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ABSTRACT: Nonlinear wave-wave interaction behavior in deep and intermediate water depths and also on a sloping 

beach are investigated using third-order Zakharov equation which is known as a superior model to predict the evolution 

of wave group without restriction on spectra width. Transfer energy occurs between the waves components when 

resonant conditions satisfy. It has been found that nonlinear transfer of energy controls the shape of directional 

spectrum, including development of the peak and wave group evolution for wave steepness akp ≥ 0.2. The comparison 

of wave group evolutions on directional spectra with unidirectional spectra indicates that evolution of wave groups in 

deep water and at intermediate water depths are significantly affected by nonlinear interactions between directional 

components. When directional effect is considered, transformation of wave groups in deep water is much more 

pronounced at akp = 0.2. The effects of wave interaction are enhanced in relatively shallow water; however, is reduced 

on a sloping beach, which decreases the maximum wave height. 
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INTRODUCTION 

Ocean waves have a complex pattern and are random 

in amplitude, period and direction. According to Goda 

(2009) although sea waves may look random, inspection 

of wave records indicates that high waves fall into 

groups rather than emerge individually. Wave grouping 

and associated nonlinear effects play an important role 

for some coastal issues such as wave overtopping, wave 

run-up and sedimentation. However, the number of 

works dealing with nonlinear aspects of directional wave 

group transformation is still limited.  

The nonlinear interaction of gravity waves has been a 

subject of interest for many years. The interaction 

produces only a small modification to the motion in the 

second-order, which remains bounded in time. In the 

third approximation, it is possible for a transfer of energy 

to take place from three primary waves to a fourth wave, 

in such a way that the amplitude of the fourth wave 

increases linearly with time (Longuet-Higgins 1961).  

According to Shemer et al. (2001), the third-order 

Zakharov equation is generally accepted as a superior 

model for the description of the evolution of nonlinear 

water waves. This equation has been examined by some 

investigators, for instance Kit et al. (2000), Kit and 

Shemer (2002), Stiassnie and Shemer (1984, 2005), 

Kioka et al. (2005, 2011), Janssen (2003), Janssen and 

Onorato (2007), Stiassnie and Gramstad (2009). 

Unfortunately, the previous Zakharov models use a very 

narrow band and do not include the effect of 

directionality, which is possibly significant for wave-

wave interaction. In the present study, nonlinear aspects 

of directional spectra are first investigated at constant 

depths and on a sloping beach and then the 

transformation of wave groups are analyzed. The initial 

conditions for the numerical simulations are 

characterized by a Gaussian spectrum for several values 

of wave steepness and relative water depths. Wave group 

evolutions of directional spectra are compared with the 

results from unidirectional spectra to investigate the 

directional effect. 

According to Shemer et al. (2001), the initial-phase 

in the complex wave spectra is essential in determining 

the eventual shape of the surface elevation variation. To 

eliminate the effects of initial random phases, the 

comparison of wave group evolutions in the current 

study is conducted using the same initial random phases. 

To demonstrate the transformation of wave groups in 

nature, field observation data at Akabane beach were 

used. The characteristic of nonlinear spectral evolution 

propagating over the continental shelf toward the coastal 

region are investigated using the directional components 

from field observations, and are then related to the 

evolution of the amplitude. 

 

 

THEORETICAL MODELS 

 

The Third-order Zakharov Equation 

 

The third-order Zakharov integral equation which 

describes slow temporal evolution of gravity waves in 

water of infinite depth firstly was derived by Zakharov 
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(1968). In order to describe the spatial evolution of 

gravity waves in water of infinite/finite depth, Shemer et 

al. (2001) have modified the third-order Zakharov 

model, into the form 
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where B denotes the complex amplitude, * is the 

complex conjugate, δ is the Dirac δ-function, cg is the 

group velocity, ∇h is the horizontal gradient and the 

kernel T(k,k1,k2,k3) is given in Stiassnie and Shemer 

(1984) and corrected by Mase and Iwagaki (1986). This 

spatial Zakharov equation describes evolution of the 

complex amplitude B of each free wave in the spectrum 

due to four-wave interaction in mild slope (|∇h |≤ O(ε2)) 

space domain, which satisfies the near resonant 

condition: 
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where ε is a small parameter representing the magnitude 

of nonlinearity, and the wave vectors k, k1, k2, k3 and the 

frequencies ω, ω1, ω2, ω3 each satisfy the following 

dispersion relation, with h being the water depth: 
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The mode-coupled discrete Zakharov equation can be 

written as 
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The set of mode-coupled nonlinear complex ordinary 

differential equations is solved using the fourth-order 

Runge-Kutta method. When calculating the kernel in Eq. 

(1), we have introduced Stokes’ corrections to remove 

near-resonance singularities. Nevertheless, Eq. (1) is 

invalid for water of very shallow depth; the equation 

requires that the dispersion remain sufficiently strong 

(see Agnon 1993). The first-order free surface elevation 

η(x,t) is related to the quantity B and computed through 
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Wave Group Structure 

The structure of wave groups can be quantitatively 

described using a wave envelope. The wave envelopes of 

various frequency bands can be calculated using a 

Hilbert transform. If the sea surface elevation η(t) is a 

stationary random function of time, then the Hilbert 

transform ξ(t) is given by 
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where P indicates the Cauchy value. With the Hilbert 

transform ξ(t) of the function η(t), the analytic function 

is given as 
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The wave envelope A(t) can then be obtained by 
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The envelope A(t) is always symmetrical with respect to 

the t-axis, as η(t) is composed of only first-order free 

waves. Only the fundamental frequency band 0.5fp ~ 

1.5fp, which produces free waves only and does not 

include the bound waves, is considered and calculated.  

The amplitude Aave denotes the average value of the 

envelope amplitude (see Fig.1).  

 

 
 

Fig. 1 Definition of wave group structures. 
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The zero-up cross method relative to Aave is used to 

determine the wave group period Tg. The wave group 

amplitudes Agmean and Agmax denote the average and 

maximum of the envelopes, respectively. The wave 

group period Tgmean is the average value of Tg and Tgmax 

corresponds to the period of the wave group containing 

Agmax. 

 

 

NUMERICAL SIMULATIONS 

The wave conditions for the numerical simulation, 

characterized by the peak period Tp, relative water depth 

kph, wave amplitude a(ω,θ) and principal direction θ 

were defined for input in the nonlinear wave interaction 

modeling. The principal wave direction θ = 0 was used 

for all the simulations except the field data. The wave 

model requires initial condition information, describing 

the initial state of the sea. In this study, the initial sea 

state was described as a Gaussian spectrum in the form 
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where m0 is the zero-th moment of the spectrum, ω is the 

angular frequency, and σω and σθ are standard     

deviations for frequency and direction, respectively.  

By taking a finite range of frequency (ωmin,ωmax) and 

direction (θmax,θmin), the initial amplitude a(ω,θ) = 

(2S(ω,θ)dωdθ)1/2 was determined for calculating the 

complex amplitude B, which is obtained by 
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where ϕ is the random phase.  

The wave steepness akp = 0.07 ~ 0.2 (a and kp being 

the carrier wave amplitude and number) were used for 

simulation. The relative water depths, denoted by kph, in 

deep water and intermediate water depth are equal to 5.0 

and 1.0, respectively. Directional spectra for sloping 

beach cases are studied by simulated numerical 

calculation from intermediate through shallow water 

depths. For modeling the field condition, the initial 

condition is specified at Station A, and further, the 

waves propagate to Station B with distance 30Lp. The 

relative water depth on the sloping beach is 1.0 ≥ kph ≥ 

0.5, with slope calculation kph(i) = kp (26 – 13(i/z)2), 

where z is the number of segments and i = 1,2,3,….z. 

At intermediate water depth kph = 1.0, we are not 

considering the adjustment of the spectrum as the effect 

of water depth, as in the Wallops spectrum. We just 

assume that the same shape of the Gaussian spectrum is 

used in deep water and at intermediate water depth.   

Directional spectra were simulated with 1050 

components, which consisted of 50 components of 

frequency and 21 directional components. Additionally, 

refraction effects on sloping cases were calculated based 

on linear theory. The directional spectra were normalized 

by the peak of the initial directional spectrum S0(fp,θp). 

Finally, evolution of wave groups as a result of the 

directional spectrum was compared with unidirectional 

simulation, which consisted of 100 frequency 

components.  The Runge-Kutta method, which solves a       

differential equation numerically, gives the integration of 

the spatial evolution of the nonlinear waves.  

 

 

RESULTS AND DISCUSSION 

Now we present the results of the simulations as well 

as an analysis of these results. Nonlinear wave 

interaction effects on the evolutions of directional 

spectra were analyzed to investigate the transformation 

of wave group structures. Attention is paid mainly to the 

transformation of directional spectra; then the evolution 

of the wave groups due to the nonlinear wave-wave 

interaction both for directional spectra and unidirectional 

spectra are compared.  

 

Transformation of Directional Spectra 

The transformations of directional spectra as the 

effects of wave steepness akp and water depths kph are 

displayed in Figs. 2 and 3. Directional spectra 

transformation at a constant depth shows that nonlinear 

wave interaction more significant influence on the 

relative shallow water depth than in deep water as shown 

in Figs. 2 and 3 at the second row respectively. For akp = 

0.1, directional spectra shows very small evolution, 

while the evolution of directional spectra for akp = 0.2 

shows a significant transformation. By increasing the 

wave steepness, the directional spectrum in deep water 

grows near the peak until x = 100Lp, increases the energy 

which is absorbed more from higher frequencies than 

lower frequencies. Directional spreading occurs near the 

spectra peak. However in the relative shallow water 

depth, evolution of directional spectrum at x = 50Lp 

indicates that distribution energy occurs near the spectra 

peak. This energy is absorbed more from lower 

frequencies than from higher frequencies. Dispersion 

spreading reduces as the water depth reduces. On sloping 

beach, evolution of directional spectra at Station B 

indicates that the distribution of energy dominant at the 

middle range of frequency. Transfer energy occurs from 

peak frequency of the spectrum to the lower frequency 

and higher frequency. At the lower frequency, the energy 
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is received from the peak frequency and absorbed, thus 

down shifting the peak frequency. Regarding the 

influence of shoaling, the low frequency part of the 

spectrum is affected more significantly than the high 

frequency part. As the waves propagate to the coast, the 

directional spreading becomes narrow owing to the wave 

refraction effect. Energy increased at the main direction 

which is caused by waves that propagate perpendicular 

to the coast. 

 

Wave Group Evolutions 

Wave group transformations of directional spectra at 

a constant depth and on sloping beach are expressed in 

Figures 4 and 5. Wave group structures are allocated 

using a wave envelope. The envelopes are formed only 

by free waves, not including the bound waves. The 

initial variation of the free surface elevation at x = 0 can 

be compared with the surface elevation at x = 50Lp for 

kph = 1.0 and x = 100Lp for kph = 5.0. For sloping cases, 

free surface elevation at Station A as the initial condition 

can be compared with free surface elevation at Station B.  

Evolution of wave groups for akp = 0.1 shows that 

the group envelopes are almost same, which indicate that 

nonlinear effects are weak, only minor energy transfer 

occurs. By increasing the wave steepness, the shape of 

wave groups is significantly transformed. The maximum 

envelope fluctuates during evolution, reached a 

maximum and then subsided. The results were found to 

agree with Yuen and Lake (1982), that the evolution may 

be recurring or chaotic depending on the choice of 

modes.  

Wave group transformations for the case of 

unidirectional spectra are presented in Figures 6 and 7. 

Wave group envelopes express that the group shape is 

almost the same for akp = 0.1, Fig.6 illustrates only a 

slight evolution of wave groups.  At high steepness, the 

nonlinear effects are clearly pronounced and exhibit 

themselves in the evolution of the shape of wave groups, 

as shown in Fig.7. The shape of the wave groups is 

totally different. 
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Fig. 2 Directional spectra evolution for akp = 0.1 
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Fig. 3 Directional spectra evolution for akp = 0.2. 
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Fig. 4 Directional wave groups evolution for akp = 0.1. 
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Fig. 5 Directional wave groups evolution for akp = 0.2. 
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Fig. 6 Unidirectional wave groups evolution for akp = 0.1. 
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kph = 5.0 at 100Lp 

 

At Station B 

Fig. 7 Unidirectional wave groups evolution for akp = 0.2. 
 

 

Comparison of the evolution of the wave group 

structures based on directional simulation and 

unidirectional simulation is presented in Table 1. The 

values of wave groups’ structure are determined based 

on the average value of the three times simulation with 

different initial random phases; meanwhile the Agmax is 

obtained from the highest value. As shown before that 

effect of wave-wave interaction is weak for small wave 

steepness, therefore only the wave groups’ structures for 

higher wave steepness are compared. 

The maximum value of the wave groups’ amplitude 

Agmax slightly increased in deep water, accompanied by 

reduction in the wave group period (Tg). At the 

relatively shallow water, nonlinear effects are stronger, 

the average of envelope amplitude Aave and the 

maximum wave group amplitude Agmax increase as the 

spectral peak become sharp, and the Tgmax becomes 

longer for directional case. On sloping beach, the wave 

groups become stretched due to wave-wave interaction. 

Agmax decreased followed by an increase of Tgmax.  

Comparison of evolutions of wave groups on 

directional spectra with those on unidirectional spectra 

indicates that evolution of the maximum wave groups’ 

parameter in deep water and at intermediate water depth 

significantly affects nonlinear interaction in directional 

simulations.  

Table 1 Comparison of the evolution of wave groups 

structures for directional spectra with that for 

unidirectional spectra. 

 
 Wave group structures 

 
Agmean 

/Aave 

Agmax 

/Aave 

Tgmean  

/Tp 

Tgmax  

/Tp 

kph = 5.0 

Directional 

akp = 0.2 x = 0 1.45 2.63 5.21 5.93 

  x= 100Lp 1.64 2.70 4.17 2.22 

Unidirectional 

akp = 0.2 x = 0 1.37 2.30 3.13 7.73 

  x= 100Lp 1.45 2.55 2.94 6.11 

kph = 1.0 

Directional 

akp = 0.2 x = 0 1.45 2.64 5.21 5.93 

  x= 50Lp 1.54 2.70 5.21 6.85 

Unidirectional 

akp = 0.2 x = 0 1.37 2.31 3.13 7.73 

  x= 50Lp 1.41 2.60 3.33 7.73 

Sloping 

Directional 

akp = 0.2 St. A 1.45 2.64 5.21 5.93 

  St. B 1.34 2.05 5.21 7.22 

Unidirectional 

akp = 0.2 St. A 1.37 2.31 3.13 7.73 

  St. B 1.40 2.30 3.57 8.64 
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The effects of wave interaction are enhanced in 

relatively shallow water; however, the nonlinear 

interaction is reduced on a sloping beach, which 

decreases the maximum wave height. 

The wave profiles have almost the same period but 

gradually varying amplitudes. This is caused by the 

energy of the wave spectrum, which is concentrated 

within a narrow range of frequency. The variability of 

the characteristic wave height increases as the spectral 

peak becomes sharp. However, if the frequency 

spectrum gets narrower, the envelope becomes longer, 

and if the directional spread decreases, the wave crest 

widens. 

 

Field Observation 

The wave data were collected 6km offshore (Station 

A; 26m deep) and 1km offshore (Station B; 13m deep) in 

an extension line perpendicular to the coastal line at 

Akabane in the Atsumi Peninsula, Japan on the Pacific 

coast. The bathymetry is nearly uniform, and the bottom 

slope changes gradually from 1/400 to 1/100. The 

measurements were performed by 2 wave gauges located 

at intermediate water depths, with 1.0 ≥ kph ≥0.5. The 

sea surface elevation and bottom velocities were 

recorded every two hours for one hour long at a 

sampling data rate of 0.5 s for the observation period 

(Kioka et al. 2007).  

Using the measurements from field observations at 

Akabane Beach, data on August 8, 2006 were calculated. 

The initial condition of the directional spectrum was 

determined by the incident wave spectrum which was 

obtained at Station A, as shown in Fig.8. The initial 

directional spectrum at Station A indicates that the 

spectrum centered on peak frequency fp = 0.084 and θ = -

9º. Waves propagated from Station A to Station B with a 

relative water depth of 1.0 ≥ kph ≥0.5. An angle of 0 

indicates a line perpendicular to the shoreline.  

The directional spectrum of field data at Station B 

was used to verify the numerical result, and it indicates 

that the spectrum increases the peak frequency. The 

directional spectrum of field data was calculated using 

the EMLM estimation method (Johnson 2006). All 

available theories are based on linear theory, therefore 

we admit the linear theory analysis, but only the 

fundamental frequency band is considered, and that 

composes the free wave only. 

The numerical results of the spatial evolution 

directional spectrum at Station B indicate that the energy 

transfer occurs from the peak frequency to the lower 

frequency and higher frequency; therefore, the spectrum 

slightly widens in frequency and narrows in direction. 

The results of numerical simulation at Station B show a 

trend close to the directional spectrum of field data; 

however, the energy at peak frequency looks smaller 

than in the field data. This discrepancy is caused by the 

effects of the linear calculation on the field data.   

Lin and Lin (2004) introduce a new wave-breaking 

function to calculate the wave breaking as a result of 

white-capping at intermediate depths. We have used this 

formulation to see effects of the white-capping on the 

nonlinear directional spectra; however, the result only 

gives minor evolution. Therefore, the effect of white-

capping in this simulation is weak. 

Wave group envelopes from measurement data at 

Station A and Station B are shown in Fig.9. In this 

figure, the wave group envelopes were governed only by 

the fundamental frequency, without the bound waves. 

Using the Hilbert transform wave group structure at 

Station A, the values Aave = 1.08m, Agmean = 1.31m, 

Agmax = 2.16m, Tgmean = 80s and Tgmax = 72s were 

obtained; further at Station B, Aave = 1.03m, Agmean = 

1.25m, Agmax = 2.15m, Tgmean = 80s and Tgmax = 147s.   
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(a) Field data of Station A 
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(b) Field data of Station B 

 

 

 

0

0.05

0.1

0.15

-45 0 45

F
 r

 e
 q

 u
 e

 n
 c

 y
 (
 H

z
 )

D i r e c t i o n  

 

(c) Simulation result of Station B 

 
Fig. 8 Directional spectra of the field data. 



 
N.N. Pujianiki  and W. Kioka  

 

468 

 

Wave groups from the simulation results at Station B 

are presented in Fig.10. As discussed previously, the 

initial random phase that affects the energy distribution 

is different, which will affect the wave profiles and, 

further, the wave groups. Therefore, we calculated the 

directional spectrum at Station A three times, as shown 

in Fig.10.   

The envelopes of the wave group were also formed 

by free waves only. By the Hilbert transform calculation, 

wave groups’ structures at Station A were obtained: Aave 

= 1.07m, Agmean = 1.30m, Agmax = 2.12m, Tgmean = 80s 

and Tgmax = 72s and the wave groups’ structures as a 

result of directional simulation at Station B: Aave = 

1.13m, Agmean = 1.38m, Agmax = 2.10m, Tgmean = 80s and 

Tgmax = 150s.   

Wave group structures from the simulation results are 

in good agreement with the field data; therefore, this 

model could be used to predict the evolution of a wave 

group. Although the field data and simulation results 

have different shapes of directional spectra and wave 

group envelopes, they produce almost the same wave 

group structures. 

 

 

CONCLUSIONS 

The transformation of wave groups has been    

investigated by numerical simulation based on the third-

order Zakharov equation. The main conclusions can be 

summarized as follows. 

The third-order Zakharov equation model is able to 

predict the effect of the nonlinear interaction on the 

transformation of directional spectra for constant depth 

and for a sloping beach. The nonlinear transfer of energy 

was found to control the shape of the spectrum, 

including the development of the peak and the wave 

groups. 

In relatively shallow water, nonlinear wave      

interactions appear to have a more significant effect than 

in deep water. The low-frequency part of the spectrum is 

affected more significantly than the high-frequency part; 

however, in deep water the high-frequency part is 

affected more significantly than the low-frequency part. 

On the sloping beach, the transformation of 

directional spectra indicates that the lower frequencies 

are enhanced more than the higher frequencies. This 

results in a higher energy in the principal direction, and 

the peak of the spectrum slightly shifts to the lower 

frequency.  

By increasing the wave steepness, the effects of the 

nonlinear wave interaction become stronger. The 

evolution of the directional spectrum is much more          

pronounced at a high steepness than at a lower steepness.  

Wave groups can be characterized by the wave 

envelopes. The Zakharov equation, which contains 

initial-phase information, can be advantageous for 

prediction of the evolution of the wave groups’ 

envelope. Initial random phases significantly affect the 

distribution of energy on the spectrum and the eventual 

shape of wave groups; however, they produce almost the 

same wave group structures. 
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Fig. 9 Wave groups’ evolution based on field data 

from St. A to St. B. 
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Fig. 10 Wave groups’ evolution based on  simulation 

results at St. A and St. B. 
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The transformation of the wave groups is in    

accordance with the evolution of the directional      

spectrum. If the energy of the wave spectrum is 

concentrated within a narrow range of frequency, the 

wave profiles have almost the same period, but gradually 

varying amplitudes. 

The variability of the characteristic wave height 

increases as the spectral peak becomes sharp.  However, 

if the frequency spectrum gets narrower, the envelope 

becomes longer, and if the directional spread decreases, 

the wave crest widens. 

The comparison of the wave group evolutions on 

directional spectra to those on unidirectional spectra 

indicates that evolutions of wave groups in deep water 

and at intermediate water depths are significantly 

affected by nonlinear interactions between directional 

components. When a three-dimensional model is 

considered, transformation of wave groups in deep water 

is much more pronounced at akp = 0.2. The effects of 

wave interaction are enhanced in relatively shallow 

water; however, the nonlinear interaction is suppressed 

on a sloping beach, which decreases the maximum wave 

height. 
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