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Abstract

This study considered the problem of predicting survival, based on three alternative models: a single
Weibull, a mixture of Weibulls and a cure model. Instead of the common procedure of choosing a
single “best” model, where “best” is defined in terms of goodness of fit to the data, a Bayesian model
averaging (BMA) approach was adopted to account for model uncertainty. This was illustrated using
a case study in which the aim was the description of lymphoma cancer survival with covariates given
by phenotypes and gene expression. The results of this studyindicate that if the sample size is
sufficiently large, one of the three models emerge as having highest probability given the data, as
indicated by the goodness of fit measure; the Bayesian information criterion (BIC). However, when
the sample size is reduced, no single model was revealed as “best”, suggesting that a BMA approach
would be appropriate. Although BMA approach can compromiseon goodness of fit to the data
(when compared to the true model), it can provide robust predictions and facilitate more detailed
investigation of the relationships between gene expression and patient survival.
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Bayesian modelling; Bayesian model averaging; Cure model;Markov Chain Monte Carlo; Mixture
model; Survival analysis; Weibull distribution.

Introduction

Modelling survival data plays an important role in the application of statistics in medicine and health
science. In addition to a nonparametric formulation, thereare many parametric models available for de-
scribing survival, including models based on a single distribution such as the Exponential and Weibull,
mixture models based for example on mixtures of distributions and a mixture of susceptible and insus-
ceptible individuals or so-called cure models which account for a fraction of the patients being cured
from the disease. Given the wealth of models, the dilemma that is faced by many practitioners is the
choice of a survival model.
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The problem of model selection is abundant throughout the literature. This includes both covariate
selection and choice of the model itself. Some of the methodsare based on a series of significance
tests while others fit more comprehensive models; some include prior information; some use analytic
or approximate methods of estimation while others use Markov Chain Monte Carlo (MCMC) meth-
ods; different approaches use different optimisation or model comparison criteria such as Bayes factors
(Raftery 1996). For example, McGrory and Titterington (2007) showed how variational techniques
can be used to extend the deviance information criterion (DIC) to include the comparison of mixture
models, a period of Basu and Tiwari (2010) used Bayes factorsto compare the various model structures
in breast cancer survival data.

Recently, Bonato et al. (2011) proposed Bayesian ensemble methods to obtain better survival prediction
in high-dimensional gene expression data. Regardless of the method, the most common approach is to
choose a single model based on the adapted optimisation or model choice criterion. However, if a
single model is selected, then inferences are conditional on the selected model, and model uncertainty
is ignored which often leads to excessively narrow or misleading inferences (Adrian et al. 1997; Hjort
and, Claeskens 2003). This difficulty can be overcome by combining the information provided by all
suitable models into the analysis. The most common way of achieving this is to use a form of model
averaging. From a Bayesian point of view, this averaging is applied such that the posterior distribution of
the quantity of interest is obtained over the set of suitablemodels, weighted by the respective posterior
model probabilities (Raftery 1996).

Draper (1995) and Raftery (1995) reviewed Bayesian model averaging (BMA) and the cost of ignoring
model uncertainty. Madigan and Raftery (1994) also considered BMA by using Occam’s razor and
Occam’s window approaches to reduce the number of candidatemodels. Yuan and Yin (2011) used
model averaging procedures to make more robust inferences regarding the dose-finding design for phase
I clinical trials. Pramana et al. (2012) focused on the case in which several parametric models are fitted
to gene expression data and discussed model averaging techniques for the estimation of dose-response
models.

In this paper, we consider the problem of predicting survival, based on three alternatives models; a single
Weibull, a mixture of Weibulls and a cure model. The Weibull distribution is a popular parametric
distribution for describing survival times (Dodson 1994).Given the variety of shapes that can be
described by the probability density function (pdf) and theconvenient representation of the distribution/
survival function, the Weibull distribution has been used very effectively for analysing lifetime data,
particularly when the data are censored, which is very common in most life testing experiments (Collet
1994; Kundu 2008).

Given the nature of microarray data to describe biological systems and outcomes of patients, and the
potential of these covariates to produce more precise inferences about survival, the use of a single para-
metric distribution to describe survival time may not be adequate. Microarray data may enable the
description of several homogeneous subgroups of patients with respect to survival time. This paper
therefore also considered a mixture of Weibull models for precise estimation and prediction of survival.
Mixture models can be used to describe a population consisting of several disjoint groups, where each
group is assigned its own distribution, weighted by the probability of an individual from the overall
population belonging to that group. This model thus provides a convenient and flexible mechanism for
identification and estimation of distributions which are not well modelled by any standard parametric
family (Stephens 1997). In the study considered here, the mixture is assumed to comprise a known
number of Weibull distributions, with potentially different parameters. Most approaches to the analysis
of time to event data implicitly assume all individuals willexperience the event of interest. However,
there are situations when a proportion of individuals are not expected to experience the event of interest;
that is, those individuals are often referred to as immune, cured or nonsusceptible (Ibrahim et al. 2001).



To address this issue, cure rate models are considered, which are survival models incorporating a cure
fraction. These models, which can be considered as a form of mixture model with one component de-
generating to a point mass, extend the understanding of timeto event data by allowing the formulation
of more accurate and informative conclusions.

Finally, instead of adopting the usual practice of choosinga single “best” model, where “best” is defined
in terms of the probability of the model given the data, a BMA approach was adopted to account for
model uncertainty in the prediction of the response. We illustrate the approach using a microarray
dataset.

The paper is organised as follows. In Section “Methods”, we define BMA. The three competing models
are described in a Bayesian framework in Section “Models”. The computational approach for estimation
is also presented in this section. In the Section “Application to gene expression data”, we illustrate the
model using a case study. The results are discussed further in Section “Discussion”.

Methods

The key elements of BMA were discussed by Raftery (1995). He suggested weighting each model by
the posterior model probabilities derived from a Bayesian analysis. Assume that there areS models
being considered, fors = 1, 2, . . . , S, each with parameter setθs based on dataD. Let ∆ be the
quantity of interest; this could represent, for example, the posterior predictive distribution ofy. Hence,
the posterior distribution of∆ given dataD (Hoeting et al. 1999) is

p(∆ | D) =

S
∑

s=1

p(∆ | S = s,D)p(S = s | D),

wherep(M = s | D) is the posterior probability of a particular model being true, defined as

p(S = s | D) =
p(D | S = s)p(S = s)

∑S
s=1 p(D | S = s)p(S = s)

, s = 1, 2, . . . , S,

wherep(D | S = s) =
∫

p(D | θs, S = s)p(θs | S = s)dθs.

Here,p(D | S = s) is the marginal likelihood of the dataD given modelS andp(θs | S = s) is the
prior density ofθs given modelS = s. p(S = s) is the prior probability for models being true (Hoeting
et al. 1999).

Given a model selection problem in which we have to choose between two models, the plausibility
of the two different modelsS1 andS2 is assessed by the Bayes factor as the ratio of posterior model
probabilities.

The main detractor from using Bayes factors is that they are,in general, difficult to compute. Raftery
(1995) proposed using Bayesian information criterion (BIC) (Schwarz 1978) as an approximation.
Buckland et al. (1997) and Claeskens and Hjort (2008) discussed the utilization of BIC in BMA. Buck-
land et al. (1997) proposed simpler methods where weights are based upon the penalized likelihood
functions formed from the AIC (Akaike 1973).

The starting point for Burnham and Anderson’s model selection theory is the Kullback-Leibler (KL)
information given by Burnham and Anderson (2002) and Claeskens and Hjort (2008):

I(f | q) =

∫

f(x) log
f(x)

q(x | θs)
dx,



wheref represents the density function of the true and unknown model, q represents the density function
of the model that is used to approximatef , andθs is a vector of the unknown parameters to be estimated.
The notationI(f | q) denotes the information lost whenq is used to approximatef or the distance from
q to f . For a given set of models, one can compare the KL informationfor each model and select the
model that minimizes the information loss across the considered set of models (Burnham and Anderson
2002, 2004). However, in practiceI(f | q) cannot be computed since the true modelf is unknown.
Schwarz (1978) and Burnham and Anderson (2002) made the linkbetween the KL information and
likelihood theory, and showed that the expected KL information can be expressed as

E(KL) = − log p(D | θ̂s, S = s) + ds log(n),

wherep(D | θs) is the likelihood,ds is the number of parameters in the model andn is the number of
uncensored observations in a survival context (Volinsky and Raftery 2000). A Laplace approximation,
typically the BIC (Schwarz 1978), can be used to approximatep(D | S = s) (Clyde 2000; Hoeting et
al. 1999; Jackson et al. 2009; Yuan and Yin 2011):

log (p(D | S = s)) ≈ log p(D | θ̂s, S = s)− ds log(n),

BIC = −2 log p(D | θ̂s, S = s) + ds log(n). (1)

Herelog p(D | θ̂s, S = s) is the maximised log-likelihood of models, which estimates goodness of fit
of the data.

Schwarz (1978) and Burnham and Anderson (2002) proposed thelikelihood of the model given the
data, usingθ̂s defined by

p(D | θ̂s, S = s) ∝ e0.5×BIC . (2)

The BMA weight for thesth model (Jackson et al. 2009; Yuan and Yin 2011) is therefore given by

p(S = s | D) =
exp(−1

2BICs)p(S = s)
∑S

s=1 exp(−
1
2BICs)p(S = s)

.

The BMA weight can be interpreted as the weight of the evidence that models is true model given a
set ofS models. For the case with non-informative prior probabilities, we can letp(S = s) be equal
for all candidate models (1/S), indicating no prior preference for any of the models (Jackson et al.
2009; Pramana et al. 2012). The model with the highest BMA weight will be considered as the best
model. Therefore,p(S = s | D) is also an approximation to the posterior probability of themodels
being correct (Schwarz 1978). A smaller BIC values indicates a better model fit, accounting for model
complexity.

Let f̃sj be thejth simulated observation from thesth model. Then, the mean of survival from the BMA
model (f̄MA), can be calculated as follows

f̄MA =





N
∑

j=1

S
∑

s=1

wsf̃sj



 /N,

whereN is the number of simulated observation andws = p(S = s | D) is the BMA weight, defined
previously.



Models

Weibull model

In this section, we define the Weibull model for analysing survival of patients in the context of human
health. We confine ourselves to survival times that are the difference between a nominated start time and
a declared failure (uncensored data) or a nominated end time(censored time). LetT be a nonnegative
random variable for a person’s survival time andt be a realisation of the random variableT . Kleinbaum
and Klein (2005) give some reasons for the occurrence of right censoring in survival studies, including
termination of the study, drop outs, or loss to follow-up. For the censored observations, one could impute
the missing survival times or assume that they are event-free. The former is often difficult, especially if
the censoring proportion is large, and extreme imputation assumptions (such as all censored cases fail
right after the time of censoring) may distort inferences (Leung et al. 1997; Stajduhar et al. 2009). In
this study, we treat all censored cases as event-free regardless of observation time.

Initially, we assume that we observe survival timest of patients possibly from a heterogeneous popula-
tion. The two-parameter Weibull density function for survival time is given by

W (t | α, γ) = αγtα−1 exp (−γtα) ,

for α > 0 andγ > 0, whereα is a shape parameter andγ is a scale parameter (Ibrahim et al. 2001).

Since the logarithm of the Weibull hazard is a linear function of the logarithm of time, it is more conve-
nient to write the model in terms of the parameterisationλ = log(γ) (Ibrahim et al. 2001), so that:

f(t | α, λ) = αtα−1 exp(λ− exp(λ)tα),

wheret > 0, α > 0 andγ > 0.

The corresponding survival function and the hazard function, using theλ parameterization, are as fol-
lows:

S(t | α, λ) = exp(− exp(λ)tα),

h(t | α, λ) = f(t | α, λ)/S(t | α, λ) = α exp(λ)tα−1.

We now assume that we observe possibly right-censored data for n patients;y = (y1, . . . , yn) where
yi = (ti, δi) andδi is an indicator function such that (Marin et al. 2005):

δi =

{

1, if the lifetime is uncensored, i.e.,Ti = ti.

0, if the lifetime is censored, i.e.,Ti > ti.
(3)

Letxij be thejth covariate associated withti for j = 1, 2, . . . , p+1. In our case study,xij indicates thep
gene expressions from DNA microarray data, andxi0 indicates the multi-category phenotype covariate.
The data structure is as follows:















Survival time
t1
t2
...
tn





























Category Gene 1 . . . Gene p
x10 x11 . . . x1p
x20 x21 . . . x2p
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The gene expression data can be included into the model throughλ (Thamrin et al. 2013). Given thatλ
must be positive, one option is to include the covariates as follows:

γi = exp(x′

iβ), so that

λi = log(γi) = x
′

iβ. (4)

Thus, the log-likelihood function becomes:

logL(α,β | D) =

n
∑

i=1

δi
(

log(α) + (α− 1) log(ti)

+ x′

iβ
)

− exp(x′

iβ)t
α
i .

We assume that(α, λ) are independent a priori (Marin et al. 2005), and assign Gamma distributions.
Thus, the priors are now given by:

α ∼ Gamma(uα, vα)

λi ∼ Normal(x′

iβ, σ
2)

β ∼ Normal(0,Σ),

and we allowΣ to be diagonal with elementsσ2j , j = 1, 2, . . . , p.

Diffuse priors are represented by large positive values forσ2, and small positive values foruα andvα.

The joint posterior distribution of(α,β) is given by:

p(β, α | D) ∝ L(α,β | D)p(α)p(β)

∝ αα0+d−1 exp

{

n
∑

i=1

(

δix
′

iβ + δi (α− 1) log (ti)− tαi exp
(

x′iβ
))

−b0α−
1

2
(β − µ0) Σ

−1
0 (β − µ0)

}

.

MCMC analysis is performed by sampling from the conditionaldistributions of the parameters. The
conditional distribution ofα does not have an explicit form and as such can be sampled from approxi-
mately algorithms such as Metropolis Hastings or slice sampling (Gilks et al. 1996).

Weibull mixture model

We define the Weibull mixture model for analysing survival data. A mixture ofK Weibull densities
(Marin et al. 2005) is defined by

f(t | K,w,α,γ) =

K
∑

m=1

wmW (t | αm, γm), (5)

whereα = (α1, . . . , αK), γ = (γ1, . . . , γK), are the parameters of each Weibull distribution and
w = (w1, . . . , wK) is a vector of nonnegative weights which sum to one.

The corresponding survival functionS(t | K,w,α,γ) and hazard functionh(t | K,w,α,γ) are as



follows:

S(t | K,w,α,γ) =

K
∑

m=1

wm exp (−γmt
αm) ,

h(t | K,w,α,γ) = f(t | K,w,α,γ)/S(t | K,w,α,γ).

We now assume that we observe possibly right-censored data for n patients;y = (y1, . . . , yn) where
yi = (ti, δi) andδi is an indicator function as described in Section “Weibull model”.

Let xij be thejth covariate associated with patienti, for j = 1, 2, . . . , p. In our application,xij could
indicate, for example, the gene expressions. The covariates can be included in the model as follows
(Farmomeni and Nardi 2010)

log(γm) = x′

iβm = λm, (6)

wherexi = (xi1, . . . , xip), γm = (γ1m, . . . , γpm) andβm = (β1m, . . . , βpm), for i = 1, 2, . . . , n and
m = 1, 2, . . . ,K.

Thus, the likelihood function becomes:

L (w,α,γ | K, ti, δi,x) ∝

n
∏

i=1

[

f (ti | K,w,α,γ,x)
δi S (ti | K,w,α,γ,x)

1−δi
]

Here, the incomplete information is modelled via the survivor function, which reflects the probability
that the patient was alive for duration greater thanti.

The following prior distributions are placed on the parametersw andα:

w | K ∼ Dirichlet(φ1, . . . , φK), φm = φ,∀m = 1, 2, . . . ,K.

αm ∼ Gamma(uα, vα),m = 1, 2, . . . ,K.

For a model without covariates, we employ the following prior for γm.

γm ∼ Gamma(uγ , vγ),m = 1, 2, . . . ,K.

We chose small positive values foruα, vα, uγ , vγ to express vague prior knowledge about these param-
eters and we setφ = 1 (Marin et al. 2005). For a model with covariates, we employ a multivariate
normal prior onβm, so that

βm | K ∼ N(0,Σ),

and we allowΣ to be diagonal with elementsσ2j , j = 1, 2, . . . , p. Again, we express a vaguely informa-
tive prior by setting a large positive value forσ2j .

The model described in this section can be fitted using MCMC sampling with latent valuesZi to indicate
component membership of theith observation (Diebolt and Robert 1994; Robert and Casella 2000).
Sincewm = Pr(Zi = m), we can writeZi ∼ M(w1, . . . , wK). In this scheme, theZi are sampled by
computing posterior probabilities of membership, and the other parameters are sampled from their full
conditional distributions. This was implemented in the WinBUGS software package (Spiegelhalter et
al. 2002).

The WinBUGS software (Lunn et al. 2000; Ntzoufras 2009; Spiegelhalter et al. 2002), is an interac-
tive Windows version of the BUGS program for Bayesian analysis of complex statistical models using



MCMC techniques.

Label switching, caused by non-identifiability of the mixture components, was dealt with post-MCMC
using the reordering algorithm of Marin et al. (2005). The algorithm proceeded by selecting the
permutation of components at each iteration that minimisedthe vector dot product with the so-called
“pivot”, a high density point from the posterior distribution. The MCMC output was then reordered
according to each selected permutation. In this paper, the approximate maximum a posteriori (MAP)
(i.e. the realization of parameters corresponding to the MCMC iterate that maximised the unnormalised
posterior) was chosen as the pivot.

Cure model

As in Section “Weibull model”, we observe time to the event ofinterest forn independent subjects, and
we let(ti, δi) denote the observed time and the event indicator for thei-th observation. LetS1(t) be the
survivor function for the entire population,S∗(t) be the survivor function for the non-cured group in the
population, andπ be the cure rate function. Then the standard cure rate model is given by:

S1(t) = π + (1− π)S∗(t). (7)

The commonly used parametric distributions include Exponential and Weibull forS∗(t).

As in Yakovlev and Tsodikov (1996), Chen et al. (1999) and Ibrahim et al. (2001), for an individual
in a population, letN denote the number of latent variables. Assume thatN has a Poisson distribution
with meanθ. LetZi, i = 1, . . . , N denote the random time, whereZi are independently and identically
distributed (i.i.d.) with a common distribution functionF (t) = 1 − S(t). Also, assume thatZi are
independent ofN . The time to event can be defined by the random variableY = min(Zi, 0 ≤ i ≤ N),
whereP (Z0 = ∞) = 1. Hence, the survival function for the population is given by

Spop(t) = P (N = 0) + P (Z1 > t, . . . , ZN > t,N ≥ 1)

= exp(−θ) +

∞
∑

k=1

[S(t)]k
θk

k!
exp(−θ)

= exp(−θF (t)). (8)

A corresponding cure fraction in model (8) islimt→∞ Spop(t) = exp(−θ) > 0. We also know from (8)
that the cure fraction is given bySpop(∞) = P (N = 0) = exp(−θ). As θ → ∞, the cure fraction
tends to0, whereas asθ → 0, the cure fraction tends to1. Corresponding population density and hazard
functions arefpop(t) = − d

dt
Spop(t) = θf(t) exp(−θF (t)) andhpop(t) = θf(t), respectively.

The proportional hazards structure with the covariates is modelled throughθ (Chen et al. 1999; Ibrahim
et al. 2001). The population survival function (7) can be written as

Spop(t) = exp(−θ) + [1− exp(−θ)]S∗(t),

whereS∗(t) = exp(−θF (t))−exp(−θ)
1−exp(−θ) , andf∗(t) = exp(−θF (t))

1−exp(−θ) θf(t).

Following Chen et al. (1999) and Ibrahim et al. (2001), we construct the likelihood function. Suppose
we haven subjects and we assume thatN

′

is are i.i.d with Poisson distributions with meansθi, i =
1, . . . , n. Let Zi1, . . . , ZiN denote the times for theNi competing causes, which are unobserved, and
which have a cumulative distribution function,F (.). In this section, we will specify a parametric form
for F (.) that is a Weibull distribution. Letψ = (α, λ)

′

, whereα is the shape parameter andλ is the
scale parameter. We incorporate covariates for the cure rate model through the cure parameterθ and we



have a different cure rate parameter,θi, for each subject.

Letx
′

i = (xi1, . . . , xik) denote thek x 1 vector of covariates for theith subject, and letβ = (β1, . . . , βk)
denote the corresponding vector of regression coefficients. We relateθ to the covariates byθi =
exp(x

′

iβ). Let ti denote the survival time for subjecti, which is right censored, letCi be the cen-
soring time, and letδi be the censoring indicator, assuming 1 ifTi is a failure time and 0 if it is right
censored. The observed data areD = (n, t, δ,X), wheret = (t1, . . . , tn)

′

, δ = (δ1, . . . , δn)
′

and
X = (x1, . . . , xn)

′

. The complete data are given byDc = (n, t, δ,X ,N ), whereN = (N1, . . . , Nn)
′

.
The complete-data likelihood function of the parameter(ψ,β) can be written as

L(ψ,β | Dc) =

{

n
∏

i=1

S(ti | ψ)
Ni−δi(Nif(ti | ψ))

δi

}

× exp

{

n
∑

i=1

Ni log(θi)− log(Ni!)− nθi

}

. (9)

Again, we assume independent priors forβ andψ, whereα ∼ Gamma(aα, bα), λ ∼ N(µλ,Σλ) and
β ∼ N(µβ,Σβ). We also assumep(α, λ) = p(α | δ0, τ0)p(λ), p(α | δ0, τ0) ∝ αδ0−1 exp(−τ0α), and
the hyperparameters(δ0, τ0) are specified (Chen et al. 1999; Ibrahim et al. 2001).

Combining these specifications with the likelihood function (9), the joint posterior distribution of(α, λ,β)
becomes

p(α, λ,β | D) ∝

n
∏

i=1

(θif(ti | α, λ))
δi exp(−θi(1− S(ti | α, λ)))

×p(α | δ0, τ0)p(α, λ)p(β). (10)

The joint posterior density of(α, λ,β) in equation (10) is analytically intractable because the integration
of the joint posterior density is not easy to perform. Hence,inferences are based on MCMC simulation
methods. We can use the Metropolis-Hastings algorithms or slice sampling to simulate samples of
α, λ andβ. MCMC computations were implemented using the WinBUGS system (Spiegelhalter et al.
2002).

Application to gene expression data

DLBCL dataset

We applied the proposed method of model averaging across thethree candidate survival models to a
dataset containing gene expression of Diffuse Large B-cellLymphoma (DLBCL). The dataset comprises
gene expression measurements and survival times of patients with DLBCL (Rosenwald et al. 2002).
DLBCL (Lenza et al. 2008) is a type of cancer of the lymphatic system in adults which can be cured
by anthracycline-based chemotherapy in only 35 to 40 percent of patients (Rosenwald et al. 2002).
In general, types of this disease are very diverse and their biological properties are largely unknown,
meaning that this is a relatively difficult cancer to cure andprevent. Rosenwald et al. (2002) proposed
that there are three phenotypes subgroups of patients of DLBCL: activated B-like DLBCL, germinal
centre (GC)-B like and type III DLBCL. The GC B-like DLBCL is less dangerous than the others in
the progression of the tumour; the activated B-like DLBCL ismore active than the others and the type
III DLBCL is the most dangerous in the progression of tumour (Alizadeh et al. 2000). These groups
were defined using microarray experiments and hierarchicalclustering. The authors showed that these
phenotypes subgroups were differentiated from each other by distinct gene expressions of hundreds of



different genes and had different survival time patterns. This dataset contains 219 patients with DLBCL,
including 138 patient deaths during follow-up. Patients with missing values for a particular microarray
element were excluded from all analyses involving that element.

Based on patterns of gene expression in biopsy specimens of the lymphoma, Rosenwald et al. (2002)
analysed this dataset to predict the likelihood of patients’ survival after chemotherapy for DLBCL.
By using a Cox proportional-hazards model, Rosenwald et al.(2002) identified five individual gene
expressions which correlated with the survival after chemotherapy. These gene expressions are germinal
center B-cell (GC-B), lymphoma node, proliferation, BMP6 and MHC. In this study, these five gene
expressions are used as covariates for estimating survivaltimes based on the three competing models in
Section “Models”.

Results

As discussed in Section “Methods”, to account for model uncertainty, the model averaging technique
which combines estimates from different survival models was carried out. This was accomplished
through a weighted average of the survival considered in theanalysis. First, we calculated the Kaplan-
Meier estimates of overall survival according to the gene expression and the relation between the gene
expression score and the subgroups phenotype of DLBCL. We confirmed that these phenotypes had
different survival time patterns (Figures 1). Following this, we fitted the three models either to all gene
expression data and to the three phenotype subgroups. We then applied the BMA approach described in
Section “Methods”. For each model, we ran the correspondingMCMC algorithm for 100 000 iterations,
discarding the first 10 000 iterations as burn-in.

Figure 1 Kaplan-Meier estimates of overall survival according to the gene-expression subgroups.

The model averaged prediction for the response was calculated according to equation (). Table 1 shows
the estimated posterior mean of the parameters, the 95% credible intervals (CI), the BIC values and
the BMA weights for each of the fitted models for the whole dataset. The BMA weights reflect the
relative posterior probability of the models. As can be seenfrom Table 1, for the Weibull model, there
are three genes that substantially describe patients’ survival times, namely GC-B (β1), lymphoma node
(β2) and MHC (β5). These three genes have a negative effect on the expected survival time. For the
mixture model, GC-B (β1), lymphoma node (β2) and proliferation (β3) accounted for patients’ survival
times in the first component. In the second component, GC-B (β1), lymphoma node (β2) and MHC
signature (β5) substantially explained patients’ survival times. All these genes have negative effects
on the expected survival time for their respective component. For the cure model, four of these genes
substantially describe patients’ survival times, namely GC-B (β1), lymphoma node (β2), BMP6 (β4) and
MHC (β5) signature. Three of these, namely GC-B (β1), lymphoma node (β2) and MHC signature (β5),
have a negative effect on the expected survival time. Under the cure model, approximately33.8% of the
patients are cured of DLBCL (Figure 2).



Table 1 The estimated posterior mean of the parameters, the95% credible intervals (CI), the BIC
values and the BMA weights for each of the fitted models for thefull DLBCL dataset
Model Parameter Mean 95% CI BIC Weight
Weibull α 0.7305 (0.626,0.840) 687.0953 0.0009

β0 -1.578 (-1.84, -1.33)
β1 -0.3446 (-0.516, -0.172)
β2 -0.2844 (-0.454, -0.116)
β3 0.2097 (-0.049, 0.468)
β4 0.3292 (0.115, 0.537)
β5 -0.3019 (-0.488, -0.112)

Mixture α1 4.029 (2.411, 6.631) 734.0054 ≈ 0
α2 0.7707 (0.662, 0.885)
β01 6.857 (5.479, 8.205)
β02 -1.724 (-2.007, -1.457)
β11 -11.62 (-12.88, -10.35)
β12 -0.3956 (-0.575, -0.216)
β21 -2.087 (-3.54, -0.689)
β22 -0.3172 (-0.495, -0.143)
β31 -2.241 (-3.425, -1.059)
β32 0.1972 (-0.064, 0.461)
β41 -0.2849 (-1.434, 0.854)
β42 0.3594 (0.141, 0.574)
β51 -0.7928 (-2.107, 0.477)
β52 -0.3102 (-0.500, -0.115)
π1 0.01992 (0.002, 0.053)
π2 0.9801 (0.946, 0.997)

Cure α 0.9884 (0.828, 1.145) 673.1359 0.9991
β0 0.1611 (-0.124, 0.560)
β1 -0.3151 (-0.484, -0.144)
β2 -0.2821 (-0.451, -0.115)
β3 0.189 (-0.070, 0.442)
β4 0.3303 (0.118, 0.539)
β5 -0.3039 (-0.490, -0.112)

Figure 2 Box-plots of the cure rates (posterior distribution of π) for the full DLBCL dataset, and
to each of the three phenotypes (ABC, GCB and Type III).

This is clearly exhibited in Table 1, which shows that the cure model has the largest posterior model
probability (or BMA weight). To evaluate the model fit, a comparison of the density prediction for the
models to the observed data was carried out.

Table 2 show the95% CI, BIC values and the BMA weights for each of the models basedon phenotype
for the DLBCL dataset. In general, for all phenotypes, the mixture model is not favourable as its weight
value is approximately equal to zero and it has the largest BIC value. On the other hand, the BIC values
of the other two models are close to each other, suggesting a combination of these two model in order
to account for the uncertainty in the prediction of survival.



Table 2 The estimated posterior mean of parameters, the95% CI, BIC values and the BMA
weights for each of the models based on phenotype for the DLBCL dataset
Phenotype Model Variable Parameter Mean 95% CI BIC Weight

GCB Weibull α 0.692 (0.5365, 0.8595) 341.212 0.497
Intercept β0 -1.649 (-2.185, -1.17)

GCB β1 -0.179 (-0.5859, 0.239)
Lymphoma β2 -0.118 (-0.3958, 0.1607)
Proliferation β3 0.459 (-0.0306, 0.934)

BMP6 β4 0.414 (0.01773, 0.809)
MHC β5 -0.325 (-0.6389, -0.01228)

Mixture α1 4.252 (2.591, 7.175) 377.759 ≈ 0
α2 0.816 (0.6209, 1.032)

Intercept β01 6.491 (5.246, 7.781 )
β02 -2.152 (-2.798, -1.567)

GCB β11 -11.81 (-13.05, -10.53)
β12 -0.030 (-0.5104, 0.4592)

Lymphoma β21 -1.839 (-3.082, -0.6744)
β22 -0.134 (-0.48, 0.2254)

Proliferation β31 -2.165 (-3.313, -0.9932)
β32 0.588 (-0.07796, 1.407)

BMP6 β41 -0.242 (-1.357, 0.8482)
β42 0.654 (0.17, 1.161)

MHC β51 -0.629 (-1.993, 0.5117)
β52 -0.382 (-0.7687, -0.002227)
φ1 0.090 (0.02007, 0.1863)
φ2 0.91 (0.8137, 0.9799)

Cure α 0.845 (0.6075, 1.1) 341.188 0.503
Intercept β0 0.604 (-0.3556, 3.394)

GCB β1 -0.173 (-0.5754, 0.2402)
Lymphoma β2 -0.116 (-0.3891, 0.1579)
Proliferation β3 0.433 (-0.0522, 0.9041)

BMP6 β4 0.396 (-0.0007, 0.788)
MHC β5 -0.330 (-0.6422, -0.0209)

ABC Weibull α 0.894 (0.695, 1.115) 215.564 0.013
Intercept β0 -1.86 (-2.562, -1.217)

GCB β1 -0.509 (-0.9948, -0.03871)
Lymphoma β2 -0.626 (-0.9568, -0.3099)
Proliferation β3 -0.487 (-1.118, 0.1422)

BMP6 β4 0.645 (0.2725, 1.021)
MHC β5 -0.479 (-0.7955, -0.1598)

Mixture α1 2.427 (1.083, 4.152) 256.552 ‘ ≈ 0
α2 0.960 (0.7525, 1.189)

Intercept β01 6.636 (5.301, 7.959)
β02 -2.572 (-3.346, -1.865)

GCB β11 -12.11 (-13.36, -10.86)
β12 -0.925 (-1.438, -0.4356)

Lymphoma β21 -3.155 (-4.578, -1.75)
β22 -0.768 (-1.114, -0.4341)

Proliferation β31 -2.377 (-3.561, -1.188)
β32 -0.480 (-1.099, 0.1353)

BMP6 β41 0.079 (-1.064, 1.232)
β42 0.690 (0.3249, 1.061)

MHC β51 -0.644 (-1.919, 0.6499)
β52 -0.515 (-0.8176, -0.2047)
φ1 0.037 (0.0046, 0.09883)
φ2 0.963 (0.9012, 0.9953)



Cure α 1.189 (0.8906, 1.483) 206.961 0.987
Intercept β0 0.019 (-0.6417, 0.7362)

GCB β1 -0.432 (-0.8874, 0.01376)
Lymphoma β2 -0.587 (-0.905, -0.2867)
Proliferation β3 -0.484 (-1.076, 0.1012)

BMP6 β4 0.607 (0.2557, 0.9631)
MHC β5 -0.446 (-0.7481, -0.1346)

Type III Weibull α 0.834 (0.5958, 1.101) 162.27 0.538
Intercept β0 -1.75 (-2.736, -0.9093)

GCB β1 -0.404 (-1.028, -0.19)
Lymphoma β2 -0.274 (-0.7404, 0.1644)
Proliferation β3 0.506 (-0.0897, 1.084)

BMP6 β4 0.017 (-0.5301, 0.5206)
MHC β5 -0.199 (-0.6839, 0.3098)

Mixture α1 11.82 (8.609, 15.14) 196.271 ≈ 0
α2 0.596 (0.43, 0.7757)

Intercept β01 6.002 (3.682, 8.336)
β02 -5.005 (-7.19, -2.812)

GCB β11 -9.32 (-12.02, -6.611)
β12 0.564 (0.1829, 1.004)

Lymphoma β21 -2.913 (-5.716, -0.02716)
β22 -0.558 (-1.015, -0.1525)

Proliferation β31 -2.021 (-4.547, 0.455)
β32 0.893 (0.3455, 1.515)

BMP6 β41 0.320 (-2.466, 3.373)
β42 0.140 (-0.2735, 0.5384)

MHC β51 -0.336 (-2.733, 2.323)
β52 -0.293 (-0.7741, 0.1504)
φ1 0.072 (0.0108, 0.1805)
φ2 0.928 (0.8195, 0.9891)

Cure α 0.969 (0.6534, 1.339) 162.578 0.462
Intercept β0 0.989 (-0.5077, 4.153)

GCB β1 -0.349 (-0.973, -0.25)
Lymphoma β2 -0.269 (-0.7375, 0.1687)
Proliferation β3 0.502 (-0.0955, 1.084)

BMP6 β4 0.046 (-0.4801, -0.1801)
MHC β5 -0.183 (-0.6625, 0.3207)

From Tables 1 and 2, we can see that the Weibull model is betterthan a two-component Weibull mixture
model, suggesting the two-component mixture Weibull is optimal as competing model.

As can be seen in Figure 3, in the full DLBCL dataset, the predicted curve for the cure model quite close
to the observed data, suggesting a good fit of the data. Specifically, in this model,94.354% of observed
survival times in the dataset fall in the corresponding95% prediction intervals. As expected, this is quite
similar to the result obtained from model averaging (91.935%) (Table 3).

Figure 3 The posterior densities of the three models and the model averaged density for the full
DLBCL dataset and each of the three phenotypes. For comparison, the observed data is also
represented as a histogram.



Table 3 The percentage of observed values that lay in the corresponding 95% credible interval for
the individual models and BMA model based on the full DLBCL dataset and each of the three
phenotypes
Model All DLBCL GCB ABC Type III
Weibull 87.516 90 89.130 89.286
Mixture 85.903 88 86.956 82.142
Cure 94.354 92 91.304 85.714
BMA 91.935 94 93.478 92.857

Furthermore, in the GCB phenotype, the genes correspondingto the BMP6 (β4) and MHC signature (β5)
in the Weibull model and MHC signature (β5) in the cure model substantially affect patients’ survival
time. In the ABC phenotype, in the Weibull model, with the exception of proliferation (β3), all genes
were involved substantially in the description of patients’ survival and lymphoma node (β2), BMP6
(β4)and MHC signature (β5) are potentially important prognostic factors for predicting survival in the
cure model. For the type III phenotype, the GC-B gene (β1) in both models and only the BMP6 gene
(β4) in the cure model are substantial in explaining the survival times of the patients.

Under the cure model, in the GCB phenotype, approximately33.2% of the patients are estimated to
be cured of DLBCL. In the ABC and type III phenotypes, the respective cure rates are approximately
26.57% and18.7% (Figure 2).

The results of the posterior densities prediction for the individual models and the model averaged pre-
diction based on these three phenotypes are presented in Figure 3. In comparison to other models, the
mixture model fitted the data poorly for each phenotype. In detail, using model averaging, for the GCB
phenotype,94% of the observed survival times in the dataset lie in the respective 95% prediction in-
tervals. For the other two phenotypes, namely the ABC and thetype III, 93.478% and92.857% of the
observed survival times in the dataset are in the corresponding 95% prediction intervals, respectively
(Table 3).

Discussion

This study has adopted a Bayesian model averaging approach to account for model uncertainty in the
prediction of survival. The case study that we considered involved lymphoma cancer survival, with
covariates given by phenotypes and gene expressions. Here,we proposed three competing models and
used BMA to combine these models to account for model uncertainty.

Overall, the results of this study indicate that if using thefull dataset without further grouping, selecting
a single model that best fits the data was adequate. The reasonis that there is clear support for one model
(i.e. only one model has a relatively larger BIC value and dominates based on this criterion). However,
the results were different when the model selection processtook into account the phenotype subgroups
of the patients. A single model appeared to be inadequate. This was due to the fact that the values of BIC
for the Weibull and the cure had nearly equal weight, indicating the absence of a dominant model based
on this criterion and the presence of uncertainty issues in the model selection. As suggested and shown
in this study, BMA was used to address this problem. The applicability of BMA was also associated
with the smaller number of samples in each phenotype subgroup (Annest et al. 2009; Volinsky et al.
1997; Yeung et al. 2005).

This study also revealed that in each phenotype, the expression and number of predictor genes sub-
stantially describing the survival times of the patients varied across models. Overall, in both of the
favourable models, none of the genes existed consistently as substantial predictors for the patients’ sur-



vival. For example, in the Weibull model, the MHC and BMP genes in the GCB and ABC phenotypes
and the GCB genes in the ABC and Type III phenotypes were important predictors of survival. In con-
trast, in the cure model, BMP was substantially associated with predicted survival in the ABC and Type
III phenotypes. For both models, only three genes i.e. lymphoma node, BMP6 and MHC signature in
the ABC phenotype were highly associated with the survival times of the patients.

This study has indicated that the application of BMA to combine competing models overcomes the prob-
lem of uncertainty. Comparison of different survival models has allowed the identification and analysis
of the more detailed relationships between gene expressions in given phenotypes and the survival times
of the patients. An advantage of BMA is more accurate and precise prediction of patient survival. How-
ever, this study only involved three candidate models. Moremodels can be obviously included in the
analysis. This study has also focused on the marginal likelihoodp(D | Qs) estimation methods based
on the Laplace approximation. However, other approaches are also possible. Indeed marginal likelihood
estimation is possible using nested sampling (Skilling 2006), where the marginal likelihood is viewed
as the expectation, with respect to the prior, of the likelihood. The other approach is Chib’s method
(Chib 1995), that presented a generic method which can be applied to output from the Gibbs sampler.
Applying BMA to other datasets or other applications is desired to obtain robust predictions.
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