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Abstract

The Icelandic population has been sampled in many disease association studies, providing a strong motivation to
understand the structure of this population and its ramifications for disease gene mapping. Previous work using 40
microsatellites showed that the Icelandic population is relatively homogeneous, but exhibits subtle population structure
that can bias disease association statistics. Here, we show that regional geographic ancestries of individuals from Iceland
can be distinguished using 292,289 autosomal single-nucleotide polymorphisms (SNPs). We further show that
subpopulation differences are due to genetic drift since the settlement of Iceland 1100 years ago, and not to varying
contributions from different ancestral populations. A consequence of the recent origin of Icelandic population structure is
that allele frequency differences follow a null distribution devoid of outliers, so that the risk of false positive associations due
to stratification is minimal. Our results highlight an important distinction between population differences attributable to
recent drift and those arising from more ancient divergence, which has implications both for association studies and for
efforts to detect natural selection using population differentiation.
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Introduction

The Icelandic population has been sampled in many disease

association studies [1–8]. Thus, there is a strong motivation to

understand the structure of this population and the ramifications

for association studies. A recent study of 40 microsatellite markers

showed that the Icelandic population is relatively homogeneous,

but that subtle subpopulation differences exist, inflating disease

association statistics in simulated case-control studies [9]. Other

studies of Icelandic population structure have focused on Y

chromosome and mtDNA analyses [10–12]. Now, the availability

of genotype data from a large number of Icelandic samples, based

on densely distributed SNPs from all over the genome and

collected in the course of genome-wide association studies, makes

it possible to investigate Icelandic population structure in greater

depth. In this study, we analyzed over 30,000 Icelandic samples

that were genotyped using the Illumina 300 K chip.

In addition to providing a more detailed assessment of genetic

differences between regional subpopulations, our analyses yield

several new results. First, we show that with a sufficient amount of

genotype data it is possible to distinguish regional geographic

ancestries of individuals from Iceland, and to demonstrate a

striking concordance between genetic relationships and Icelandic

geography. Second, we show that population structure in Iceland

is due to recent genetic drift, not to regional differences in the

proportion of admixture from Norse and Gaelic ancestral

populations [11]. Third, we show that allele frequency differences

between regional subpopulations follow a null distribution that is

devoid of highly differentiated SNPs, consistent with the young age

of the Icelandic population. A noteworthy consequence is that

there is minimal risk of confounding due to population

stratification in association studies performed in Iceland. This is

in stark contrast to differences among populations of European

ancestry (e.g., as represented in European Americans [13,14]),

where, even in the face of low levels of aggregate population

differentiation, confounding can arise from unusually differentiat-

ed loci that are the result of geographically restricted episodes of

natural selection during much longer periods of population

divergence. Indeed, a genetic comparison of Icelanders and Scots

revealed an excess of highly differentiated variants, including

variants for which the unusual extent of differentiation was

genomewide-significant, suggesting the action of natural selection.

Thus, both the curse of population stratification and the blessing of

using unusually differentiated loci to detect natural selection are

far more pertinent in populations with a subtle level of structure

arising from ancient divergence than in populations such as that of

Iceland whose subtle structure is the result of recent genetic

drift.
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Results

Genetic Relationships between 11 Regions of Iceland
During the past century, urbanization has led to considerable

mixing of ancestry from the different regions of Iceland,

particularly in the capital city of Reykjavik [9]. However, our

aim here was to study the population structure as it existed prior to

this mixing. To this end, our initial analyses focused on a subset of

877 Icelandic samples of over 30,000 that were genotyped on the

Illumina 300 K chip. For each of 11 regions of Iceland, we chose

up to 100 unrelated samples with majority ancestry from that

region, based on genealogical information from their ancestors five

generations back (Figure 1 and Table 1; see Materials and

Methods).

Principal components analysis (PCA) is a widely used tool for

analyzing genetic data [15–18]. We ran PCA on genotype data

from the 877 individuals using the EIGENSOFT software with

default parameters settings [17]. A plot of the top two principal

components is displayed in Figure 2A, revealing a striking

concordance between the geographical orientation of the 11

regions (Figure 1) and the relative positions of each region on the

PCA plot (Figure 2A). In both cases, we observe a ring-shaped

topology with region numbers increasing in clockwise order and a

central void corresponding to the unpopulated interior of Iceland.

The top two PCs explain a modest proportion of the overall

variance: 0.0027 for PC1 and 0.0022 for PC2, representing an

Author Summary

The Icelandic population is a structured population, in that
geographic regions of Iceland exhibit differences in allele
frequencies of genetic markers. Although these differences
are relatively small, previous work has shown that they can
bias association statistics in disease studies if cases and
controls are sampled in different proportions across the
geographic regions. In this study, we show that by using
dense genotype data it is possible to distinguish the
regional geographic ancestry of individuals from Iceland.
We further show that the allele frequency differences
between regions of Iceland are due to genetic drift since
the settling of Iceland, not to differences in contributions
from ancestral populations. A consequence of this is that
the allele frequency differences follow a null distribution,
devoid of unusually large differences caused by the action
of natural selection, so that ensuing false positive
associations in disease studies will be minimal. This is in
stark contrast to populations (such as European Ameri-
cans) in which subpopulation differences are due to more
ancient divergence, allowing the action of natural selec-
tion to produce unusually large allele frequency differenc-
es that can lead to false positive associations. Our results
highlight an important distinction between population
differences attributable to recent genetic drift and those
arising from more ancient divergence.

Figure 1. Map of 11 regions of Iceland, color-coded to match Figures 2 and 3. The interior region is not numbered, as it is uninhabited.
Sample sizes for each region are listed in Table 1.
doi:10.1371/journal.pgen.1000505.g001
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excess of 0.0015 for PC1 and 0.0011 for PC2 above what would be

expected by chance (Tracy-Widom P-values,10212 in each case

[17]), similar to previous results on European American data sets

[13]. We note that these PCs are the result of genome-wide

structure, as opposed to a small number of highly informative

markers (see Text S1).

To evaluate the use of dense genotype data to predict geographic

ancestry in the Icelandic population, we randomly selected 250

additional Icelandic samples for which genotype data was available

(see Materials and Methods). A PCA run with the 250 samples

included (Figure 2B) indicates that these individuals trace their

ancestry from all over Iceland, with an excess of individuals from the

vicinity of region 4 (concordant with Table 1). We used the PCA

results to predict the regional ancestry of each of the 250 samples

and compared this with their true ancestry, which we defined as the

region in which the greatest number of ancestors five generations

back was born (see Materials and Methods). The ancestry

predictions were correct for 47% of samples, correct to within a

distance of one region for 74% of samples, and correct to within a

distance of two regions for 93% of samples. The accuracy increased

to 58% (87% to within one region, 97% to within two regions) when

restricting to the 98 (of 250) samples with at least 16 of 32 ancestors

from a single region. Our analyses demonstrate that dense genotype

data can be used to distinguish, and to some extent predict, the

regional geographic ancestry of individuals within Iceland. We note

that a correlation between geography and genetic ancestry has also

been observed in other parts of Europe [19–22].

A different way to examine the patterns of genetic variation in

Iceland is through summary statistics such as FST, which reflects

the proportion of the total genetic variation found in two

populations that is explained by their division into separate

populations [23,16] (see Materials and Methods). FST values were

computed for each pair of Icelandic regions, yielding an average of

0.0026 (Table 2). Both Figure 2A and Table 2 show that region 7

and particularly region 9 show the greatest divergence from the

other regions, as well as the lowest heterozygosity, which suggests

that these regions have been more influenced by genetic drift than

the others. This finding is consistent with the small historical

population sizes of these regions [24].

Genetic Relationships between Iceland, Norway, and
Scotland

The Icelandic population arose from the admixture of Norse

and Gaelic ancestors around 1100 years ago, at the time of

settlement [11]. Pairwise FST values between Iceland, Norway and

Scotland were computed based on the 79,641 autosomal SNPs in

the intersection of the Illumina 300 K and Affymetrix 6.0 chips,

using genotype data from 30,244 Icelandic, 250 Norwegian and

445 Scottish samples (see Materials and Methods). The resulting

FST estimates were 0.0016 between Iceland and Norway, 0.0020

between Iceland and Scotland, and 0.0013 between Norway and

Scotland. The larger FST estimates separating Iceland and its two

ancestral populations are consistent with previous analyses

indicating that the Icelandic gene pool has experienced more

recent drift than neighboring countries in northern Europe [12].

One possible explanation for the genetic differences observed

between the 11 regions of Iceland is varying contributions from

ancestral populations. To explore this possibility, we used

genotypes from the 79,641 overlapping SNPs to project [17] the

Norwegian and Scottish samples onto principal components

computed using the subset of 877 Icelandic samples (Figure 3).

This analysis is robust to the concern that projected samples may

be affected by regression towards the mean (see Text S1, Figure

S1, and Figure S2). The Norwegian and Scottish samples were

tightly clustered near the origin, with each having a mean of 0.004

on PC1 and 20.005 on PC2. This indicates that the genetic

differences between Icelandic subpopulations represented on the

top two PCs are orthogonal to genetic differences between the

Norwegian and Scottish ancestral populations. In other words,

varying contributions from ancestral populations are not a major

determinant of genetic differences between Icelandic regions.

Rather, the most plausible source of these differences is genetic

drift during the 1100 years that have passed since the settlement of

Iceland.

Estimating the Norse and Gaelic Contributions to
Icelandic Ancestry

To obtain a direct estimate of Norse and Gaelic ancestry

proportions in the Icelandic population, we modeled Icelandic

allele frequencies as a linear combination of Norwegian and

Scottish allele frequencies, accounting for the sampling error

arising from the limited sample sizes (see Materials and Methods).

While the Norwegian and Scottish samples may not perfectly

represent the ancestral populations of Icelandic settlers—who

derived from several parts of Norway, possibly other parts of

Scandinavia, Scottish coastal regions and Ireland—we postulated

that they were close enough to provide a reasonable admixture

estimate. Based on the available data, the optimal linear

combination yielded an estimate of 64% Norse and 36% Scottish

ancestry, with a standard error of less than 2%. The FST between

the optimal linear combination and the observed allele frequencies

in Iceland was 0.0014, which may be in part due to inadequate

sampling from the true ancestral populations, but is likely to be

mainly due to recent genetic drift in the Icelandic gene pool.

The same computation was performed for each of the 11

Icelandic regions, yielding ancestry estimates that were not

statistically different. For each region, the estimate of Norse

ancestry was between 62% and 65%, with a standard error of less

than 2% (except region 1, for which we obtained 61% with a

standard error of less than 3%). This provides strong evidence that

the proportions of Norse and Gaelic ancestry do not vary among

Icelandic regions, supporting the notion that differences between

Icelandic regions are due to recent genetic drift rather than

varying contributions from ancestral populations.

A separate question is whether the proportion of Norse ancestry

was greater among male settlers of Iceland than among female

settlers, as previous studies based on Y-chromosome and mtDNA

haplotypes have suggested [10,11]. A comparison of ancestry

estimates for X-chromosome vs. autosomal SNPs could potentially

provide an answer to this question, since two-thirds of X-

chromosome alleles (vs. one-half of autosomal alleles) are passed

through the female line. We obtained an X-chromosome ancestry

estimate of 63% Norse and 37% Scottish ancestry, with a standard

error of 7%. The standard error was quite large—our analysis was

limited to only 2,962 X-chromosome SNPs present on both the

Table 1. Data for Icelandic samples with majority ancestry
from each of the 11 regions.

Region 1 2 3 4 5 6 7 8 9 10 11

Total 47 959 1154 3667 1343 1108 1102 1368 803 1447 1315

Unrelated 3 55 65 100 100 100 98 100 61 100 95

For each region, we list the total number of Icelandic samples with majority
ancestry from that region, and the number of unrelated samples that were
selected.
doi:10.1371/journal.pgen.1000505.t001
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Figure 2. PCA plots of (A) samples with most of their ancestry from 11 regions of Iceland and (B) samples with most of their
ancestry from 11 regions of Iceland, together with a set of 250 randomly selected Icelandic samples.
doi:10.1371/journal.pgen.1000505.g002

Divergence Time and Population Structure

PLoS Genetics | www.plosgenetics.org 4 June 2009 | Volume 5 | Issue 6 | e1000505



Illumina 300 K and Affymetrix 6.0 chips—and hence this analysis

is inconclusive. Because ancestry differences between the X

chromosome and autosomes would be expected to be much

smaller than the underlying ancestry effects (for example, a 100%

difference between the ancestry of male settlers and female settlers

would lead to an X-chromosome vs. autosome ancestry difference

of only 17%), our results do not contradict the hypothesis of a

substantial ancestry difference between male and female settlers.

Distribution of Allele Frequency Differences between
Icelandic Subpopulations

We evaluated whether there is an excess of common SNPs with

large allele frequency differences between Icelandic subpopula-

tions, using data from 14,313 individuals with majority ancestry

from one of 11 Icelandic regions (Table 1). For each Icelandic

region, we computed the distribution of allele frequency

differences between that region and the union of all other regions,

Table 2. Pairwise FST and heterozygosity estimates for 11 regions of Iceland.

FST 1 2 3 4 5 6 7 8 9 10 11

1 0.3505 0.0019 0.0024 0.0022 0.0021 0.0031 0.0036 0.0032 0.0042 0.0018 0.0022

2 0.3479 0.0013 0.0015 0.0016 0.0027 0.0030 0.0027 0.0038 0.0018 0.0019

3 0.3475 0.0012 0.0015 0.0027 0.0030 0.0027 0.0040 0.0021 0.0022

4 0.3478 0.0014 0.0027 0.0028 0.0027 0.0039 0.0020 0.0023

5 0.3474 0.0014 0.0021 0.0024 0.0039 0.0020 0.0023

6 0.3468 0.0018 0.0030 0.0048 0.0031 0.0034

7 0.3457 0.0029 0.0049 0.0033 0.0035

8 0.3466 0.0032 0.0025 0.0030

9 0.3446 0.0027 0.0036

10 0.3479 0.0012

11 0.3470

Heterozygosity values are listed on the diagonal. Standard errors of FST estimates were equal to 0.0007 for all comparisons involving Region 1 and 0.0001 for all other
comparisons.
doi:10.1371/journal.pgen.1000505.t002

Figure 3. PCA plot of samples from Norway and Scotland projected onto PCs computed using samples with most of their ancestry
from 11 regions of Iceland.
doi:10.1371/journal.pgen.1000505.g003
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expressed as a x2 (1 d.o.f.) statistic under a model of neutral genetic

drift. This computation accounts for related individuals (see

Materials and Methods). P-P plots for each region r (1ƒrƒ11) are

displayed in Figure 4. For each region, there was no excess of

markers with large frequency differences versus other regions.

Averaging across computations for each of 11 regions, 0.008% of

markers had a P-value less than 0.0001, roughly matching the

expected distribution. The most significant P-value was 361026, a

value that is not statistically significant after correcting for the

number of SNPs and regions tested. These results are consistent

with the hypothesis that the divergence time of Icelandic regions

has been too short for differential selective forces to have had a

significant impact on allele frequencies.

In a disease association study where cases and controls are

drawn from distinct populations, there is a mathematical

relationship between the distribution of allele frequency differences

and the distribution of disease association statistics (see Materials

and Methods). We obtained empirical agreement with this

theoretical result by simulating a case-control study in which

100 unrelated samples with majority ancestry from region 4 were

labeled as disease cases and 100 unrelated samples with majority

ancestry from region 5 were labeled as controls. We computed

Cochran-Armitage trend statistics and obtained a genomic control

l of 1.285, consistent with the predicted value of (1+NFST) = 1.28

given the FST of 0.0014 between the two regions (see Materials and

Methods). After dividing by Cochran-Armitage trend statistics by

the genomic control l, the most significant association had a P-

value of 361026, which is not statistically significant after

correcting for the number of SNPs tested. We repeated this

analysis for all pairs of regions (4,5,6,8,10) with 100 unrelated

samples available (see Table 1), and obtained similar results

(minimum P-value of 461027, which is not statistically significant

after correcting for the number of SNPs and number of pairs of

regions tested.)

A consequence of these findings is that whenever l is close to 1

in a disease association study involving the Icelandic population,

false positive associations due to population stratification can be

conclusively ruled out. If l is greater than 1, then dividing

association statistics by l will still prevent false positive

associations. This is not the case in populations, such as European

Americans, with a subtle level of structure arising from more

ancient divergence [25].

Distribution of Allele Frequency Differences between
Iceland and Scotland

We evaluated whether an excess of common SNPs with large

allele frequency differences between Icelanders and Scots could

provide evidence of population-specific natural selection. We used

Icelanders and Scots (rather than Norwegians) in this analysis,

because these samples were genotyped on the same chip under

identical assay conditions, thus avoiding the effects of differential

bias [26]. Indeed, tail distributions of comparisons between

populations genotyped on different chips appear to be confounded

by assay artifacts, precluding robust analyses of those comparisons

(see Text S1). We used allele frequency differences between the

Icelandic and Scottish samples at common SNPs to compute a x2

(1 d.o.f.) statistic for unusual population differentiation that

accounts for the effects of neutral genetic drift (see Materials and

Methods). A P-P plot of our results is displayed in Figure 5. In

contrast to Figure 4, there is a substantial excess of markers in the

Figure 4. P-P plots of allele frequency differentiation between region r and the union of all other regions, for each value of r
(1ƒrƒ11).
doi:10.1371/journal.pgen.1000505.g004
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extreme tail, with 0.018% of markers having a P-value less than

0.0001. We speculate that many of these markers are likely to have

been under natural selection.

We found eight SNPs, representing two chromosomal regions, for

which the evidence of unusual population differentiation was

genomewide-significant (nominal P-value,1027, P-value,0.03

after correcting for 284,191 common SNPs tested). Six of the SNPs

lie in or near the TLR (toll-like receptor) genes TLR10 and TLR1,

while the other two lie inside the NADSYN1 (NAD synthesase 1)

gene (http://genome.ucsc.edu/) (Table 3). For each of these SNPs,

the allele frequency difference between Icelanders and Scots was

greater than 15% (Table S1), far in excess of typical allele frequency

differences of about 3% that correspond to an FST value of 0.0020.

Only two of the SNPs from Table 3 were present in Norwegian data

based on the Affymetrix 6.0 chip (rs10024216 and rs11096957 in

the TLR region), but for both of these SNPs—and also for

rs7940244 in the NADSYN1 region (which was not genomewide-

significant in the comparison of Icelanders and Scots)—allele

Figure 5. P-P plot of allele frequency differentiation between Norway and Scotland. The nine SNPs from Table 3 are displayed as squares.
doi:10.1371/journal.pgen.1000505.g005

Table 3. List of markers whose unusual differentiation between Iceland and Scotland is genomewide-significant.

Marker Chromosome Build35 Position Nominal P-Value Inside Gene?

rs10024216 4 38,586,678 761028

rs10008492 4 38,588,286 7610210

rs4331786 4 38,591,974 261029

rs11096957 4 38,599,057 161029 TLR10: exon

rs4543123 4 38,615,090 5610211

rs4833095 4 38,622,276 6610210 TLR1: exon

rs7944926 11 70,843,273 261029 NADSYN1: intron

rs3794060 11 70,865,327 361029 NADSYN1: intron

rs13107325* 4 103,545,887 261027 SLC39A8: exon

A total of 12 markers in the TLR region and 5 markers in the NADSYN1 region achieved a nominal P-value of 0.0001 or lower (data not shown). We list with an asterisk
one additional marker whose differentiation is highly suggestive (see text). Gene names are listed for markers located between the transcription start and end sites of a
gene.
doi:10.1371/journal.pgen.1000505.t003
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frequency differences between Norwegians and Scots were likewise

greater than 15% (Table S1), ruling out an effect specific to

Icelanders. We also report frequencies of these SNPs in HapMap

populations [27] (Table S1). We note that both TLR and NADSYN1

were previously reported to be significantly differentiated among 12

British subpopulations analyzed by the WTCCC (nominal P-values

of 10212 for TLR and 1028 for NADSYN1) [28]. The WTCCC study

has made an important and valuable contribution to research on

natural selection by highlighting the potential utility of large sample

sizes from very closely related populations for detecting signals of

selection. However, the statistical test employed by those authors

only evaluated whether frequency differences between the 12

subpopulations were different from zero, and not whether the

amount of differentiation was in excess of what would be expected

under neutral genetic drift (as inferred from genome-wide patterns).

As an illustration of this distinction, we observed that a total of 3,982

SNPs in our data set had frequency differences between Iceland and

Scotland that were different from zero at the nominal P-value

threshold of 1027 used for the corresponding test in the WTCCC

study. It is extremely unlikely that all of these SNPs were under

selection. Thus, it is not possible to conclude whether the results of

the WTCCC study represent genomewide-significant signals of

selection. However, our findings support the hypothesis that

selection did occur.

In addition to the eight genomewide-significant signals, a highly

suggestive signal of unusual differentiation was observed at the

SNP rs13107325 (nominal P-value = 261027, P-value = 0.06 after

correcting for 284,191 common SNPs tested) (Table 3). This SNP

is a missense coding SNP inside the SLC39A8 (solute carrier family

39 (zinc transporter), member 8) gene (http://genome.ucsc.edu/),

and allele frequencies in HapMap [27] indicate that the minor

allele of this SNP is private to populations of European ancestry

(Table S1). Thus, although this SNP did not meet our strict criteria

for genome-wide significance, it is an intriguing candidate for

natural selection.

Discussion

We analyzed the population structure of Iceland using dense

genotype data to show that there are subtle but discernable genetic

differences between individuals from different Icelandic regions, and

that these differences are broadly consistent with the ring-shaped

topology of the inhabited part of Iceland. The average pairwise FST of

0.0026 for the 11 regions we analyzed is similar to FST values between

different European populations. However, it is important to point out

that FST values in this study may be heavily dependent on the

sampling scheme, and FST values of a similar magnitude might be

observed within other European countries if analyzed at the same

geographical resolution. Notably, Icelandic subpopulation differences

are due to recent genetic drift and not to varying contributions from

ancestral populations, as the subpopulations from each Icelandic

region inherit roughly 64% Nordic and 36% Gaelic ancestry.

A consequence of the recent origin of the genetic differences

between Icelandic subpopulations is that allele frequency differences

follow the null distribution predicted by neutral drift. Thus, there is

little risk of false positive associations due to population stratification

in disease association studies, despite the fact that there are genuine

differences between regions. The same conclusion may be expected

for other populations whose structure has arisen from recent genetic

drift [29]. On the other hand, such populations are not well-suited

for the detection of regionally specific natural selection reflected in

unusual differences between subpopulations. For that purpose,

subtly structured populations whose structure is due to more ancient

population divergence, with large population sizes minimizing

subsequent genetic drift, offer the greatest promise. For example,

European American subpopulations exhibit unusual differences at

the LCT, HLA and OCA2 loci that lie outside the null distribution

with genome-wide significance ([13] and A.L. Price, unpublished

data). The distinction between population differences attributable to

recent drift and those arising from more ancient divergence is also

likely to be of interest in studies of other subtly structured

populations [22,28,30].

For some diseases in Iceland, such as breast cancer, the

geographical distribution of patients and their ancestors is not

random [31]. Our results indicate that highly differentiated

common variants are unlikely to be the cause of this phenomenon.

Rare variants that have risen to higher frequency in certain

regions of Iceland due to founder effects provide a more plausible

explanation. An example in the case of breast cancer is the BARD1

Cys557Ser risk variant that rose in frequency in the easternmost

county of Sudur-Mulasysla (Figure 1) due to a population

bottleneck in that region [32]. A direction of research that is

motivated by our findings is to investigate the extent to which rare

variants, spread by recent founder effects, play a role in differences

in disease prevalence among individuals with ancestry from

different regions of Iceland.

Materials and Methods

Ethics Statement
This research was approved by the Data Protection Commission

of Iceland and the National Bioethics Committee of Iceland. The

appropriate informed consent was obtained for all sample donors.

Icelandic Data
DNA samples from 35,457 individuals residing in Iceland were

genotyped using the Illumina 300 K chip in the course of disease

association studies conducted by deCODE Genetics. The

appropriate informed consent was obtained for all sample donors.

Owing to the sensitive nature of genotype data, access to this data

can only be granted at the headquarters of deCODE Genetics in

Iceland. SNPs with .5% missing data were removed, leaving

292,289 autosomal SNPs for analysis. No linkage disequilibrium or

low frequency SNP filters were applied. For each Icelandic sample

genotyped, additional data were available from a genealogical

database describing relatedness to other samples and listing the

birth county in Iceland of each ancestor tracing back five

generations [33]. This information was used to restrict some

analyses to subsets of Icelandic samples (see below).

Samples with Ancestry from 11 Regions of Iceland
We grouped the 21 counties of Iceland into 11 regions, as

previously described [9] (Figure 1). From the entire set of 35,457

individuals, we selected a subset of 14,313 individuals with majority

ancestry from one of the 11 regions, based on having at least 16 of

32 ancestors (five generations back) from that region (Table 1a). The

goal of this scheme was to choose a set of samples reflecting the

population structure of Iceland prior to the large-scale migration

that resulted from industrialization and urbanization during the past

century. From this set of 14,313 individuals we selected a further

subset of 885 individuals—with at most 100 individuals from each

region—that were unrelated at a meiotic distance of four

generations. Of the 885 individuals, 8 were removed as genetic

outliers when we ran PCA [17]; Table 1b and subsequent analyses

are based on the remaining 877 individuals. The size limit of 100

individuals was used to ensure a relatively even representation of

regions for analyses that are sensitive to varying sample sizes from

subpopulations. We note that region 1, which contains the capital
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city of Reykjavik, was heavily underrepresented as it had a small

population prior to urbanization.

An Additional 250 Icelandic Samples
We randomly selected 250 samples from the 35,457 samples that

were genotyped on the Illumina 300 K chip. Of these 250 samples,

five overlapped the previous set of 877 samples; these were retained in

the set of 250 additional samples but excluded from the set of original

samples, in which only 872 samples were retained. We ran PCA on

the combined set of 1,112 samples (Figure 2B) and used the 872

original samples to compute the average value of PC1 and PC2 for

each region r. For each of the 250 additional samples, we computed

the Euclidean distance between (PC1,PC2) for that sample and the

average value of (PC1,PC2) for region r, and defined our prediction of

regional ancestry as the value of r minimizing that distance. We

defined true ancestry as the region in which the greatest number of

ancestors five generations back was born. We compared predicted

ancestry with true ancestry, both for the set of 250 samples and for a

subset of 98 samples with majority ancestry from a single region.

Given the low number of ancestors from region 1 (see Table 1), we

merged region 1 with region 11 in these analyses (see Figure 1). This

had little effect on our results, as only two of the 250 samples and

none of the subset of 98 samples had the greatest number of ancestors

from region 1. Thus, predicted ancestry P and true ancestry T each

had values between 2 and 11. We considered our ancestry prediction

to be correct if P~T , correct to within a distance of one region if

P{Tj j[ 0,1,9gf , and correct to within a distance of two regions if

P{Tj j[ 0,1,2,8,9gf (see Figure 1).

Samples from Norway and Scotland
The Icelandic population arose from the admixture of Norse

and Gaelic ancestors. To represent the ancestral populations, 445

samples from Scotland were genotyped on the Illumina 300 K

chip, and 250 samples from Norway were genotyped on the

Affymetrix 6.0 chip. The appropriate informed consent was

obtained for all sample donors. Illumina 300 K genotyping was

conducted by deCODE Genetics, and Affymetrix 6.0 genotyping

was conducted by Expression Analysis on behalf of Ulleval

University Hospital in Oslo. SNPs with .5% missing data in

either Norway or Scotland were removed, leaving 79,641

autosomal SNPs (that were genotyped on both chips) in the

merged data set of samples from Iceland, Norway and Scotland.

Assessment of Nordic and Gaelic Ancestry in the
Icelandic Population

Let Nj and pj denote total allele count and observed allele

frequency in the Icelandic population, Nj1 and pj1 denote total

allele count and observed allele frequency in ancestral population

1, and similarly Nj2 and pj2 in ancestral population 2, for SNP j. Let

MIXa denote a synthetic population consisting of a linear

combination of proportions a and (12a) from ancestral popula-

tions 1 and 2, respectively. Let pja = a pj1+(12a) pj2. We estimate

the FST between Iceland and MIXa as

X
j

pja{pj

� �2
{pj 1{pj

� �.
Nj{a2pj 1{pj

� �.
Nj1{

h

1{að Þ2pj 1{pj

� ��
Nj2

i.X
j

2pj 1{pj

� �

with the subtracted terms in the numerator adjusting for the effects

of sampling error (see Supp Note 10 of [34]). We note that linkage

disequilibrium between SNPs may lead to suboptimal weighting,

which will increase the variance but will not bias the estimate. We

estimate FST for different values of a (on an evenly spaced grid

from 0 to 1) and infer the ancestry proportion a that minimizes

FST, as described previously [35,36]. We compute the standard

error of the ancestry estimate a via a bootstrap approach. We

partition the set of SNPs into B disjoint blocks (e.g., B = 100),

repeat the computation for SNPs in each block to obtain B

different ancestry estimates, and compute the standard error as the

standard deviation of these estimates divided by the square root of

B. Standard errors of FST estimates are computed in the same way.

We note that the computation of FST between two sampled

populations is equivalent to the above formula for a = 0 or a = 1.

Our FST computations assume that allele frequencies are

obtained from an unrelated set of individuals. If related individuals

were used, the effects of sampling error would be underestimated.

Unrelated individuals were used in all FST computations, except in

analyses of the aggregate set of Icelandic individuals, which

included some related pairs of individuals. In this analysis, we used

a subset of 30,244 of the 35,457 Icelandic individuals genotyped,

in which the most closely related samples were removed. In this

case, the amount by which the estimated sampling error (equal to

the reciprocal of N = 2630,244) is inaccurate is expected to be far

smaller than the precision of 0.0001 to which we report FST

estimates, and hence negligible.

Distribution of Allele Frequency Differences
Under neutral drift, the difference (p12p2) between observed

allele frequencies of two populations at a given locus can be

approximated as a normal distribution with mean 0 and variance

p(12p)(2FST+1/N1+1/N2), where FST is the genetic distance

between the two populations, N1 and N2 are total allele counts

in each population, and p is the ancestral allele frequency that can

be approximated as the average of the two observed allele

frequencies [37]. We note that this null model extends to the case

of admixture, which simply scales FST by the square of the

admixture coefficient. It follows that (p12p2)2/[p(12p)(2FST+1/

N1+1/N2)] is x2 distributed with 1 degree of freedom (d.o.f.). In

fact, one can simply compute (p12p2)2/[p(12p)] divided by its

mean across SNPs, avoiding complications involving the effective

sample size in the case of related samples. In these computations

we excluded SNPs with minor allele frequencies p,0.05 to

minimize deviations from the normality assumption. An excess of

large values of the x2 statistic indicates deviations from the null

model, suggesting the action of natural selection.

Relationship between the distributions of allele frequency

differences and disease association statistics, if cases and controls

are drawn from distinct populations. We provide a mathematical

derivation for the result that a null distribution of allele frequency

differences implies a null distribution of disease association

statistics after correction by genomic control. We consider a

hypothetical association study in which N/2 diploid disease cases

are drawn from population 1 and N/2 diploid controls are drawn

from population 2. Any instance of population stratification can be

considered in this framework by defining population 1 and

population 2 as appropriate admixtures of the underlying

populations. For a given marker, let p1 and p2 denote observed

frequencies in cases and controls and p be the mean of p1 and p2. It

follows that the correlation between genotype and case-control

status is equal to p1{p2ð Þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p 1{pð Þ
p

, so that the Cochran-

Armitage trend statistic [38], which equals N times the square of

that correlation, is equal to N=2ð Þ p1{p2ð Þ2
.

p 1{pð Þð Þ. Since

(p12p2) is normally distributed with mean 0 and variance

p(12p)(2FST+1/N1+1/N2), where N1 = N2 = N (see above), it
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follows that the Cochran-Armitage trend statistic has a x2 (1 d.o.f.)

distribution scaled by (1+NFST). (See [39] for a related derivation.)

This means that when the method of genomic control [40] is

applied, the inflation factor l is equal to 1+NFST, and that dividing

association statistics by l results in a x2 (1 d.o.f.) distribution. More

generally, the fact that both the allele frequency difference statistic

and the Cochran-Armitage trend statistic are proportional to

(p12p2)2/(p(12p)) implies that the distributions of these two

statistics are identical up to a constant scaling factor, even when

allele frequency differences do not follow a null distribution.

Supporting Information

Figure S1 PCA plot of 203 samples with ancestry from 11

regions of Iceland projected onto PCs computed using 674

nonoverlapping Icelandic samples.

Found at: doi:10.1371/journal.pgen.1000505.s001 (0.14 MB TIF)

Figure S2 Joint PCA plots of 877 Icelandic, 250 Norwegian and

445 Scottish samples. We plot (a) the top two PCs and (b) the third

and fourth PCs.

Found at: doi:10.1371/journal.pgen.1000505.s002 (0.42 MB TIF)

Table S1 Iceland, Scotland, Norway and HapMap allele

frequencies of markers from Table 3.

Found at: doi:10.1371/journal.pgen.1000505.s003 (0.04 MB

DOC)

Text S1 Supplementary note.

Found at: doi:10.1371/journal.pgen.1000505.s004 (0.03 MB

DOC)
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