeh SL, Eisner W, et al. (1989)
 Nucleotide sequence: The beta-hemolysin gene of Staphylococcus aureus.
 Nucleic Acids Res 17: 3305.
- Marshall MJ, Bohach GA, Boehm DF (2000) Characterization of Staphylococcus aureus beta-toxin induced leukotoxicity. J Nat Toxins 9: 125–138.
- 102. Esen M, Schreiner B, Jendrossek V, Lang F, Fassbender K, et al. (2001) Mechanisms of Staphylococcus aureus induced apoptosis of human endothelial cells. Apoptosis 6: 431–439.
- 103. Tseng HJ, Chan CC, Chan EC (2004) Sphingomyelinase of Helicobacter pylori-induced cytotoxicity in AGS gastric epithelial cells via activation of JNK kinase. Biochem Biophys Res Commun 314: 513–518.
- 104. Makino Y, Yogosawa S, Kayukawa K, Coin F, Egly JM, et al. (1999) TATA-binding protein-interacting protein 120, TIP120, stimulates three classes of eukaryotic transcription via a unique mechanism. Mol Cell Biol 19: 7951–7960
- Inoki K, Zhu T, Guan KL (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115: 577–590.
- 106. Lapik YR, Kaufman LS (2003) The Arabidopsis cupin domain protein

- AtPirin1 interacts with the G protein alpha-subunit GPA1 and regulates seed germination and early seedling development. Plant Cell 15: 1578–1590
- 107. Gallio M, Sturgill G, Rather P, Kylsten P (2002) A conserved mechanism for extracellular signaling in eukaryotes and prokaryotes. Proc Natl Acad Sci U S A 99: 12208–12213.
- Tsong AE, Miller MG, Raisner RM, Johnson AD (2003) Evolution of a combinatorial transcriptional circuit: A case study in yeasts. Cell 115: 389–399.
- 109. Frangeul L, Glaser P, Rusniok C, Buchrieser C, Duchaud E, et al. (2004) CAAT-Box, contigs-assembly and annotation tool-box for genome sequencing projects. Bioinformatics 20: 790–797.
- Altschul SF, Gish W, Miller W, Myers EW, Lipman D (1990) Basic local alignment search tool. J Mol Biol 215: 403–410.
- 111. Tekaia F, Blandin G, Malpertuy A, Llorente B, Durrens P, et al. (2000) Genomic exploration of the hemiascomycetous yeasts: 3. Methods and strategies used for sequence analysis and annotation. FEBS Lett 487: 17– 30.
- 112. Christie KR, Weng S, Balakrishnan R, Costanzo MC, Dolinski K, et al. (2004) Saccharomyces Genome Database (SGD) provides tools to identify and analyze sequences from Saccharomyces cerevisiae and related sequences from other organisms. Nucleic Acids Res 32: D311–D314.
- Mewes HW, Amid C, Arnold R, Frishman D, Guldener U, et al. (2004)
 MIPS: Analysis and annotation of proteins from whole genomes. Nucleic Acids Res 32: D41–D44.
- Bateman A, Coin L, Durbin R, Finn RD, Hollich V, et al. (2004) The Pfam protein families database. Nucleic Acids Res 32: D138–D141.
- 115. Wheeler DL, Church DM, Edgar R, Federhen S, Helmberg W, et al. (2004) Database resources of the National Center for Biotechnology Information: Update. Nucleic Acids Res 32: D35–D40.
- Berriman M, Rutherford K (2003) Viewing and annotating sequence data with Artemis. Brief Bioinform 4: 124–132.
- Ohama T, Suzuki T, Mori M, Osawa S, Ueda T, et al. (1993) Non-universal decoding of the leucine codon CUG in several *Candida* species. Nucleic Acids Res 21: 4039–4045.
- 118. Altschul SF (1997) Evaluating the statistical significance of multiple distinct local alignments. In: Suhai S, editor. Theoretical and computational methods in genome research. New York: Plenum. pp. 1–14
- 119. Cheng SC (1994) Formation of the yeast splicing complex A1 and association of the splicing factor PRP19 with the pre-mRNA are independent of the 3' region of the intron. Nucleic Acids Res 22: 1548–1554.
- 120. Garcia-Sanchez S, Aubert S, Iraqui I, Janbon G, Ghigo JM, et al. (2004) Candida albicans biofilms: A developmental state associated with specific and stable gene expression patterns. Eukaryot Cell 3: 536–545.
- Bensen ES, Martin SJ, Li M, Berman J, Davis DA (2004) Transcriptional profiling in *C. albicans* reveals new adaptive responses to extracellular pH and functions for Rim101p. Mol Microbiol 54: 1335–1351.
- 122. Cowen LE, Nantel A, Tessier D, Whiteway M, Thomas DY, et al. (2002)

- Population genomics of drug resistance in experimental populations of *Candida albicans*. Proc Natl Acad Sci U S A 99: 9284–9289.
- Enjalbert B, Nantel A, Whiteway M (2003) Stress induced gene expression in *Candida albicans*: Absence of a general stress response. Mol Biol Cell 14: 1460–1467.
- 124. Lee CM, Nantel A, Jiang L, Whiteway M, Shen SH (2004) The serine/ threonine protein phosphatase SIT4 modulates yeast-to-hypha morphogenesis and virulence in *Candida albicans*. Mol Microbiol 51: 691–709.
- 125. Karababa M, Coste AT, Rognon B, Bille J, Sanglard D (2004) Comparison of gene expression profiles of *Candida albicans* azole-resistant clinical isolates and laboratory strains exposed to drugs inducing multidrug transporters. Antimicrob Agents Chemother 48: 3064–3079.
- 126. Rogers PD, Barker KS (2003) Genome-wide expression profile analysis reveals coordinately regulated genes associated with stepwise acquisition of azole resistance in *Candida albicans* clinical isolates. Antimicrob Agents Chemother 47: 1220–1227.
- Ihmels J, Bergmann S, Barkai N (2004) Defining transcription modules using large-scale gene expression data. Bioinformatics 20: 1993–2003.
- Dujon B, Sherman D, Fischer G, Durrens P, Casaregola I, et al. (2004) Genome evolution in yeast. Nature 430: 35–44.
- 129. Loftus BJ, Fung E, Roncaglia P, Rowley D, Amedeo P, et al. (2005) The genome of the basidiomycetous yeast and human pathogen *Cryptococcus Neoformans*. Science 307: 1321–1324.
- Balan I, Alarco AM, Raymond M (1997) The Candida albicans CDR3 gene codes for an opaque-phase ABC transporter. J Bacteriol 179: 7210–7218.
- Franz R, Michel S, Morschhauser J (1998) A fourth gene from the Candida albicans CDR family of ABC transporters. Gene 220: 91–98.
- 132. Raymond M, Dignard D, Alarco AM, Mainville N, Magee BB, et al. (1998) A Ste6p/P-glycoprotein homolog from the asexual yeast *Candida albicans* transports the a-factor mating pheromone in *Saccharomyces cerevisiae*. Mol Microbiol 27: 587–598.
- 133. Ogawa A, Hashida-Okado T, Endo M, Yoshioka H, Tsuruo T, et al. (1998) Role of ABC transporters in aureobasidin A resistance. Antimicrob Agents Chemother 42: 755–761.
- 134. Di Domenico BJ, Lupisella J, Sandbaken M, Chakraburtty K (1992) Isolation and sequence analysis of the gene encoding translation elongation factor 3 from Candida albicans, Yeast 8: 337–352.
- Sturtevant J, Cihlar R, Calderone R (1998) Disruption studies of a Candida albicans gene, ELF1: A member of the ATP-binding cassette family. Microbiology 144: 2311–2321.
- 136. Andaluz E, Coque JJ, Cueva R, Larriba G (2001) Sequencing of a 4.3 kbp region of chromosome 2 of *Candida albicans* reveals the presence of homologs of SHE9 from *Saccharomyces cerevisiae* and of bacterial phosphatidylinositol-phospholipase C. Yeast 18: 711–721.
- 137. Kanoh H, Nakashima S, Zhao Y, Sugiyama Y, Kitajima Y, et al. (1998) Molecular cloning of a gene encoding phospholipase D from the pathogenic and dimorphic fungus, *Candida albicans*. Biochim Biophys Acta 9: 359–364.

