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ABSTRACT: It has been known that the waves generated internally propagate with the energy velocity (Lee and Suh 

1998; Lee et al. 2001). Until now, this internal wave generation technique has been developed for waves without 

damping. In real sea, waves may experience energy dissipation when passing through porous media or in surf zone. In 

this study, we develop techniques of internal generation of waves with damping using the extended Boussinesq 

equations of Nwogu (1993). Using the Green's function method (Wei et al. 1999), we derive the Gaussian-shaped 

source functions. Through numerical experiments for linear and nonlinear waves, we find the source functions with 

damping generate waves accurately. 
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INTRODUCTION 

Ocean waves are really important to human, 

especially, for the activities relate to the ocean such as 

ship navigation, harbor, and seashore protection, etc. To 

understand wave effects, people conduct field survey, 

physical experiments or numerical experiments. The 

former two things take much time and cost while the 

numerical experiment requires short time and 

economical cost. 

For the tool of numerical experiment, Madsen and 

Sorensen (1992) and Nwogu (1993) derived the 

extended Boussinesq equations by adding some 

correction terms and using horizontal velocities at a 

certain level, respectively. Recently, Kim et al. (2009) 

extended the equations of Madsen and Sorensen by 

including both bottom curvature and squared bottom 

slope terms. These equations are able to simulate wave 

propagation from shallow to intermediate-depth waters.  

In the numerical experiment, the technique of internal 

generation of waves has been used with sponge layers at 

outside boundaries in order to specify offshore boundary 

conditions. It has been known that the waves generated 

internally propagate with the energy velocity (Lee and 

Suh, 1998; Lee et al., 2001). Until now, this technique 

has been developed for waves without damping. In real 

sea, wave energy may be dissipated when passing 

through porous media or propagating in surf zone.  

In this study, we develop techniques of internal 

generation of waves with mass absorption in the 

extended Boussinesq equations of Nwogu (1993). A 

source function is added to the continuity equation 

together with a damping term. Following Wei et al. 

(1999) we derive the mass source function. Using 

geometric optic approach we also get energy velocity as 

Lee and Suh (1998) and Lee et al. (2001) did for waves 

without damping. Then, we verify the developed theory 

by generating linear and nonlinear waves propagating 

over horizontal 1-dimensional domain. 

 

DERIVATION OF SOURCE FUNCTION 

The extended Boussinesq equations of Nwogu (1993) 

for waves with mass absorption may be described as 
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  (2) 

 

In Eqs. (1), and (2),   is the water surface elevation, u  

is the horizontal velocity at a certain elevation z , h  is 

the still water depth,   is the horizontal gradient 

operator and D  is the mass absorption rate (damping 

coefficient). 

Neglecting nonlinear terms and considering 

horizontally one-dimensional domain on a constant 

water depth, a linearized form of Eq. (2) yields the 

relation between velocity potential   and the surface 

elevation   as 
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where rk  and ik  are the real and imaginary parts of the 

complex wavenumber ( r ik k ik  ), respectively, 

1i   ,   is the angular frequency and 

 
2

/ / 2 /z h z h    . The potential velocity is 

determined  by the relation of u   . 

 The mass source function S  is added to the right-

hand side of the continuity equation (1). Then, we 

combine Eqs. (1) and (2) in favor of  . Integrating the 

combined equation in space and using the relation given 

in Eq. (3) we get the following equation 
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For monochromatic waves, we may have the following 

expressions for water surface elevation   and source 

function S  as 

 

  ( ) expx i t    (5) 

  ( ) expSS x i t   (6) 

 

Substituting Eqs. (5) and (6) into Eq. (4) yields an 

ordinary differential equation for S  with respect to x 
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We can get a non-homogeneous solution for Eq. (6) by 

following Wei et al. (1999). The Gaussian-shaped source 

function is defined as 

 

  S expG sE x x      (8) 

 

where E  is the amplitude of the source term,   is a 

parameter associated with the width of the source 

function and sx  is the center point of the source region. 

Introducing the Green’s function method to Eq. (6) to get 

the solution for the water surface elevation as 
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  (9) 

where 1 1/ 3   , 1I  is a parameter relating to the 

Gaussian-shaped function as 
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The target surface elevation is given by 
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The amplitude of the source function can be determined 

by equating Eq. (9) to the target surface elevation given 

in Eq. (11). From that, the mass source function is 

determined as 
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where  0 expI a i t    is the incident water surface 

elevation, eC  is the energy velocity,   is a function of 

rk h  and /i rk k . The energy velocity eC  is derived by 

applying geometric optic approach and given by 
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Without damping ( 0ik  ), eC  given in Eq. (13) is the 

same as eC  given by Lee et al. (2001). The function   

is given by 
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Using the geometric optics approach we also find the 

dispersion relation for the extended Boussinesq 

equations of Nwogu (1993) for waves with damping as 
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It should be noted that, without damping, Eq. (15) 

returns to the dispersion relation of the extended 

Bousinesq equation of Nwogu obtained by Lee et al. 

(2001). 

The ratio of the damping coefficient and the angular 

frequency can be expressed as 
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NUMERICAL EXPERIMENTS 

 

Linear Waves 

We conduct the numerical experiments to verify the 

developed theory by applying FUNWAVE 1D model to 

generate 1D linear waves over a constant water depth 

domain as shown in Fig. 1 

Eqs. (1) and (2) can be rewritten as 
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We can express Eq. (20) in a discretized form as 
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We use the Adams-Bashforth-Moulton method to 

discretize Eqs. (17) and (18) in time. First, the third-

order Adams-Bashforth predictor scheme is applied as 

 

  1 1 223 16 5
12

n n n n n

i i i i i

t
E E E   

     (23) 

  1 1 223 16 5
12

n n n n n

i i i i i

t
U U F F F  

     (24) 

 

Then, the fourth-order Adams-Moulton corrector scheme 

is applied as 
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Fig. 1 Computational domain to generate horizontally 

one-dimensional waves 
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The computation domain which covers about 14 

wavelengths includes an inner domain and two sponge 

layers at both ends of the computation domain. The 

source region is placed at the center of the domain. 

Waves with 6 second period are generated in shallow 

water ( 0.083kh  ). The grid space is chosen as 

0.05x m   which gives about 288 grid points in one 

wavelength. The time step is chosen as 0.01sect   to 

guarantee a stable solution. 

Fig. 2 shows the variation of the wave number ratio 

/i rk k  with respect to the dimensionless damping 

coefficient /D  . As the damping effect increases, the 

wave number ratio /i rk k  up to 0.9. 

 

 

 
Fig. 2 Wave number ratio /i rk k  vs. dimensionless 

damping coefficient /D   

 

 

Fig. 3 shows that, when damping is small (i.e., /D   

is smaller than 0.3 or /i rk k  is less than 0.2), the phase 

velocity which is defined in Eq. (15) is very close to the 

energy velocity with damping defined in Eq. (13). 

However, when damping becomes larger, the energy 

velocity with damping is greater than the phase velocity 

while the energy velocity without damping is smaller 

than phase velocity. In Fig. 3, 0eC  is energy velocity 

without damping. 

 

 

Fig. 3 Ratio of energy velocity to phase velocity vs. 

wave number ratio /i rk k . Line definition: solid line = 

/e pC C ; dashed line = 0 /e pC C  

 

 

Figs. 4(a), (b), (c) compare numerical solutions of the 

surface elevation against the exact solutions with values 

of damping coefficient /D   0.01, 0.1, 0.5, 

respectively. In all the cases, the numerical wave 

amplitudes are very close to the exact solutions (
exa ) 

which is defined as 

 

  expex ia k x   (27) 

 

For the case of small damping coefficient as in Fig. 4(a), 

wave amplitudes are attenuated about 20% until at the 

end of the computation domain. However, with large 

damping as in Fig. 4(c), wave amplitudes decay down to 

almost zero just after about 2 wavelengths. 

 

Cnoidal Waves 

We also generate cnoidal waves with condition as 

linear waves. The water depth is 0.6h   m, wave period 

is 6T  s and the incident wave height is 0.18H  m 

which gives Ursell number of rU   2.18.  

Fig. 5(a) shows the surface elevation with no 

damping which has flat trough and steep crest. The 

numerical solution is close to the exact. Fig. 5(b) shows 

the surface elevation with damping ( 0.05D  ) which 

is attenuating from the wave generation point. 

 

(a) 

 
 

(b) 
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(c) 

 

Fig. 4 Normalized water surface elevations and 

amplitudes of monochromatic waves with damping. Line 

definition: solid line = numerical solution of water 

surface elevation; circle = numerical solution of wave 

amplitude; dashed line = exact solution of wave 

amplitude. (a) 0.01D  , (b) 0.1D  , (c) 0.5D   
 

(a) 

 
(b) 

 
Fig. 5 Normalized water surface of cnoidal waves. Line 

definition: solid line = numerical solution; dashed line = 

exact solution; solid vertical line = starting point of 

sponge layer. (a) 0D  , (b) 0.05D   
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