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Abstract 
Urban watershed is a discrete and complex system where a diverse number of factors govern its quality and 
health. Soil erosion by water is the most dominant factor that determines a watershed quality, and considered as 
one of the most significant forms of land degradation that affects sustained productivity of land use. The 
principal aim of this paper is to utilise spatial-based soil erosion information to assess land suitability at a 
watershed level. The specific aim is three-fold: (i) to develop techniques based on a GIS in the parameterisation 
of a soil erosion model, which is designed for use at a large scale assessment; (ii) to assess and map the spatial 
distribution of average annual rate of soil losses in; (iii) to employ such related concept as soil loss tolerance to 
determine land suitability at a watershed level. An analytical procedure is used to analyse an urban watershed of 
Tallo River, in South Sulawesi, Indonesia, with a total area of 43,422 ha. The procedure is executed using 
RUSLE (Revised Universal Soil Loss Equation), in a GIS environment, utilising available information in the 
region (including climate, soil, slope, and land use and land conservation practices), and with the assistance of 
ground surveys. The results indicate that around 56.5% of the area experience annual soil loos of less than 1 
ton/ha/year, while erosion rate of more than 25 ton/ha/year covers a total area of 8.9%. Due to a good ground 
cover in forested land, most of the slopping areas have actual soil losses of 1-5 ton/ha/year. This study reveals 
that areas categorized as high risk, where only forest cover allowed consist of 9.4%, and those with very low risk 
cover a total area of 5.4%. Most of the study region (around 84%) experience moderate and low erosion risk, and 
suitable for cropping with special management practices (CS) + perennial crops (PC) + grass (GR) + and forest 
(FR). This study suggests that the outputs of this modeling procedure can be used for the identification of land 
management units based on degradation levels, as well as the most suitable land use to be practiced on individual 
land units on a sustainable basis. 

Keywords: land suitability, GIS, soil erosion, RUSLE, Tallo River Watershed 

1. Introduction 
Urban watershed is a complex system where many different land use practices take place. The main subsystem 
of such system is land use type, which may occur naturally or by design through a careful planning. In essence, a 
long time practice of a particular land use type will give a different effect on, one to another, urban land 
degradation, especially erosion and sedimentation. As noted by Boyd et al. (1993) an urban area is basically 
made up of impervious, pervious, and semi-impervious surface. It can be categorised into three types: (i) 
impervious areas which are directly connected to the drainage system; (ii) additional impervious areas which are 
not directly connected, runoff from which flows over pervious surfaces before reaching the drainage system; (iii) 
the remainder, pervious or semi-pervious area consisting of lawns, gardens and parklands, forested land, 
agriculture area, etc. In a spatial context, the location of such land use and facilities will determine the rate of soil 
erosion and sedimentation (see von der Thannen et al., 2012). 

Tallo River watershed is located within three administration regions: City of Makassar in the lower part, Maros 
Regency in the middle part, and Gowa Regency in the upper most section. Some parts of this region have 
recently subjected to flood (Nurmiaty & Baja, 2013, 2014), and to erosion and sedimentation. A very distinct 
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land use phenomenon can be found in this watershed area, where urban residential is located in the lower part 
and some swampy area around the mouth of the Tallo river, mixed agriculture in the middle part, and forested 
land in the upper watershed area. Recently, development tends to take place in the middle part, by converting 
agricultural land areas mainly for residential purposes. In this case land degradation thus becomes a crucial issue, 
especially when devising a sustainable land use scheme in the urban area.  

In many land suitability evaluation guidelines, soil erosion is always considered in a general perspective, and is 
determined based only on a qualitative term (see for example Djaenuddin et al., 2003, FAO, 1976; CSR/FAO, 
1983). While, soil erosion is complex phenomenon and is considered as one of the most significant forms of land 
degradation in the urban area (see da Silva et al., 2013), then a more precise soil loss value is crucial in devising 
an effective land suitability assessment. Important factors related to soil erosion by water include climate, soil, 
topography, and land use and types of land management (Gebel et al., 2014; Imamoglu et al., 2014; Jain et al., 
2001; Kamaludin et al., 2013). Some of these may be manageable (mainly land use and soil), but others, such as 
climate and topography depend mainly on the natural phenomena. As most of these factors are dynamic, and 
changing in time and space, frequent updating of the rate and distribution of soil erosion is always required, 
particularly in the regions where intensive use of land exists. As mentioned earlier, as an urban watershed is a 
complex system where a number of factors govern its quality and health, a careful planning of the area is crucial 
to ensure that land degradation could be kept at a minimum level. 

There are two approaches commonly in use in the estimation of soil erosion or soil loss. First is the assessment 
of soil erosion on the basis of a point or a single plot (see for example Kovar et al., 2011; Othman & Ismail, 2012; 
Peter et al., 2014), and second approach takes into account the geographical patterns of the area of interest (see 
for example Millick et al., 2014; Mutowo & Chikodzi, 2013; Parveen & Kumar, 2012). The limitation of first 
approach is the difficulty of understanding the erosion phenomena in terms of spatial patterns and relationships 
between units of the land under study, especially at the large area such as a watershed. Accordingly, in the 
planning perspective the second strategy is the preferred one, and remote sensing and GIS technologies play an 
important role as effective analytical tools (see Alexakis et al., 2012; Csafordi et al., 2012). This study employs 
the second approach in calculating soil loss and determining land suitability in the urban watershed. 

In terms of modelling procedure, soil erosion modelling can be undertaken using deterministic (or 
physically-based), stochastic, or empirical approaches (see Alatorre et al., 2012). A physically-based model 
incorporates the laws of conservation of mass and energy using the continuity equation. Using this model it is 
thus possible to predict the spatial distribution of runoff, sediment movement, and hence soil loss over the land 
surface for individual storm occurrences. Examples of physically-based models are EUROSEM (Morgan et al., 
1998) and WEPP (Laflen et al., 1991). Stochastic modelling is based on generating synthetic sequences of data 
employing statistical methods, and is also useful for generating input for physically-based and empirical models. 
In an empirical model, theoretically-based procedures are employed using the most significant parameters, e.g., 
Universal Soil Loss Equation (USLE) (Wischmeier & Smith, 1978) and its revision i.e., RUSLE (Revised USLE) 
(Renard et al., 1997) or its modifications and derivatives (see for instance Rosewell, 1993). In this study, the 
principles of RUSLE (see Agele et al., 2013; Kumar & Kushwaha, 2013; Prasannakumar et al., 2012) are 
employed to predict soil loss rate in the whole watershed area, and to assess land suitability for planning an 
effective land use in the watershed. 

To ensure an effective decision on the development and management of the watershed, it requires better 
representation of spatial information on it, particularly that related to land degradation, and more specifically, 
soil erosion, land use, and the type of land management (Baja et al., 2002). The principal aim of this paper is to 
utilize spatial-based soil erosion information as land suitability parameter at a watershed level. The specific aim 
is three-fold: (i) to develop techniques based on a raster GIS in the parameterisation of a soil erosion model, 
which is designed for use at a watershed scale; (ii) to assess and map the spatial distribution of average annual 
rate of soil losses in the selected study area; (iii) to employ such related concept as soil loss tolerance and 
suitability analysis to regionalize suitable land use type in the watershed under study.  

2. Materials and Methods 
2.1 RUSLE Model 

RUSLE parameters 
RUSLE is basically used to predict average annual soil losses due to sheet and rill erosion. Although sheet and 
rill processes are two different forms of erosion, they are usually considered together in the assessment 
procedure for soil losses. The main reason is that both types of erosion require similar farm management and 
conservation practices for controlling them (see Bellin et al., 2011). Such premise underlies the establishment of 
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in daily temperature. The complex nature of geology in the study region gives rise to various geomorphic and 
slope classes, as well as soil types. Slope class of 0 to 8% dominates the study area, covering about 73% in the 
middle and lower watershed. Soils were originally developed from five different orders: Alfisols, Inceptisols, 
Entisols, and Ultisols. Ultisol covers a total area of around 21.000 ha, or half of the study region. 

2.3 Calculating Soil Loss from a GIS-Based Erosion Modeling Procedure 

Soil loss estimation procedure in this study is performed using conventional GIS-based operations. Based on the 
RUSLE parameters in equation (1), GIS layers required for analysis include: (i) rainfall erosivity index ®, (ii) 
soil erodibility index (K), (iii) slope factors (LS), and (iv) cover and support practice factors (CP). It should be 
noted that each of these layers is derived from different sources, and scale and level of observation, as well as 
time of data acquisition. Therefore, resampling procedures provided in digital analysis packages are always 
required to make all data sets used conformable one to another (see Ai et al., 2013). In this study, the data sets 
are analysed and interchanged in two different GIS programs: raster and vector based. In addition, the data sets 
needed to be converted to the same format before performing overlay-based analyses. 

Calculation of RUSLE parameters is made based on the available guidelines especially those recommended for 
tropical environment, including Rosewell (n.d) for rain erosivity, cover types, and conservation practices (see 
also Alatorre et al., 2012). LS factor is determined using the RUSLE guideline (Renards et al., 1998). With this 
guideline, LS factor values in this study is calculated using the GIS-based procedure developed by Baja (2002) 
(Figure 2), employing digital elevation model (DEM). Two layers are employed: slope gradient, s and slope 
length, Xh. To accommodate all forms of equation (see Figure 2), the grid cells of the slope layer are first 
subdivided into two layers: s < 9% and s > 9%. Both equations in Figure 2 are then applied to the respective 
slope layer before they are joined back to form a single s layer. In this map algebra analysis, the effect of rilling 
(B), and slope length exponent (m) are generated as separate layers from s in the calculation of slope length 
factor, L. The LS factor layer (Figure 2) is finally generated by overlaying/joining (with multiplicative function) 
both L and S layers. 

 

Figure 2. Schematic procedure developed for calculating the LS-factor of RUSLE using a GIS 

 

2.4 Land Suitability Analysis 

Land suitability analysis at a watershed level can be undertaken using many different techniques (see Baja et al., 
2001; Elhag, 2014; Feiziza & Blaschke, 2013). In this study, suitability analysis is performed based on the 
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premise to keep the average annual soil loss (A) to a certain level below the tolerance value (T-value). It is thus 
necessary to examine the relationship between land management factors (i.e., C and P) and the factor 
combination RKLS, with reference to a specified T-value. Such a relationship can be expressed as follows: 

 CPmax = T/RKLS                                   (2) 
where CPmax is the maximum allowable CP factor value, T denotes T-value, and RKLS represents an index of 
potential erosion.  

A T-value or soil loss tolerance has been defined as ‘the maximum rate of soil erosion that permits an optimum 
level of crop productivity to be sustained economically and indefinitely’ (ISSS, 1996). It is also sometimes called 
permissible soil loss (Kok et al., 1995) which is related to the average annual soil loss a given soil type may 
experience and still maintain its productivity over an extended period of time. In many situations, the 
establishment of T-value is intended to provide the basic information for the maintenance of soil productivity, 
which becomes one of the focuses of sustainability of agricultural land use (Smith & McDonald, 1998). For 
agricultural areas, the maximum tolerable rate of soil loss (or erosion tolerance, T-value) is varied, ranging from 
1 to 10 t/ha/year (DLWC, 1997) or to 11.2 t/ha/year (USDA Soil Conservation Service, 1973). With available 
technology a rate of 2 to 4 times T-value may also be considered, however (Kraft & Toohill 1984). In this study, 
T-value is determined using the principles described in DLWC (1997), and this has been widely used in 
Indonesian environments. 

The ratio T/RKLS in equation (2) can be used as a threshold value in deciding what types of land use and land 
management practices are most suitable on a given land unit, in order to maintain soil loss under the level of a 
given constraint. While R, K, and L factors are considered as constants, it is thus possible to classify the land 
area into different level of risks according to a pre-defined cover types and T-values. 

To examine ‘which area is suitable for what land use’ based on Equation (2), it is necessary to establish 
conditions and assumptions: 

 Land use/land cover types which are generally found in the study region, are employed as land 54tilization 
types (LUTs) in the modeling procedure: forest (FR), shrubs (SH), grass (GR), cropping with special 
management practices (CM), conventional cropping (CC), and residential (RS). 

 The C values of land use/land cover types as recommended Graham (1989) are used as the basis for 
classifying the CPmax in Equation (2). 

 It is assumed that no additional soil conservation practices are adopted, so that P factor is set to 1. 

Both data layers for T-value and RKLS are overlaid with a ‘divide’ function to produce a CPmax layer that 
signifies the maximum allowable index of C factor across the watershed, using the principles detailed in Baja 
(2002). The values of CPmax in Table 1 are used to determine the threshold level of risk. 

 

Table 1. Values of CPmax and their corresponding suitable land use/land cover types 

 Category Value of CPmax The ‘only’ suitable land use type* 
1: very high risk < 0.0041 Forest (FR) 
2: high risk 0.0041 – 0.0050 Grass (GR)+FR  
3: moderate risk 0.0051 – 0.0670 Perennial crops (PC)+GR+FR 
4: low risk 0.0671 – 0.1500 Cropping with special management practices 

(CS)** +PC+GR+FR 
5: very low risk > 0.1500 Residential (RS)+ conventional cropping 

(CC)+CS+PC+GR+FR 
*‘+’ denotes ‘and/or’; ** land cultivation that adopts some erosion control practices, or CP factor should be kept 
below 0.15. 

 

 

 

3. Results and Discussion 
3.1 Soil Loss Rate 

Spatial distribution of soil loss information in GIS is given in continuous scale or on a cell-by-cell basis, but for 
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Table 3. Areal distribution of suitable land use in the study area 

CPmax  The ‘only’ suitable land use type Area (ha) Percentage (%)

1: very high Forest (FR) 4068 9.4 
2: high Grass (GR)+FR  462 1.1 
3: moderate Perennial crops (PC)+GR+FR 15896 36.6 

4: low 
Cropping with special management 
practices (CS)** +PC+GR+FR 20636 47.5 

5: very low 
Residential (RS)+ conventional cropping 
(CC)+CS+PC+GR+FR 2360 5.4 

  Total area 43422 100.0 
Note: the higher the CPmax class, the higher the risk of land degradation, and more densely vegetation needed. 

 

4. Conclusion 
The result of this study shows that the Tallo River Watershed at the present time generally undergoes a low 
erosion rate, as more than 80% of the area tested have a soil loss rate of less than 5 ton/ha/year. However, 
because more than 50% of the area are categorized as a high and very high risk, this region requires an 
appropriate land management. The results of land suitability analysis presented here not only indicate the safest 
types of land use/land cover that should occur on every cell of the area of interest, but also serve as a guide to 
land managers for selecting alternative conservation practices suited to the land use management conditions. The 
purpose is, as mentioned earlier, to maintain long-term productivity of the land. In addition, a land suitability 
map produced in this study may be useful as an additional measure for land zoning, and is usually required for 
land use planning at a large scale. 

One of the advantages for using GIS in soil erosion modeling is its ability to efficiently capture, manage, analyse, 
and display in interactive manner various spatial-based parameters. GIS is frequently selected for use in broad 
scale erosion studies because of its capability for organising data bases and thematic layers in effective ways. 
This signifies the importance of the modeling procedures developed, especially in the context where the spatial 
pattern of erosion risks over a large area is of the main interest. The procedure developed and information 
generated in this study are important for designing the baseline physical data set that can be used for future land 
conversion and land management on the Tallo river watershed. Soil loss rate presented in this study gives insight 
into the appropriate land conservation strategies that should be implemented in the watershed, while land 
suitability information is an important guideline for better understanding of the risk resulted from different land 
use practiced in different geographical units of the watershed. Likewise, a method for transformation of 
information on erosion risks into suitable land use from spatial perspectives provides the basis for undertaking a 
predictive modelling procedure in another area, where land suitability is of the main concern.  

Overall, the outputs of the analysis provide an example for additional set of variables in land suitability 
assessment procedures, particularly in assessing land degradation levels in connection with land use planning at 
a large scale.  
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