Stopping Powers and Inelastic Mean Free Path of 100 eV to 30 keV Electrons in Zirconium Silicates

D. Tahir, Suarga, Yulianti and N.H. Sari

Department of Physics, Faculty of Mathematics and Natural Sciences, Hasanuddin University Jl. Perintis Kemerdekaan Km 10, Makassar 90245, Indonesia

ARTICLE INFO

Article history:
Received 04 December 2012
Received in revised form 18 December 2012
Accepted 19 December 2012

Keywords: REELS ELF SP IMFP Ziconium-silicates

ABSTRACT

We have determined the electron stopping power (SP) and inelastic mean free path (IMFP) of $(ZrO_2)_x(SiO_2)_{1-x}$ (x=1, 0.75, 0.5, 0.25, 0) for electron energies from 100 eV to 30 keV by means of modified Born–Ochkur equations. The energy loss function (ELF) is required in the calculation of SP and IMFP. We used the electron energy losses from 0 to 80 eV obtained by quantitative analysis of reflection electron energy-loss spectroscopy (REELS) spectra. The values of SP and IMFP for high contents of ZrO_2 (x=50% and x=75%) in Zr-silicates are similar to those of ZrO_2 , and similar to those of SrO_2 for low contents of ZrO_2 (x=25%) in Zr-silicates. There are small differences in the values of SrO_2 and SrO_2 and SrO_2 . We found that the SrO_2 decreases while the SrO_2 in SrO_2 and SrO_3 in SrO_3 we have demonstrated that the SrO_3 beta increasing electron energy. We have demonstrated that the SrO_3 beta increasing electron energy and SrO_3 in SrO_3 in SrO_3 and SrO_3 in SrO_3 in SrO_3 in SrO_3 and SrO_3 in SrO_3

© 2012 Atom Indonesia. All rights reserved

INTRODUCTION

Zirconium oxide and zirconium silicates have received great attention and exhibit important nuclear applications as engineering materials for inert matrix fuels, actinide waste forms and targets for transmutation of radionuclides, due to its high chemical durability, high corrosion resistance, low hydrogen absorption, and excellent radiation stability [1-5].

The development of new zirconium oxides for use as radiation tolerant materials in advanced nuclear energy systems has resulted in materials with unique physical and chemical properties. Many experimental studies have reported on the effects of crack growth [4], high pressure steam [1], and irradiation of heavy ions [3], He nuclei [3], and protons [2] on the electronic, chemical, and structural properties of zirconium oxide. However, we found few studies devoted to the electron stopping power (SP) and inelastic mean free path (IMFP) properties of zirconium oxide and zirconium silicates for a wide range of energy loss functions (ELFs) up to 80 eV.

The electron SP and IMFP properties describe the traverses of energetic electron through matter under interactions with atomic orbital electrons and atomic nuclei. Through these interactions, the

energy loss occurs, while in an inelastic collision the electron is deflected from its original path and part of its energy is transferred to an orbital electron or emitted in the form of bremsstrahlung production. Electrons lose their kinetic energy through various types of inelastic scattering processes described by SP, while the mean distance between two collisions is described by the IMFP [6-12]. These two fundamental quantities are essential importance in many fields of research, such as radiobiology, biomedical applications, radiation dosimetry, and the modeling of electron transport in matter for many other applications. For instance, to understand radiation effects in radiation dosimetry, SP values are required for the calculation of energy deposition of energetic electrons passing through biological tissues [6-9]. SP values have also been used in Monte Carlo simulations of electron transport relevant to electron-probe microanalysis, Augerelectron spectroscopy, and dimensional metrology

electrons may lose their kinetic energy through

elastic or inelastic collisions. In an elastic collision

the electron is deflected from its original path but no

In this study, we report electron SP and IMFP values calculated from the energy loss function (ELF) of zirconium oxide, silicon dioxide, and zirconium silicates for energies from 100 eV to 30 keV. The ELFs are obtained from the experimental reflection electron energy loss

in the scanning electron microscope [10-12].

E-mail address: allanctahir@yahoo.com

^{*} Corresponding author.

spectroscopy (REELS) spectra. REELS is surface sensitive and the spectra carries information on the electronic structure of the material because the energy loss experienced by the incident electron depends on the electronic structure of the material. The spectra can easily be recorded over a wide energy-loss range [13-29]. The calculation of the ELFs of zirconium oxide, silicon dioxide, and zirconium silicates from REELS spectra has already been performed by Tahir et. al. [15]. Subsequently, the calculated SPs were compared with the results of evaluating the nonrelativistic Bethe equation, while the IMFPs were compared with the results of Tanuma Powell Penn (TPP-2M) methods [9] and Ashley et. al. [30], which are available from a National Institute of Standards and Technology (NIST) database. The aim of this work are twofold, namely: first, to provide an alternative basic data of SPs and IMFPs for the study on the energy deposition of low-energy electrons transport through zirconium oxide and zirconium silicates; and second, to show that the method presented in this study might be a good one for evaluating the SP and IMFP of radiation tolerant materials in advanced nuclear energy applications.

EXPERIMENTAL METHOD

According to the dielectric response theory, the Penn statistical approximation, and the Born–Ochkur correction method which includes the exchange effect between the incident electron and the electrons in the medium, the electron inelastic differential cross section can be expressed as [7]:

$$\frac{d^{2}\sigma}{d(\hbar\omega)dq} = \frac{1}{\pi a_{0}E} \int_{0}^{\infty} \frac{\omega'}{\omega} \frac{1}{q} \operatorname{Im}[-1/\varepsilon(\omega')]$$

$$\times \delta \left(\omega - \omega' - \frac{\hbar q^{2}}{2m}\right) C_{ex} d\omega' \tag{1a}$$

where

$$C_{ex} = 1 - \frac{Q}{E + \hbar\omega' - \hbar\omega} + \left(\frac{Q}{E + \hbar\omega' - \hbar\omega}\right)^2 \text{, and}$$

$$Q = \hbar^2 q^2 / 2m \tag{1b}$$

With Eq. (1) and over all allowed integration region, the SP and IMFP can be given as follows [7-9]:

$$SP = -\frac{dE}{dS} = \frac{1}{2\pi a \cdot E} \int_{0}^{E/2} (\hbar \omega) \operatorname{Im}[-1/\varepsilon(\omega)] v(\alpha) d(\hbar \omega) \qquad (2)$$

$$\lambda = \left(\frac{1}{2\pi a_0 E} \int_{0}^{E/2} \text{Im}[-1/\varepsilon(\omega)] w(\alpha) d(\hbar\omega)\right)^{-1}$$
 (3)

Where E is the kinetic energy of the incident electron, α_0 is the Bohr radius, $\hbar \omega$ is the energy loss, $Im[-1/\varepsilon(\omega)]$ is the energy loss function, $v(\alpha)$ and $w(\alpha)$ are, respectively:

$$v(\alpha) = \frac{2s}{(1+\alpha)(1+\alpha+s)} + \ln\left\{\frac{(1-\alpha^2)(1+\alpha)}{(1-\alpha-s)(1+\alpha+s)^2}\right\}$$

$$w(\alpha) = \frac{3\alpha^2 + 3\alpha + 1}{(1+\alpha)^2} \ln\frac{1+\alpha-s}{1+\alpha} + \ln\frac{1-\alpha}{1-\alpha-s}$$

$$+ \frac{2\alpha^2 + \alpha}{(1+\alpha)^2} \ln\frac{1+\alpha}{1+\alpha+s} + \frac{2\alpha s}{(1+\alpha)^2(1+\alpha+s)}$$
With $\alpha = \hbar \omega / E$ and $S = \sqrt{1-2\alpha}$ (5)

Tan et. al. [7] used the Born-Ochkur exchange correction in the calculation of SPs and IMFPs of organic compound. The results of their

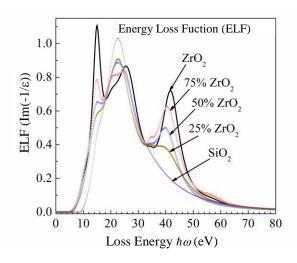
calculations of SPs attain similar accuracy with Ashley exchange correction for all electron energy region and also agree well with Bethe-Bloch theory

at high-energy region.

As shown by equation (2) and (3), the calculations of SP and IMFP require the energy loss function (ELF), which completely determines the probability of an inelastic scattering event, the energy loss, and the scattering angular distribution. The key problem for the calculation of SP and IMFP is deriving the ELF. The well-known Lindhard dielectric function is only applicable for a limited class of materials, namely the so called nearly-free electron materials such as Al or alkali metals, and is not valid for other materials such as noble metals, insulators, or organic compounds. On the other hand, the ELF in the long wave-length limit $k \rightarrow 0$ approaches the optical ELF, and is calculated from experimental optical data, the refractive index and the extinction coefficients, which are available for a number of materials [7-9].

Tahir *et. al.* [13,16,18,20-25] have employed the semi-classical dielectric response model proposed by Tougaard and Yubero [26-29] in their calculation of ELF. The algorithms of this method have been implemented in the generally available QUEELS- $\varepsilon(k,\omega)$ -REELS software package [29]. The validity and consistency of this method was extensively tested recently [21] and it has also previously been successfully used to obtain the ELFs and optical properties of ultrathin dielectric [15,16,18] semiconductor [17], polymer [22], metals [14,23], and transparent oxide films [20,21,24,25]. In Ref. [14] there is a detailed discussion of

experimental tests of the validity of the elastic scattering model.


In this model, the dielectric function $\varepsilon(k,\omega)$ of the material describes all excitations. The dielectric function is a function of wave vector k and frequency ω which are the only inputs for the calculations in this model. The dielectric function is given in term of the energy loss function (ELF) Im(-1/ ε) which is parameterized as a sum of Drude-Lindhard type oscillators, as described in Refs. [14, 15, 27-29]:

$$\operatorname{Im}\left\{\frac{-1}{\varepsilon(k,\omega)}\right\} = \theta\left(\hbar\omega - E_{g}\right) \sum \frac{A_{i}\gamma_{i}\hbar\omega}{\left(\hbar^{2}\omega_{0ik}^{2} - \hbar^{2}\omega^{2}\right)^{2} + \gamma_{i}^{2}\hbar^{2}\omega^{2}}, \quad (6)$$

where the dispersion relation is given in the form

$$\hbar\omega_{0ik} = \hbar\omega_{0i} + \alpha_i \frac{\hbar^2 k^2}{2m} \,. \tag{7}$$

Here, A_i , γ_i , $\hbar \omega_{0i}$, and α_i are the oscillator strength, damping coefficient, excitation energy momentum dispersion coefficient of the oscillator, respectively, and $\hbar k$ is the momentum transferred from the REELS electron to the solid. The dependence of ω_{0ik} on k is generally unknown, but we use Eq. (6) with α_i as an adjustable parameter. The values of the momentum dispersion coefficient α_i are related to the effective mass, e.g. $\alpha_i \approx 0$ for insulator and $\alpha_i \approx 1$ for metals [14,27-29]. The step function $\theta (\hbar \omega - E_{\theta})$ is included to describe the effect of the band gap energy E_g in semiconductors and insulators. Here, $\theta (\hbar \omega - E_g) = 0$ if $\hbar\omega < E_g$ and $\theta (\hbar\omega - E_g) = 1$ if $\hbar\omega > E_g$. The band gap was estimated from the onset value of REELS spectrum as shown in Fig. 1 [15].

Fig. 1. Energy loss functions (ELFs) of ZrO_2 , SiO_2 , and $(ZrO_2)_x(SiO_2)_{1-x}$ from [15].

For materials studied in this work, we used data for ELF from Ref. [15] in which the parameters are obtained by fitting the inelastic electron $\lambda K_{th}(\hbar\omega)$ scattering cross section spectrum simulated with the QUEELS- $\varepsilon(k,\omega)$ -REELS software to an experimental inelastic scattering cross section $\lambda K_{exp}(\hbar\omega)$. The parameters A_i , γ_i , $\hbar\omega_i$, and α_i , of the oscillators are varied until a good agreement between the calculated and experimental inelastic cross sections is obtained. The oscillator strengths are adjusted to make sure that $\varepsilon(k,\omega)$ fulfills the well-established Kramers-Kronig sum rule [14,27-29],

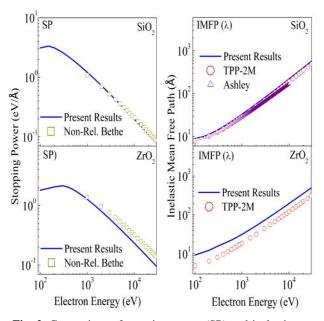
$$\frac{2}{\pi} \int_{0}^{\infty} \operatorname{Im} \left\{ \frac{1}{\varepsilon(k,\omega)} \right\} \frac{d(\hbar\omega)}{\hbar\omega} = 1 - \left(\frac{1}{n_0^2} \right)$$
 (8)

Here, n_0 is the refractive index of the materials in the optical limit $\hbar\omega \rightarrow 0$. These parameters are listed in Table 1 in Ref. [15] for all considered materials.

Table 1. Stopping power (SP) and inelastic mean free path (IMFP) for SiO₂ and ZrO₂ as determined in this study.

E (eV) SiO2 ZrO2 SiO2 ZrO2 SP SP IMFP IMFP 100 3.1164 2.603 8.95 9.231 200 3.1207 2.8568 11.2038 12.2565 300 2.6053 2.517 14.0763 15.5254 400 2.2206 2.123 16.9597 18.0734 500 1.9381 1.8557 19.7855 20.2886 600 1.7236 1.7026 22.5499 22.5639 700 1.5553 1.5701 25.2584 24.8435 800 1.4195 1.4565 27.9177 27.1086 900 1.3076 1.3587 30.5334 29.3524 1000 1.2135 1.274 33.1107 31.5729 1500 0.9024 0.9784 45.5415 42.3425 2000 0.726 0.8013 57.418 52.6567 3000 0.5301 0.5969 80.0941 72.3337 40					-
SP SP IMFP IMFP 100 3.1164 2.603 8.95 9.231 200 3.1207 2.8568 11.2038 12.2565 300 2.6053 2.517 14.0763 15.5254 400 2.2206 2.123 16.9597 18.0734 500 1.9381 1.8557 19.7855 20.2886 600 1.7236 1.7026 22.5499 22.5639 700 1.5553 1.5701 25.2584 24.8435 800 1.4195 1.4565 27.9177 27.1086 900 1.3076 1.3587 30.5334 29.3524 1000 1.2135 1.274 33.1107 31.5729 1500 0.9024 0.9784 45.5415 42.3425 2000 0.726 0.8013 57.418 52.6567 3000 0.5301 0.5969 80.0941 72.3337 4000 0.422 0.4808 101.8031 91.132	E (eV)	SiO ₂	ZrO ₂	SiO ₂	ZrO ₂
200 3.1207 2.8568 11.2038 12.2565 300 2.6053 2.517 14.0763 15.5254 400 2.2206 2.123 16.9597 18.0734 500 1.9381 1.8557 19.7855 20.2886 600 1.7236 1.7026 22.5499 22.5639 700 1.5553 1.5701 25.2584 24.8435 800 1.4195 1.4565 27.9177 27.1086 900 1.3076 1.3587 30.5334 29.3524 1000 1.2135 1.274 33.1107 31.5729 1500 0.9024 0.9784 45.5415 42.3425 2000 0.726 0.8013 57.418 52.6567 3000 0.5301 0.5969 80.0941 72.3337 4000 0.422 0.4808 101.8031 91.132 5000 0.3527 0.4051 122.8389 109.3111 6000 0.2403 0.28 183.2643		SP	SP	IMFP	IMFP
300 2.6053 2.517 14.0763 15.5254 400 2.2206 2.123 16.9597 18.0734 500 1.9381 1.8557 19.7855 20.2886 600 1.7236 1.7026 22.5499 22.5639 700 1.5553 1.5701 25.2584 24.8435 800 1.4195 1.4565 27.9177 27.1086 900 1.3076 1.3587 30.5334 29.3524 1000 1.2135 1.274 33.1107 31.5729 1500 0.9024 0.9784 45.5415 42.3425 2000 0.726 0.8013 57.418 52.6567 3000 0.5301 0.5969 80.0941 72.3337 4000 0.422 0.4808 101.8031 91.132 5000 0.3527 0.4051 122.8389 109.3111 6000 0.3042 0.3514 143.3645 127.019 7000 0.2682 0.3113 163.4829	100	3.1164	2.603	8.95	9.231
400 2.2206 2.123 16.9597 18.0734 500 1.9381 1.8557 19.7855 20.2886 600 1.7236 1.7026 22.5499 22.5639 700 1.5553 1.5701 25.2584 24.8435 800 1.4195 1.4565 27.9177 27.1086 900 1.3076 1.3587 30.5334 29.3524 1000 1.2135 1.274 33.1107 31.5729 1500 0.9024 0.9784 45.5415 42.3425 2000 0.726 0.8013 57.418 52.6567 3000 0.5301 0.5969 80.0941 72.3337 4000 0.422 0.4808 101.8031 91.132 5000 0.3527 0.4051 122.8389 109.3111 6000 0.3042 0.3514 143.3645 127.019 7000 0.2682 0.3113 163.4829 144.3502 8000 0.2403 0.28 183.2643	200	3.1207	2.8568	11.2038	12.2565
500 1.9381 1.8557 19.7855 20.2886 600 1.7236 1.7026 22.5499 22.5639 700 1.5553 1.5701 25.2584 24.8435 800 1.4195 1.4565 27.9177 27.1086 900 1.3076 1.3587 30.5334 29.3524 1000 1.2135 1.274 33.1107 31.5729 1500 0.9024 0.9784 45.5415 42.3425 2000 0.726 0.8013 57.418 52.6567 3000 0.5301 0.5969 80.0941 72.3337 4000 0.422 0.4808 101.8031 91.132 5000 0.3527 0.4051 122.8389 109.3111 6000 0.3042 0.3514 143.3645 127.019 7000 0.2682 0.3113 163.4829 144.3502 8000 0.2403 0.28 183.2643 161.3696 9000 0.218 0.2548 202.7597 <td>300</td> <td>2.6053</td> <td>2.517</td> <td>14.0763</td> <td>15.5254</td>	300	2.6053	2.517	14.0763	15.5254
600 1.7236 1.7026 22.5499 22.5639 700 1.5553 1.5701 25.2584 24.8435 800 1.4195 1.4565 27.9177 27.1086 900 1.3076 1.3587 30.5334 29.3524 1000 1.2135 1.274 33.1107 31.5729 1500 0.9024 0.9784 45.5415 42.3425 2000 0.726 0.8013 57.418 52.6567 3000 0.5301 0.5969 80.0941 72.3337 4000 0.422 0.4808 101.8031 91.132 5000 0.3527 0.4051 122.8389 109.3111 6000 0.3042 0.3514 143.3645 127.019 7000 0.2682 0.3113 163.4829 144.3502 8000 0.2403 0.28 183.2643 161.3696 9000 0.218 0.2548 202.7597 178.1243 10000 0.1998 0.2341 222.0075	400	2.2206	2.123	16.9597	18.0734
700 1.5553 1.5701 25.2584 24.8435 800 1.4195 1.4565 27.9177 27.1086 900 1.3076 1.3587 30.5334 29.3524 1000 1.2135 1.274 33.1107 31.5729 1500 0.9024 0.9784 45.5415 42.3425 2000 0.726 0.8013 57.418 52.6567 3000 0.5301 0.5969 80.0941 72.3337 4000 0.422 0.4808 101.8031 91.132 5000 0.3527 0.4051 122.8389 109.3111 6000 0.3042 0.3514 143.3645 127.019 7000 0.2682 0.3113 163.4829 144.3502 8000 0.2403 0.28 183.2643 161.3696 9000 0.218 0.2548 202.7597 178.1243 10000 0.1998 0.2341 222.0075 194.65 15000 0.1423 0.1683 315.39	500	1.9381	1.8557	19.7855	20.2886
800 1.4195 1.4565 27.9177 27.1086 900 1.3076 1.3587 30.5334 29.3524 1000 1.2135 1.274 33.1107 31.5729 1500 0.9024 0.9784 45.5415 42.3425 2000 0.726 0.8013 57.418 52.6567 3000 0.5301 0.5969 80.0941 72.3337 4000 0.422 0.4808 101.8031 91.132 5000 0.3527 0.4051 122.8389 109.3111 6000 0.3042 0.3514 143.3645 127.019 7000 0.2682 0.3113 163.4829 144.3502 8000 0.2403 0.28 183.2643 161.3696 9000 0.218 0.2548 202.7597 178.1243 10000 0.1998 0.2341 222.0075 194.65 15000 0.1423 0.1683 315.397 274.6469 16500 0.1313 0.1556 342	600	1.7236	1.7026	22.5499	22.5639
900 1.3076 1.3587 30.5334 29.3524 1000 1.2135 1.274 33.1107 31.5729 1500 0.9024 0.9784 45.5415 42.3425 2000 0.726 0.8013 57.418 52.6567 3000 0.5301 0.5969 80.0941 72.3337 4000 0.422 0.4808 101.8031 91.132 5000 0.3527 0.4051 122.8389 109.3111 6000 0.3042 0.3514 143.3645 127.019 7000 0.2682 0.3113 163.4829 144.3502 8000 0.2403 0.28 183.2643 161.3696 9000 0.218 0.2548 202.7597 178.1243 10000 0.1998 0.2341 222.0075 194.65 15000 0.1423 0.1683 315.397 274.6469 16500 0.1313 0.1556 342.6885 297.9771 18000 0.122 0.1449	700	1.5553	1.5701	25.2584	24.8435
1000 1.2135 1.274 33.1107 31.5729 1500 0.9024 0.9784 45.5415 42.3425 2000 0.726 0.8013 57.418 52.6567 3000 0.5301 0.5969 80.0941 72.3337 4000 0.422 0.4808 101.8031 91.132 5000 0.3527 0.4051 122.8389 109.3111 6000 0.3042 0.3514 143.3645 127.019 7000 0.2682 0.3113 163.4829 144.3502 8000 0.2403 0.28 183.2643 161.3696 9000 0.218 0.2548 202.7597 178.1243 10000 0.1998 0.2341 222.0075 194.65 15000 0.1423 0.1683 315.397 274.6469 16500 0.1313 0.1556 342.6885 297.9771 18000 0.122 0.1449 369.7128 321.0614 19500 0.114 0.1356 <	800	1.4195	1.4565	27.9177	27.1086
1500 0.9024 0.9784 45.5415 42.3425 2000 0.726 0.8013 57.418 52.6567 3000 0.5301 0.5969 80.0941 72.3337 4000 0.422 0.4808 101.8031 91.132 5000 0.3527 0.4051 122.8389 109.3111 6000 0.3042 0.3514 143.3645 127.019 7000 0.2682 0.3113 163.4829 144.3502 8000 0.2403 0.28 183.2643 161.3696 9000 0.218 0.2548 202.7597 178.1243 10000 0.1998 0.2341 222.0075 194.65 15000 0.1423 0.1683 315.397 274.6469 16500 0.1313 0.1556 342.6885 297.9771 18000 0.122 0.1449 369.7128 321.0614 19500 0.114 0.1356 396.4967 343.9247 21000 0.107 0.1275	900	1.3076	1.3587	30.5334	29.3524
2000 0.726 0.8013 57.418 52.6567 3000 0.5301 0.5969 80.0941 72.3337 4000 0.422 0.4808 101.8031 91.132 5000 0.3527 0.4051 122.8389 109.3111 6000 0.3042 0.3514 143.3645 127.019 7000 0.2682 0.3113 163.4829 144.3502 8000 0.2403 0.28 183.2643 161.3696 9000 0.218 0.2548 202.7597 178.1243 10000 0.1998 0.2341 222.0075 194.65 15000 0.1423 0.1683 315.397 274.6469 16500 0.1313 0.1556 342.6885 297.9771 18000 0.122 0.1449 369.7128 321.0614 19500 0.114 0.1356 396.4967 343.9247 21000 0.107 0.1275 423.0624 366.5873 22500 0.1009 0.1204	1000	1.2135	1.274	33.1107	31.5729
3000 0.5301 0.5969 80.0941 72.3337 4000 0.422 0.4808 101.8031 91.132 5000 0.3527 0.4051 122.8389 109.3111 6000 0.3042 0.3514 143.3645 127.019 7000 0.2682 0.3113 163.4829 144.3502 8000 0.2403 0.28 183.2643 161.3696 9000 0.218 0.2548 202.7597 178.1243 10000 0.1998 0.2341 222.0075 194.65 15000 0.1423 0.1683 315.397 274.6469 16500 0.1313 0.1556 342.6885 297.9771 18000 0.122 0.1449 369.7128 321.0614 19500 0.114 0.1356 396.4967 343.9247 21000 0.107 0.1275 423.0624 366.5873 22500 0.1009 0.1204 449.4284 389.0667 24000 0.0955 0.1141 <td>1500</td> <td>0.9024</td> <td>0.9784</td> <td>45.5415</td> <td>42.3425</td>	1500	0.9024	0.9784	45.5415	42.3425
4000 0.422 0.4808 101.8031 91.132 5000 0.3527 0.4051 122.8389 109.3111 6000 0.3042 0.3514 143.3645 127.019 7000 0.2682 0.3113 163.4829 144.3502 8000 0.2403 0.28 183.2643 161.3696 9000 0.218 0.2548 202.7597 178.1243 10000 0.1998 0.2341 222.0075 194.65 15000 0.1423 0.1683 315.397 274.6469 16500 0.1313 0.1556 342.6885 297.9771 18000 0.122 0.1449 369.7128 321.0614 19500 0.114 0.1356 396.4967 343.9247 21000 0.107 0.1275 423.0624 366.5873 22500 0.1009 0.1204 449.4284 389.0667 24000 0.0955 0.1141 475.6107 411.3776 2500 0.0907 0.1084 </td <td></td> <td>0.726</td> <td>0.8013</td> <td>57.418</td> <td>52.6567</td>		0.726	0.8013	57.418	52.6567
5000 0.3527 0.4051 122.8389 109.3111 6000 0.3042 0.3514 143.3645 127.019 7000 0.2682 0.3113 163.4829 144.3502 8000 0.2403 0.28 183.2643 161.3696 9000 0.218 0.2548 202.7597 178.1243 10000 0.1998 0.2341 222.0075 194.65 15000 0.1423 0.1683 315.397 274.6469 16500 0.1313 0.1556 342.6885 297.9771 18000 0.122 0.1449 369.7128 321.0614 19500 0.114 0.1356 396.4967 343.9247 21000 0.107 0.1275 423.0624 366.5873 22500 0.1009 0.1204 449.4284 389.0667 24000 0.0955 0.1141 475.6107 411.3776 25500 0.0907 0.1084 501.6231 433.5327 27000 0.0864 0.1	3000	0.5301	0.5969	80.0941	72.3337
6000 0.3042 0.3514 143.3645 127.019 7000 0.2682 0.3113 163.4829 144.3502 8000 0.2403 0.28 183.2643 161.3696 9000 0.218 0.2548 202.7597 178.1243 10000 0.1998 0.2341 222.0075 194.65 15000 0.1423 0.1683 315.397 274.6469 16500 0.1313 0.1556 342.6885 297.9771 18000 0.122 0.1449 369.7128 321.0614 19500 0.114 0.1356 396.4967 343.9247 21000 0.107 0.1275 423.0624 366.5873 22500 0.1009 0.1204 449.4284 389.0667 24000 0.0955 0.1141 475.6107 411.3776 25500 0.0907 0.1084 501.6231 433.5327 27000 0.0864 0.1034 527.4774 455.5431 28500 0.0825 0.	4000	0.422	0.4808	101.8031	91.132
7000 0.2682 0.3113 163.4829 144.3502 8000 0.2403 0.28 183.2643 161.3696 9000 0.218 0.2548 202.7597 178.1243 10000 0.1998 0.2341 222.0075 194.65 15000 0.1423 0.1683 315.397 274.6469 16500 0.1313 0.1556 342.6885 297.9771 18000 0.122 0.1449 369.7128 321.0614 19500 0.114 0.1356 396.4967 343.9247 21000 0.107 0.1275 423.0624 366.5873 22500 0.1009 0.1204 449.4284 389.0667 24000 0.0955 0.1141 475.6107 411.3776 25500 0.0907 0.1084 501.6231 433.5327 27000 0.0864 0.1034 527.4774 455.5431 28500 0.0825 0.0988 553.1842 477.4184	5000	0.3527	0.4051	122.8389	109.3111
8000 0.2403 0.28 183.2643 161.3696 9000 0.218 0.2548 202.7597 178.1243 10000 0.1998 0.2341 222.0075 194.65 15000 0.1423 0.1683 315.397 274.6469 16500 0.1313 0.1556 342.6885 297.9771 18000 0.122 0.1449 369.7128 321.0614 19500 0.114 0.1356 396.4967 343.9247 21000 0.107 0.1275 423.0624 366.5873 22500 0.1009 0.1204 449.4284 389.0667 24000 0.0955 0.1141 475.6107 411.3776 25500 0.0907 0.1084 501.6231 433.5327 27000 0.0864 0.1034 527.4774 455.5431 28500 0.0825 0.0988 553.1842 477.4184	6000	0.3042	0.3514	143.3645	127.019
9000 0.218 0.2548 202.7597 178.1243 10000 0.1998 0.2341 222.0075 194.65 15000 0.1423 0.1683 315.397 274.6469 16500 0.1313 0.1556 342.6885 297.9771 18000 0.122 0.1449 369.7128 321.0614 19500 0.114 0.1356 396.4967 343.9247 21000 0.107 0.1275 423.0624 366.5873 22500 0.1009 0.1204 449.4284 389.0667 24000 0.0955 0.1141 475.6107 411.3776 25500 0.0907 0.1084 501.6231 433.5327 27000 0.0864 0.1034 527.4774 455.5431 28500 0.0825 0.0988 553.1842 477.4184		0.2682			144.3502
10000 0.1998 0.2341 222.0075 194.65 15000 0.1423 0.1683 315.397 274.6469 16500 0.1313 0.1556 342.6885 297.9771 18000 0.122 0.1449 369.7128 321.0614 19500 0.114 0.1356 396.4967 343.9247 21000 0.107 0.1275 423.0624 366.5873 22500 0.1009 0.1204 449.4284 389.0667 24000 0.0955 0.1141 475.6107 411.3776 25500 0.0907 0.1084 501.6231 433.5327 27000 0.0864 0.1034 527.4774 455.5431 28500 0.0825 0.0988 553.1842 477.4184	8000	0.2403	0.28	183.2643	161.3696
15000 0.1423 0.1683 315.397 274.6469 16500 0.1313 0.1556 342.6885 297.9771 18000 0.122 0.1449 369.7128 321.0614 19500 0.114 0.1356 396.4967 343.9247 21000 0.107 0.1275 423.0624 366.5873 22500 0.1009 0.1204 449.4284 389.0667 24000 0.0955 0.1141 475.6107 411.3776 25500 0.0907 0.1084 501.6231 433.5327 27000 0.0864 0.1034 527.4774 455.5431 28500 0.0825 0.0988 553.1842 477.4184	9000	0.218	0.2548	202.7597	178.1243
16500 0.1313 0.1556 342.6885 297.9771 18000 0.122 0.1449 369.7128 321.0614 19500 0.114 0.1356 396.4967 343.9247 21000 0.107 0.1275 423.0624 366.5873 22500 0.1009 0.1204 449.4284 389.0667 24000 0.0955 0.1141 475.6107 411.3776 25500 0.0907 0.1084 501.6231 433.5327 27000 0.0864 0.1034 527.4774 455.5431 28500 0.0825 0.0988 553.1842 477.4184	10000	0.1998	0.2341	222.0075	194.65
18000 0.122 0.1449 369.7128 321.0614 19500 0.114 0.1356 396.4967 343.9247 21000 0.107 0.1275 423.0624 366.5873 22500 0.1009 0.1204 449.4284 389.0667 24000 0.0955 0.1141 475.6107 411.3776 25500 0.0907 0.1084 501.6231 433.5327 27000 0.0864 0.1034 527.4774 455.5431 28500 0.0825 0.0988 553.1842 477.4184	15000		0.1683	315.397	274.6469
19500 0.114 0.1356 396.4967 343.9247 21000 0.107 0.1275 423.0624 366.5873 22500 0.1009 0.1204 449.4284 389.0667 24000 0.0955 0.1141 475.6107 411.3776 25500 0.0907 0.1084 501.6231 433.5327 27000 0.0864 0.1034 527.4774 455.5431 28500 0.0825 0.0988 553.1842 477.4184					297.9771
21000 0.107 0.1275 423.0624 366.5873 22500 0.1009 0.1204 449.4284 389.0667 24000 0.0955 0.1141 475.6107 411.3776 25500 0.0907 0.1084 501.6231 433.5327 27000 0.0864 0.1034 527.4774 455.5431 28500 0.0825 0.0988 553.1842 477.4184	18000	0.122	0.1449	369.7128	321.0614
22500 0.1009 0.1204 449.4284 389.0667 24000 0.0955 0.1141 475.6107 411.3776 25500 0.0907 0.1084 501.6231 433.5327 27000 0.0864 0.1034 527.4774 455.5431 28500 0.0825 0.0988 553.1842 477.4184	19500	0.114		396.4967	343.9247
24000 0.0955 0.1141 475.6107 411.3776 25500 0.0907 0.1084 501.6231 433.5327 27000 0.0864 0.1034 527.4774 455.5431 28500 0.0825 0.0988 553.1842 477.4184			0.1275		
25500 0.0907 0.1084 501.6231 433.5327 27000 0.0864 0.1034 527.4774 455.5431 28500 0.0825 0.0988 553.1842 477.4184	22500	0.1009	0.1204	449.4284	389.0667
27000 0.0864 0.1034 527.4774 455.5431 28500 0.0825 0.0988 553.1842 477.4184	24000	0.0955	0.1141	475.6107	411.3776
28500 0.0825 0.0988 553.1842 477.4184					
30000 0.0789 0.0946 578.7527 499.1671					
	30000	0.0789	0.0946	578.7527	499.1671

RESULTS AND DISCUSSION


The SPs and IMFPs of zirconium oxide, silicon dioxide, and zirconium silicates have been

determined by using the ELFs obtained from quantitative analysis of REELS spectra. These ELFs were already obtained in the past by Tahir et.al. and explained in detail in Ref.[15]. The ELFs of ZrO₂, SiO₂, and Zr-silicates in Ref. [15] have been compared with experimental optical data and the method was validitated. Further, the method was successfully employed to obtain the ELFs of ultrathin dielectrics, semiconductors, polymers, metals, and transparent oxide films [14-25].

Figure 1 shows the ELFs of $(ZrO_2)_x(SiO_2)_{1-x}$ (x=1, 0.75, 0.5, 0.25, 0) from Refs. 15. These ELFs were determined from quantitative analysis of REELS data with primary energies of 0.5, 1.0, 1.5, and 2.0 keV. We now use the ELFs (Fig. 1) from Ref. [15] for calculation of the SPs and the IMFPs based on equation (2) and (3), respectively. Band gap values are indicated by the flat line in the low loss energy region of the ELFs in Fig. 1. The band gap values are 5.30, 5.35, 5.55, 5.95, and 9.0 eV for ZrO_2 , $(ZrO_2)_{0.75}(SiO_2)_{0.25}$, $(ZrO_2)_{0.5}(SiO_2)_{0.5}$, (ZrO₂)_{0.25}(SiO₂)_{0.75}, and (SiO₂), respectively. The detail about band gap of Zr-silicates can be found elsewhere [13,15]. For ZrO₂, the main plasmon peaks appear around 15, 26, and 42 eV. The intensity of these plasmon peaks change as the contents of ZrO₂ changed in Zr-silicates. As can be seen in the Fig. 1, the plasmon peaks at 15 eV and 42 eV decreases, while the plasmon peak at 26 eV increases with decreasing ZrO₂ contents in Zr-silicates.


Figure 2 shows the SP and the IMFP of electron in ZrO₂ and SiO₂ for energies from 100 eV to 30 keV. In Fig. 2, we compare our results for ZrO₂ and SiO₂ to the SPs determined from the nonrelativistic Bethe equation for solid [9] and to the IMFPs determined using Tanuma Powell Penn (TPP-2M) formula. We also compare our IMFP results for SiO₂ with Ashley et. al. [30] which incorporates the exchange correction in their calculation but unfortunately there is no reference data for ZrO2. The SP values for SiO2 show good agreement with the predictions of nonrelativistic Bethe-theory; however, our SP for ZrO2 is about 10% lower. The nonrelativistic Bethe-theory obtains the SPs without considering the exchange correction and gives accurate value at energies higher than 10 keV. The TPP-2M results for IMFP without exchange correction also shown in Fig. 2 for comparison. The IMFP values for SiO₂ show good agreement with TPP-2M and Ashley, while for ZrO2 our IMFP values are about 25% larger than those obtained from TPP-2M. The calculation of IMFP by using TPP-2M ignored the effect of surface elastic scattering and interference between surface and bulk excitation [9,15].

The ELFs used in this study are obtained from the experimental reflection electron energy loss spectroscopy (REELS) spectra which includes all effects of interactions between incident electron and electron in matter [15].

Fig. 2. Comparison of stopping power (SP) and inelastic mean free path (IMFP) of SiO_2 and ZrO_2 obtained in this study (line) with available theoretical data. The SP is compared with the results of nonrelativistic Bethe equation (symbol (\square)) and the IMFP is compared with the results of TPP-2M (symbol (O)) [9]. For SiO_2 the IMFP from Ashley *et. al.* (symbol (Δ)) was included [30].

Figure 3 shows the SP and IMFP values for Zr-silicates for various electrons energies. For high contents of ZrO_2 (x=50% and x=75%) in Zr-silicates, the SP and IMFP values are similar to those of ZrO₂; however, or a low content of ZrO₂ (x=25%) in Zr-silicates, they are similar to those of SiO₂. As can be seen in Table 1 and Fig. 3, the value of SP and IMFP calculated in this study for ZrO₂ and SiO₂ are similar. The similarity of those values is due to the similarity of the universal inelastic electron cross sections for the oxide materials [27]. The SP decreases while the IMFP increases with increasing electron energy. For estimating SP and IMFP, based on the simple Bethe and TPP-2M nonrelativistic formula, respectively, we need material parameters such as bulk density, number of valence electrons per molecule, mean excitation energy, and energy band gap values. For alloys, some of these parameters are difficult to directly find from the handbooks. However, even in such a case, equations 2 and 3 enable us to easily calculate the SPs and IMFPs of Zr-silicates from the quantitative analysis of REELS spectra.

Fig. 3. The stopping power (SP) and the inelastic mean free path (IMFP) of $(ZrO_2)_x(SiO_2)_{1-x}$ (x=0, 0.25, 0.50, 0.75, and 1.0) in this study as calculated by using the equation (2) and (3) from ELF determined from quantitative analysis of REELS spectra.

CONCLUSION

The SPs and IMFPs of Zr-silicates have been obtained for electron energies from 100 eV to 30 keV by using ELF from the quantitative analysis of REELS spectra in the modified Born–Ochkur equations. The values of SP and IMFP indicate that the ZrO₂ has a strong effect on the electronic properties of Zr-silicates for ZrO₂ contents of 50% and 75% in the silicates. However, for the ZrO₂ content of 25%, the SiO₂ has a strong effect on electronic properties of Zr-silicates. In summary, we have demonstrated that the applied procedure for using the ELF obtained from quantitative analysis of REELS spectra provides us with a straightforward means to determine the SPs and IMFPs of alloys for electron energies from 100 eV to 30 keV.

REFERENCES

- K. Park, S. Yang and K. Ho, J. Nucl. Mater. 420 (2012) 39.
- K. Une, I. Takagi, K. Sawada, H. Watanabe, K. Sakamoto and M. Aomi, J. Nucl. Mater. 420 (2012) 445.
- 3. F. Lu, J. Wang, M. Lang, M. Toulemonde, F. Namavar, C. Trautmann, J. Zhang, R. C. Ewing and J. Lian, J. Phys. Chem. **14** (2012) 12295.

- 4. P.A. Raynaud, D.A. Koss and A.T. Motta, J. Nucl. Mater. **420** (2012) 69.
- T. Yang, X. Huang, Y. Gao, C. Wang, Y. Zhang, J. Xue, S. Yan and Y. Wang, J. Nucl. Mater. 420 (2012) 430.
- M. Behar, C.D. Denton, R.C. Fadanelli, I. Abril,
 E.D. Cantero, R.G. Molina and L.C.C.
 Nagamine, Eur. Phys. J. D 59 (2010) 209.
- 7. Z. Tan, Y. Xia, M. Zhao, X. Liu, F. Li, B. Huang and Y. Ji, Nucl. Instrum. Methods Phys. Res. B **222** (2004) 27.
- Z. Tan, Y. Xia, M. Zhao and X. Liu, Nucl. Instrum. Methods Phys. Res. B **266** (2008) 1938.
- Z. Tan, Y. Xia, X. Liu, M. Zhao and L. Zhang, Appl. Radiat. Isot. 67 (2009) 625.
- 10. S. Tanuma, C.J. Powell and D.R. Penn, Surf. Interface Anal. **37** (2005) 978.
- 11. A. Jablonski, S. Tanuma and C.J. Powell, Surf. Interface Anal. **38** (2006) 76.
- 12. T. Nagatomi and K. Goto, Phys. Rev. B **75** (2007) 235.
- 13. D. Tahir, E.K. Lee, S.K. Oh, T.T. Tham, H.J. Kang, H. Jin, S. Heo, J.C. Park, J.G. Chung and J.C. Lee, Appl. Phys. Lett. **94** (2009) 212902.
- 14. Hajati, O. Romanyuk, J. Zemek and S. Tougaard, Phys. Rev. B 77 (2008) 1.
- D. Tahir, E.K. Lee, S.K. Oh, H.J. Kang, S. Heo, J.G. Chung, J.C. Lee and S. Tougaard, J. Appl. Phys. 106 (2009) 084108.
- D. Tahir, E.K. Lee, E.H. Choi, S.K. Oh, H.J. Kang, S. Heo, J.G. Chung, J.C. Lee and S. Tougaard, J. Phys. D: Appl. Phys. 43 (2010) 255301.
- O. Romanyuk, P. Jiricek, J. Zemek, S. Tougaard and T. Paskova, J. Appl. Phys. 110 (2011) 043507.
- 18. D. Tahir, H.J. Kang and S. Tougaard, ITB J. Sci. **43A** (2011) 199.
- 19. D. Tahir, S.D.A. Ilyas and H.J. Kang, Makara Sains **15** (2011) 193.
- D. Tahir, Y.J. Cho, S.K. Oh, H.J. Kang, H. Jin,
 S. Heo, J.G. Park, J.C. Lee and S. Tougaard,
 Surf. Interface Anal. 42 (2010) 1566.
- 21. D. Tahir, E.K. Lee, S.K. Oh, H.J. Kang, E.H. Lee, J.G. Chung, J.C. Lee and S. Tougaard, Surf. Interface Anal. **42** (2010) 906.
- 22. D. Tahir and S. Tougaard, J. Appl. Phys. **111** (2012) 054101.

- 23. D. Tahir and S. Tougaard, J. Phys.: Condens. Matter **24** (2012) 175002.
- 24. Y.S. Denny, H.C. Shin, S. Seo, S.K. Oh, H.J. Kang, D. Tahir, S. Heo, J.G. Chung, J.C. Lee, and S. Tougaard, J. Electron. Spectrosc. Relat. Phenom **185** (2012) 18.
- 25. H.C. Shin, D. Tahir, S. Seo, Y.R. Denny, S.K. Oh, H.J. Kang, S. Heo, J.G. Chung, J.C. Lee and S. Tougaard, Surf. Interface Anal. **44** (2012) 623
- 26. S. Tougaard and I. Chorkendorff, Phys. Rev. B **35** (1987) 6570.

- 27. F. Yubero and S. Tougaard, Phys. Rev. B **46** (1992) 2486.
- 28. F. Yubero, J.M. Sanz, B. Ramskov and S. Tougaard, Phys. Rev. B **53** (1996) 9719.
- 29. S. Tougaard, F. Yubero, 2008 QUEELS-ε(k,ω)-REELS: Software Package for Quantitative Analysis of Electron Energy Loss Spectra; Dielectric Function Determined by Reflection Electron Energy Loss Spectroscopy. Version 3.02. http://www.quases.com
- 30. Ashley and Anderson, J. Electron Spectrosc. **24** (1981) 127.

105