
 

730 

 

 

Proceedings of the 7th International Conference on Asian and Pacific Coasts  

(APAC 2013) Bali, Indonesia, September 24-26, 2013 

 

 

NUMERICAL SIMULATION OF WAVE PROPAGATION  

BY MODIFIED MILD-SLOPE EQUATION 

 

H. C. Wang1 and Z. P. Zhou 1 

 

 

ABSTRACT: Variational principle is applied to derive a kind of modified mild-slope equation, which considers the first 

order derivative square term and the second order curvature effect of the topogr-aphy, this equation has higher precision 

in simulating wave propagation in the rapid changing sea-bed than original modified mild-slope equation. The 

capability of this model is validated by labor-atory experiment data; the results show that modified mild-slope equation 

can simulate wave prop-agation effectively in large-scale water area. 
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INTRODUCTION 

During the propagation, a series of complex 

phenomena named as wave transformation, such as 

shoaling, reflection, diffraction, energy dissipation 

caused by bottom friction and wave breaking, would 

happen as the result of the influence by complex 

topography, obstacles and currents. It is necessary and 

crucial for us to get an accuracy wave field after such 

transformation mentioned above take place. 

Before 1970s, the scientific matter of wave 

propagation was divided into two parts, reflection and 

diffraction. Berkhoff(1972) developed a type of mild-

slope equation, MSE for short, which considered both 

the reflection and diffraction problem. It could be 

simplified as shallow water equation when kh<<1, and 

could derive to Helmholtz equation when kh>>1 or kh is 

a constant. MSW reduced a 3D problem on potential 

wave theory to 2D one basing on the assumption that the 

slope of bottom was mild (    <<1), and that simplified 

the simulation. Booij(1983) discussed the accuracy 

performance of MSE on different slopes through a 

comparison between the result of them and 3D model。 

He pressed out that the MSE would have a satisfied 

precision if the bottom slide was less than 1/3. 

The wave transformation could be usually found 

surround barrier on sandy coast if the cross seabed 

profile become steep, especially when the topography 

change was remarkable. Under that condition, the 

seafloor curvature (≈ 2h ) and the second order term of 

bottom slope ( 2( )h ) would affect the wave propagation, 

and such effects were ignored in the Berkhoff equation. 

Kirby(1986a, 1986b) defined the depth as slowly varying 

topography, which satisfied the assumption of MSE, and 

complex fluctuation one, which, accompanying with 

seafloor boundary condition, lead a series of enhanced 

MSE on time, and get the wave propagation equation on 

steep slope. Massel(1993) applied Galekin’s method to 

setup governing equation while described the potential 

function as the sum of orthonormal function component 

( , , )nZ x y z  that depends on depth, and he get the 

expanded MSE that picture the wave transformation 

after a series of complicated derivation as below: 
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where the terms included in third parentheses considers 

the square of bottom slope and second order derivative 

of that. Chamberlain(1995) applied the variational 

principle and derived a type of MSE which consider the 

square and second order derivative of bottom slope. The 

modified MSE can be written as: 
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where K=2kh. Basing on of modified MSE established 

by Chamberlain, Porter(1995) took account of the 

continuity of mass flow on incontinuous submarine 

topography and improved the calculation accuracy after 

a further extend. 

Hong et al(2009). derived a class of mathematical 

wave propagation model, which was based on the 
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nonlinear interaction between the surface gravity wave 

and long-wave, from inviscid and irrational fluid 

dynamics equations. This model cab be adequate for the 

wave propagation from deep water to shallow water 

accompanying with long-wave flow field and water level 

changes. The Control equation contains energy input, 

energy coefficient of friction and wave breaking loss , 

and the factor of local underwater topography. The 

terrain factor that describes the model submarine 

topography can be expressed as: 

 

F( , , , ) ch (h ) / chx y z t k z kh  , z- cz  , h ch           
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Under some simplified conditions, Hong et al. ignore 

the last term of (7) when z 0  , and derived the 

expression of J as below, in which R1, R2 have a 

relationship with kh : 
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More scholars , such as Suh et al.(1997), Tsay et 

al.(1996),Zhang L et al.(1996),Lee et al.(2003) and Kyung et 

al.(2001), considered the more steeply type when 

improving and expanding the mild slope equation, and 

more and more analysis and numerical calculation of 

MSE on the complex terrain were done. The results 

show that, after considering the square of the first 

derivative of the water depth and the second-order 

derivative terms in MSE, the calculation accuracy of the 

wave field in complex terrain and less steep terrain (such 

as submarine corrugated terrain, Booij laboratory slope 

terrain, etc.) have a demonstrable improvement. 

In order to better study the accuracy and numerical 

simulation of these models in complex terrain validity, 

Kyung (2003) held a special shallows terrain model test, 

of which the shallows depth of the value of the second 

derivative 2h  is 3.55 and the maximum value of the 

square of the bottom slope 2( )h  is 0.64. The test 

measured the shallows near a number of different cross-

profile of the wave height and provides a more detailed 

reference data for the numerical simulation study. 

This paper, applying variational principle to the basic 

hydrodynamics equations, deduces an extended mild 

slope equation consider improvements in complex 

terrain. The potential function along the depth 

distribution is a function related to the unknown wave 

front. Applying the Taylor expansion to hyperbolic 

functions with free surface height（）, omitting the 

higher order terms above O(3), and using of the 

variational principle, a type of MSE containing the 

higher order terms of bottom slope and curvature items 

of that, which considers wave refraction and diffraction, 

is derived. The coefficients describe the sudden change 

of terrain 2( )h  and 2h in the model are only related 

with water depth, and thus the calculation is simplified 

and convenient. Due to the different methods of 

derivation and simplification used in the derivation, the 

model mentioned in this paper is different from the 

previous results of expressions. Exported equation, 

omitting bottom slope higher order terms, would be 

same with ones that deduced by Berkhoff linear 

assumption the model mentioned in this paper is a 

modified one of MSE. 

 

THE DERIVATION OF EQUATIONS 

In 1967, Luke extended variational method to the 

free surface of the fluid motion, and later many scholars 

applied variational principle method to study wave 

problem. To two-dimensional wave problems, wave 

energy density function can be considered as following: 
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  is a potential function,   is a free surface height 

function and h  is water depth. Assuming: 
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Where ( ) 1f    and k is an eigenvalue. Omitting   

in (eq.11), the distribution of potential function is same 

with that under linear condition. The eigenvalue k 

represents wave number. 

Substituting (eq.10) and (eq.11) into (eq.9) and 

taking into account of the following relationship: 
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After complex calculations, following are obtained: 
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Coefficient of every term in the last-written contains 

a free-surface parameter . In order to derive a linear 

mild slope equation, applying Taylor expansion on 

hyperbolic functions: 
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Substituting above to (eq.16) and omitting three-

order above of   and  , the simplified one is  
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Here th( )kh  . According to the following 

variational equation: 
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In the last-write, F represents   or , eD  means the 

energy loss caused by bottom friction. Applying 

variational basing on   and , the following is deduced: 
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The following expressions are obtained after 

elimination of   in eq.19 and eq.20: 
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below: 
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Assuming 2H
g

FF
k CC

  , 1 HF F  , eq.22 could be 

written as : 

 
2( ) 0g gCC k CC F                                          (25) 

 

The exported eq.25 is the Modified Mild-Slope 

Equation (MMSE as abbreviation), which considers 

complex terrain. Omitting the high order term of 

topographical change HF , this equation has a same form 

of MSE. In the derivation above, Taylor expansion is 

used to the hyperbolic function with free surface height

（） , and thus the higher-order terms of the terrain 

parameters is improved comparing with Hong et al.  

 

NUMERICAL CALCULATION OF MMSE 

To solve eq.25 assume that: 
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where t t and it represents slowly varying time scales 

of the velocity potential amplitude changes. Substituting 

above two equations to eq.25 and considering 2
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following deduction can be got: 
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Omitting the term of 2  and changing t  to t , the 

equation above would turn to the following parabolic 

equation according to the time. So the time variable can 

be treated as iteration parameter and thus we can get: 
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 in Eq.26, which accompanies with appropriate 
boundary conditions, can be solved numerically. 

 
HYDRAULIC MODEL VALIDATION 

To verify wave transformation on the steep slope, a 

hydraulic model test was held by Kyung in the Coastal 

Engineering Laboratory of South Korea National 

University. The test basin size was 23m by 11m by 1m 

(length by breadth by depth). Test topographic contained 

a circular shallows placed on frying terrain, as shown in 

Figure 1. Waves formed from the left boundary (X =-

6m), and the right downstream boundary (X = 10.75m) 

was treated as absorbing boundary.  The distance of 

center Round Shoal to wave boundary was 6m, and the 

shallows radius R was 0.45m. The depth of beach face 

away from the shallows center is: 

 

2

0 [1 ( ) ]
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h h b
R
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where h0 is the depth on flat, and h0= 0.3m. The depth 
at shallow center b=0.18m. Wave height 

measurements were held at five lateral cross-sections 
(see section X0 to X4) and a centerline cross-section 
(see section Y0).  

Tests were under regular wave condition. The 

incident height was 3cm and three wave period were 

1.259s, 0.791s and 0.636s, corresponding k0h0 = 1, 2, 3. 
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k0 was deep water wave number and h0 was the depth of 

the water. 

There is square term in the shallow depth function. 

The second-order partial derivative of beach depth 2h  

is a constant. 2 ./ 554 3b R  . The value of the square of 

first derivative of depth 2( )h  is 2 2 2 2(4 / )( / )b R r R , which 

equals 0 at r=0 and 0.64 at r=R. Eq.25 can be written in 

the following form: 

 
2 2

2 1 2

2

( )
( ) (1 ) 0g g

g

F h F h
CC k CC

k CC
 

  
                 (28) 

 

To analyze the impact of 2h and 2( )h  in the 

MMSE, examination of the relationships of 
2

1 1 / gM F k CC   changes in the and with depth and that 

of 2

2 2 / gM F k CC   is available. Fig. 2 shows the 

change of M1 and M2 relative to kh/ when T = 1.259s. 

As can be seen from the figure, M1 and M2 close to 0 at 

larger relative depth, which the impact of 2h  and 2( )h  

are small. 

Under the condition of smaller relative depth 

(kh/<0.1), M2 close to 0, which the impact of 2( )h  is 

less, and M1 close to -0.167, which 2h  cannot be 

ignored. In the case of medium depth, M1 and M2 are 

expressed as the impossibility ignored, and the value of 

M1 is between -0.167 to 0.047, while M2 is between -

0.043 to 0.000. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Model layout and section location 

 

 

 

 

 

 

 

 

 

Fig. 2  M1、M2- kh curve 

 

MMSE model was applied to the numerical 

calculation of wave propagation on Kyung terrain. Space 

step in the calculation is 0.025m, and time step is 

0.002s.The three calculated wave period is 1.259s, 

0.791s and 0.636s. Wave height contour was shown in 

Figure 3. In Figure the shoal border is presented in the 

form of thick dashed line, the shallow center coordinates 

is (0.0m, 0.0m), and the radius of it is 0.45m. 

It is shown from the figure that wave energy 

concentration on shoals or after the shallows, the 

refraction and diffraction on both sides of the shoal, and 

the wave reflection on the shallows can be clearly 

performed in the numerical simulation. It is also seen 

that wave focal point cycle decreases with wave moves 

downstream when the wave period decreases. The 

possible reason of that may be due to the wave refraction 

weakened in the shallows when the wave period 

decreases. 

Figure 4 shows the wave height result comparison on 

shallows centerline cross section (Figure 1 Y0) among 

the MMSE mode, the traditional mode and the measured 

data. Tests were held according to three different periods. 

MMSE mode and MSE of FIG mode calculation results 

are respectively represented by a solid line and the 

dotted lines while solid circles represent experimental 

results. 

The figures tell that the calculation results of MMSE 

mode have fairly good agreement with the experimental 

results; especially the maximum wave height and its 

position near the shallows meet the experimental results 

quite good, while the MSE mode is a serious deviation 

from the test results. From Figure 4 (a), a downstream 

drift of the maximum wave height position can be found 

in MSE mode calculation when T = 1.259s. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 wave height contour 
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Fig. 4 Comparison of simulated and tested results at 

center section(Y0) 

 

Besides, Kyung terrain lateral cross-section of the 

wave height calculated results were compared. Figures 5 

to 7 are comparison of the calculated values with the 

experimental results at five sections (see Figure 1 in X0, 

X1, X2, X3, and X4) when the wave period is 1.259s, 

0.791s, and 0.636s. It can be seen from the figure that 

wave height of each section of the MMSE model agree 

well with the experimental results while that of MSE 

model shows obvious deviation with data, especially in 

the long-period wave bottom slope effect. Under such 

condition result of MSE mode is too large at the location 

where wave energy centralized, and it is too small in the 

wave divergence area. Waves lateral height varied little 

at the beginning of the shallows (X =-R), and it varies 

strongly when spread to the shallows, which influence 

extends directly to the downstream of shallows. 

 

 
(a) sectionX0（X=-R） 

 

 
(b) sectionX1（X=0） 

 
(c) sectionX2（X=R） 

 
(d) sectionX3（X=2R） 

 
(e) sectionX4（X=3R） 

Fig. 5 Comparison of simulated and tested results at side 

section(T=1.259s) 

 

 
(a) sectionX0（X=-R） 

 
(b) sectionX1（X=0） 

 
(c) sectionX2（X=R） 

 
(d) sectionX3（X=2R） 
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(e) sectionX4（X=3R） 

Fig.6 Comparison of simulated and tested results at side 

section(T=0.791s) 

 

 
(a) sectionX0（X=-R） 

 
(b) sectionX1（X=0） 

 
(c) sectionX2（X=R） 

 
(d) sectionX3（X=3R） 

 

(e) sectionX4（X=3R） 

Fig. 7 Comparison of simulated and tested results at side 
section(T=0.636s) 

 

CONCLUSION 

This paper, basing on theoretical analysis from the 

basic equations of hydrodynamics, uses the variational 

principle to derive the mathematical model of 

improvements mild slope equation which describes wave 

propagation on complex terrain. The main conclusions 

are as follows: 

1) Consider the potential function along the depth 

distribution as a function of the unknown wave front, 

apply Taylor expansion to hyperbolic function with free 

surface height （）, omit the higher order terms than 

O(3), and use the variational principle to get the wave 

propagation equation  includes the slope higher order 

terms and the curvature of the bottom slope. 

2)  Verification contrast with laboratory measured 

data on Complex terrain show that, the MMSE model 

can clearly present wave energy focus on shoal or behind 

shallow, refraction and diffraction on both sides of the 

shoal, and wave reflection on the shallows. The 

calculation of wave height value on each section is in 

good agreement with the experimental results and this 

model can accurately present the maximum wave height 

and its location near the shallows. 

3) The wave height lateral variational at the 

beginning of the shallows is small. It turns to strong 

when the waves spread to the shallows, and its influence 

extends directly to the downstream. The MMSE mode 

can significantly improve the simulation accuracy. The 

improved model can get a more accuracy result of the 

wave field in complex terrain. 
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