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Abstract 
Recently, spatial data on land resources have become more available, detailed, and sophisticated. Accordingly, it 
requires a method that could deal with those complex and detailed data in an effective way. A fuzzy set method 
with the semantic import model (SIM) was utilized within a raster GIS (geographic information systems) to 
analyze the area of Maros Regency on a reconnaissance scale basis. In this study, land attribute values were 
converted into continuous values (ranging from 0 to 1.0), according to the class limit determined based on field 
experiences, results of experiments, or fixed conventional standards. The evaluation criteria were based on land 
attributes which are divided into two main components: soil profile and topography. Each of land attributes 
within each component was valued from 0 (minimum) to 1.0 (maximum) according to the suitability of maize. 
Those values were represented as membership values, also ranging from 0 to 1.0. The result from land suitability 
analysis in Maros Regency for maize cultivation indicates that around 25% of land areas have a land suitability 
index (LSI) value of above 0.70 (suitable and very suitable), about 11% fall between 0.50 and 0.70 (moderately 
suitable), and 63% under 0.5 (not suitable). The main limiting factor for maize cultivation in this region is 
topography, especially slope gradient (s). 
Keywords: fuzzy set, land suitability index, GIS, Maros Regency 

1. Introduction 
With the increasing availability of detailed spatial data on land resources, it requires a method that could deal 
with those data in an effective way, especially in assessing land quality for planning purposes. Basically, two 
basic types of land suitability evaluation are commonly recognized. The first is a categorical system (CS), and 
the second is based on continuous functions (CF) (Baja et al., 2001). As its name implies, the CS technique uses 
categorical classes to examine different levels of land properties and thus to represent the outputs generated. The 
system is also characterized by an a priori determination of ‘land mapping units’ that apply to all land attributes 
selected as evaluation criteria: these units will then become the basis for the output delineation of the overall 
analyses (Albaji et al., 2009; Al-Mashreki et al., 2011; Ashraf et al., 2011; Babalola et al., 2011; Chandio et al., 
2011; Chinene et al., 2007; Jafarzadeh et al., 2008). The CF technique, on the other hand, takes into account the 
spatial continuity of land characteristics, and the outputs of the analysis are then presented as continuous grades 
(or indices) of land suitability. In the context of land resource assessment, a fuzzy set function (a continuous 
basis) is commonly used to undertake a CF technique (Baja et al., 2002; Burrough, 1989). Fuzzy set functions 
are also often used for other than land resources assessment areas, as done by Chen et al. (2010), Chiclana et al. 
(2007), Nardi and Nazori (2012), Mangaraj and Das (2008), Srivastava et al. (2013), Vucetic and Simonovic 
(2013), Wang and Chan (2013), and Zhang et al. (2013).  

Maros Regency is currently developing a database of the region and runs several projects related to agricultural 
sector planning and development. The availability of data that has been built is thus important for application of 
more sophisticated and detailed methods to assist in more accurate land use planning until the stage of 
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implementation. The main objective of this research is to assess land suitability for maize cultivation using a 
fuzzy set approach in a GIS. A raster based GIS was used to undertake every stage of spatial analysis in land 
suitability assessment. 

2. Method 
2.1 Study Area 

The study area (Maros Regency) is located about 30 km north of Makassar City, the capital of South Sulawesi 
Province (Figure 1). It lies between latitudes 4°711' and 5°2' S, and stretches between longitudes 119°453' to 
119°977' W. The area selected for this study includes all parts of Maros District covering a total area of 144,085 
ha. Based on the land system map (RePPProT, 1988), the dominant soil type in study area are dystropepts, with 
an average distribution coverage is 76.236 ha (52.9%), followed by tropaquepts and tropudults, with an average 
coverage is 38.640 ha (26.8%) and 7.980 ha (5.5%), respectively. Other soil types found in the area are rendolls, 
eutropepts, haplustults, and paleudults (see Nurmiaty & Baja, 2013). 
 

 
Figure 1. Location of study area (white box, right) in Sulawesi Island (left) 

 

2.2 Database and Preliminary Data Processing 

The main sources of database used in this study include: (i) digital topographic map; (ii) soil map and soil 
characteristics; (iii) climate data; and (iv) digital elevation model (DEM).  

The primary reference for soil data layers is the results of soil survey undertaken by the local government of Maros 
Regency. Land mapping units (based on land system) were derived from a land system map to provide a basis for 
field survey (Figure 2). As many as 25 homogeneous mapping units were identified in the area of interest, and soil 
sampling was done in 25 locations. Soil and climate characteristics surveyed and analysed include the followings 
(see Table 1). The data on climate such as average temperature, rainfall, and number of dry months were obtained 
from local meteorological station of Maros. 
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Figure 2. Land mapping unit (LMU) based on land system 

 

Digital topographic maps of study area with a scale of 1:50,000 from the National Agency for Survey and Mapping 
were used as a reference for generating a DEM (Figure 3). The digital topographic maps were available in a vector 
GIS format, makes it easier to build database in a standard vector GIS, before converted to a raster format. All the 
data layers were stored using UTM (Universal Transverse Mercator) coordinate system. As the area of interest 
covers three sheets of topographic maps, then a process of joining all the elements of map layer was undertaken, 
before precisely defining the boundary of study area. 

 

 

Figure 3. Digital Elevation Model (DEM) and derived slope map of study area 
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Table 1. Land quality and land characteristics used in the analysis (base on Djaenuddin et al., 2003; FAO, 1976) 

Land Qualities Land Characteristics 

Temperature (t) Average temperature (oC) 

Water availability (w) Rainfall (mm), number of dry months 

Rooting condition (r) Texture, drainage, soil depth (cm) 

Nutrient retention (f) Clay CEC (cmol/kg), base saturation (%), pH (H2O), organic C (%)

Toxicity (x) Salinity (dS/m) 

Nutrient availability (n) N, P2O5, K2O 

Terrain (s) Slope (%), surface stoniness (%), surface outcrops (%) 

 

2.3 Fuzzy Set Method 

A fuzzy set method with the semantic import model (SIM) was utilized within a GIS to analyze the area of 
Maros Regency on a reconnaissance scale basis. In this study, land attribute values were converted into 
continuous values (ranging from 0 to 1.0) (Zadeh, 1965), according to the class limit determined based on field 
experiences, results of experiments, or fixed conventional standards (Baja, 2012; Galindo et al., 2005; Moreno, 
2007; Sediyono et al., 2013; Sui, 1992). The evaluation criteria were based on land attributes which are divided 
into two main components: soil profile, and topography (Figure 4) (Baja, 2009; Baja et al., 2002). Figure 4 will 
include climate parameters if they have distinguished sub-region and are limiting for maize cultivation in the 
study area.  

Each of land attributes within each component was valued from 0 (minimum) to 1.0 (maximum) according to the 
suitability of maize (see Keshavarzi et al., 2010, 2011; Kurtener et al., 2008; Mohammadrezaei et al., 2013; 
Reshmidevi et al., 2009; Sarmadian et al., 2010). Those values were represented as the membership value 
ranging from 0 to 1.0. Analytical procedure is conducted through the following steps: (i) selecting and designing 
evaluation criteria, (ii) standardizing the data set, (iii) determining the field/climate attribute values, (iv) 
choosing appropriate scoring functions and the parameters (Baja et al., 2001), (v) converting data format 
between software programs (raster to vector or vice versa). The analysis procedure is then continued to three 
main steps (see Baja et al., 2002, 2007). 

 

MF {soil_attribute1,
       soil_attribute 2,
       soil_attribute 3,
       ...
       soil_attribute n}

MF {topographic_attribute 1,
       topographic_attribute 2,
       topographic_attribute 3,
       ...
       topographic attribute n}

SOILSSOILS TOPOGRAPHYTOPOGRAPHY

Rating individual attributes using an appropriate model function

JMF{soils} JMF{topography}

Cell-by-cell based multiplication

Land SuitabilityLand Suitability
Indices (LSIs)Indices (LSIs)

Step 1:Step 1:

Step 2:Step 2:

Step 3:Step 3:

Convex combination of attribute ratings from the same group

 

Figure 4. Schematic diagram of the procedure used in this study (source: Baja et al., 2002) 



www.ccsenet.org/mas Modern Applied Science Vol. 8, No. 3; 2014 

119 
 

Step 1, determination of the individual rank from the land attributes, using equations (Burrough, 1989): 

 MF (xi) = [1 / (1 + {(xi - b) / d} 2)] if 0 <MF (xi) <1 (1) 

For optimum range (Model 2):  

 MF (xi) = 1 if (b1 + d1) < xi < (b2 - d2) (2) 

For asymmetric left (Model 3):  

 MF (xi) = [1 / (1 + {(xi - b1 - d1) / d1} 2)] if xi < (b1 + d1) (3) 

For asymmetric right (Model 4): 

 MF (xi) = [1 / (1 + {(xi - b2 + d2) / d2} 2)] if xi > (b2 - d2) (4) 

where MF(xi) = the individual membership value for the ith soil attribute x, d = the range of transitional zone 
(that is, x in MF = 0.5 or otherwise mentioned as a crossover point, CP), xi = the ith soil attribute (x) value, and b 
= the value of soil attribute x in the ideal point.  

Step 2, derivation of the land attribute class rank, through the integration of the land attribute membership values 
using the following convex combination (Baja et al., 2002):  

  (5) 

where 0 < JMF(X) < 1; 0 < MFxi < 1; λ1 + λ2 + λ3 + … + λn = 1, and 0 < λi < 1.0. The JMF (X) symbol is the 
plural membership function from the entire variable that considered in the X class, λi is the value factors for land 
attribute x which in i, MF(xi) is the membership value for the xi land attribute, and n represent the number of 
land attributes considered.  

Step 3, calculating an overall land suitability index (LSI), using the multiplication function which is based on the 
cell by cell in raster GIS, as follows:  

 LSIp(maize) = JMF(S(p))  JMF(T(p)  JMF(C(p)) (6) 

where LSIp(maize) is LSI for maize at cell p, JMF(S(p)), JMF(T(p)), and JMF(C(p)) are JMF value at cell p for 
soil profile, topography, and climate, respectively. Use of multiplication function indicates that there is no 
compensation between land attribute. In other words, land area with an extreme limitation could not be 
compensated, by other excellent land characteristic, or vice versa (Baja et al., 2001, 2002). The multiplication 
function then generates a land suitability index (LSI) which is represented in the form of continuous value, 
ranging from 0 (not suitable) to 1.0 (very suitable) (Baja et al., 2002; Elaalem, 2010, 2012, 2013). 

3. Results and Discussion 
3.1 Fuzzy Set Parameters 

The rating of soil attributes is established on the basis of the available soil mapping units (SMUs) which have 
‘crisp’ boundaries, while that of topography is based on the DEM which has continuous values. Therefore, at this 
stage the unit for individual soil attributes is SMUs (see Figure 3), while for topography (slope) it is data cells in 
the DEM layer. (Nevertheless, it is necessary to point out that it is possible to use different mapping units for 
different soil attributes by using a kriging technique (Chaudhry et al., 2013; Gonzales et al., 2013; Taboada et al., 
2013), which is better undertaken in detailed studies involving intensive soil sampling). In the present study, 
each land attribute is rated with values ranging from 0 (minimum) to 1.0 (maximum) according to its suitability 
for a nominated land use. Such values are represented as membership grades or membership function (MF) 
values. The analysis indicates that the dominant MF values for internal soil attributes in the study area are 
between 0.80 and 0.90.  

Based on the suitability analysis using fuzzy set method, climate factor in the study area showed that all the data 
fulfilled the optimum criteria for the evaluation of land suitability of maize in the entire study area. Thus, the fuzzy 
parameter for climate value of the entire study area is 1.0 (maximum). Furthermore, the study area has a varied 
topography, ranging from flat to mountainous, with the gentle slope to very steep (Figure 3). The area is relatively 
flat and gentle slopes generally located in the western part of the study area, while mountainous area and steep 
terrain are found in the eastern part of the study area. Spatial distribution of land surface parameters using fuzzy 
method is shown in Figure 5. 
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Figure 5. Distribution of MF value for slope gradient 

 

3.2 Land Suitability Index (LSI) 

Distribution of LSI derived from applying a fuzzy set method shown in Figure 6. The result from land suitability 
analysis in Maros Regency for maize cultivation indicates that around 25% of land areas have an LSI value of 
above 0.70 (suitable and very suitable), ±11% fall between 0.50 and 0.70 (moderately suitable), and ±63% under 
0.5 (not suitable) (Figure 6). The main limiting factor for maize cultivation in this region is land surface, 
especially slope gradient (s). 

The figures indicate that three-quarters of the study area is not suitable for the development of maize, and 
predominantly caused by slope gradient factors, although it was found that soil attributes are in a good condition. 
Furthermore, about one-third of the study area is available (as appropriate) for the development of maize, by 
assuming that the decision makers will give the highest priority to areas above LSI values of more than 0,50 
(marginally, moderately, and suitable) (see also classification in Table 2). 

 

 
Figure 6. Distribution of LSI derived from applying a fuzzy set method 
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Figure 7 presents LSI distribution after reclassification into five classes. Percentage of LSI coverage is presented 
in Table 2. Area with the highest coverage is class 1 (not suitable for corn planting) accounted for 64.21% and 
followed by class 5 (very suitable for maize) accounted for 24.17%. There is a substantial proportion of area 
unsuitable for maize due to a sulphuric characteristic and became limiting for the development of maize 
cultivation. 

 

 

Figure 7. Distribution of LSI after reclassing according to classes 

 

Table 2. Land suitability for maize in the study area 

Class LSI Land suitability category Area (ha) Percent from total area (%) 

1 < 0.2 Permanently not suitable 90,568.79 64.21  

2 0.2-0.4 Currently not suitable 14,966.75 10.61  

3 0.4-06 Marginally suitable 662.63 0.47  

4 0.6-0.8 Moderately suitable 749.06 0.53  

5 0.8-1.0 Suitable 34,096.54 24.17  

Total 141,043.78 100    

 

3.3 Ground Observation 

The purpose of ground observation is to see the difference in quality of land in different land index. As shown in 
Figure 8a with quality land suitable for corn (LSI 0.8-1.0), 8b moderately suitable land quality (LSI 0.6-0.8), 8c 
marginally suitable (LSI 0.4-06), 8d currently not suitable (LSI 0.2-0.4), and 8e are permanently not suitable (LSI 
< 0.2). Figure 8d is limited by nutrient deficiency factor and slope, being in the figure 8e constrained by the slope, 
surface rock and soil depth factors. 
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Figure 8. Visualisation of land quality in accordance with suitability for corn: a. suitable (LSI 0.8-1.0), b. 

moderately suitable (LSI 0.6-0.8), c. marginally suitable (LSI 0.4-06), d. currently not suitable (LSI 0.2-0.4), e. 
permanently not suitable (LSI < 0.2) 

 
The main limiting factor to agricultural development in the study area is slope gradient. In this area, steep slope 
is quite dominant, especially in the eastern and northeastern parts. Land area with slopes of more than 17% and 
is not suitable for agricultural development, is found almost half of the total study region (see Figure 9). The rest 
is areas having a slope of less than 17%, occupying areas currently used for agricultural land, including rice 
fields, plantations, and dryland agriculture. The area suitable for agriculture development is predominantly found 
in the western part of the study area (see Figure 3). Other factors that are limiting in the area of interest are soil 
depth and surface stoniness. Both factors seem to correlate and are generally found in areas that lie within a steep 
slope (see Figure 8e). 

This analysis also confirms that LSI values tend to correspond with the limiting factors mentioned above, where 
LSI is lower in areas that have heavy limitations (generally in the eastern and northeastern) and higher in areas 
that have a light limiting condition (in western section). Based on previous study (Nurmiaty & Baja, 2013), most 
of maize farming areas in Maros regions are found in areas with slope > 17% (Tompobulu, Camba, Moncongloe, 
Mandai and Mallawa subdistricts) while areas with slope < 17% is generally used for urban areas and paddy 
fields (Maros Baru, Turikale, Lau, Bantimurung and Simbang subdistricts). Some proportion of land areas for 
maize is also found in coastal zones (Bontoa Subdistrict). Due to extensive farming of maize in a relatively steep 
land, farming communities in this area have recently received a negative impact on the environment such as 
flash floods, droughts, and landslides, and such natural phenomena have never been occurred before in Maros 
(Nurmiaty et al., 2014). 

 

 
Note: X-axis: slope (degree), Y-ordinat: number of pixels (1 pixel= 30 x 30 meters) 

Figure 9. Spatial distribution of slope in the study area 
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4. Conclusion 
This study has performed the use of fuzzy set in the assessing land suitability for maize cultivation in Maros 
region. The evaluation criteria were based on land attributes which are divided into two main components: soil 
profile and topography. Each of field attributes within each component was valued from 0 (minimum) to 1.0 
(maximum) according to the suitability of maize. Those values were represented as the membership values, also 
ranging from 0 to 1.0. The results indicate that around 25% of land areas have an LSI value of above 0.70 
(suitable and very suitable), ± 11% fall between 0.50 and 0.70 (moderately suitable), and ± 63% under 0.5 (not 
suitable). Three-quarters of the study area is not suitable for the development of maize, and predominantly caused 
by slope gradient factors, and the rest one-third of the study area is suitable for the development of maize, with LSI 
values of more than 0,50 (moderately, suitable, and very suitable). 
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