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ABSTRACT: A finite element method is one of the most effective methods to analyze hydrodynamic behaviors in the 

coastal zone because it can be applied to irregular and complex geometry. However, it is not easy to treat the boundary 

condition properly under the condition of vertically inclined boundary. In this study, a numerical method for treatment 

of inclined bottom boundary in the finite element method is introduced. The mild-slope equation is used as a governing 

equation. Comparison with an analytical solution shows the validity of the present method. 

 

Keywords: Inclined bottom boundary, finite element method, coastal zone, mild-slope equation 

 

 

                                                 
1 Department of Civil and Environment Engineering, Hanbat National University, Yuseoung-gu, Daejeon, 305-719, SOUTH 

KOREA 
2 Department of Civil Engineering, Chungnam National University, Daehak-ro 99, Yusesong-gu, Daejeon, 305-764, SOUTH 
KOREA 
3 Sonny Astani Department of Civil and Environmental Engineering, University of Southern California, 3620 S. Vermont Avenue, 

KAP 210, Los Angeles, California, 90089, US 
4 Disaster Research Division, National Disaster Management Institute, 136 Mapo-daero Mapo-gu, Seoul, 121-719, 

SOUTH KOREA 

INTRODUCTION 

Numerous wave equations have been proposed in 

order to investigate the physical phenomena in the 

coastal region for the past several decades. One of the 

representative equations is the mild-slope equation first 

suggested by Berkhoff (1972). Although most of 

applications are limited to linear water waves, it is still 

very popular because it has a capability to simulate the 

refraction and diffraction at the same time, moreover, it 

is relatively easy to handle compared to other types of 

equations. 

A numerical solution of the mild-slope equation is 

usually obtained by using the finite difference method or 

finite element method. Both methods have their own 

pros and cons according to the cases where they are 

applied. For complex geometry, such as coastlines, the 

finite element method is often used for the advantage of 

a numerical scheme (Tsay and Liu 1983; Part et al. 1994; 

Panchang et al. 2000; Bellotti et al. 2003).  

In order to obtain an accurate result, both a well-

established governing equation and a proper treatment of 

boundary condition are demanded. When waves 

propagate in an open boundary, the radiation boundary 

condition suggested by Sommerfeld is widely used at 

present.  This technique is effective when waves 

propagate along one specific direction. However, under 

the condition of multi-directions, this method cannot 

treat the outgoing waves. As an alternative, the internal 

wave generation and sponge layer technique have been 

proposed (Larsen and Darcy 1983; Lee and Suh 1998).  

The waves are generated in the computational 

domain and are attenuated as it passes the sponge layer. 

Therefore, when the sponge layers are placed at the 

boundary, it is not necessary to use the treatment of 

boundary condition because most of waves are 

dissipated before they reach the boundary. When the 

structure or beach is located in front of waves, some of 

them are reflected depending on the characteristics of the 

structure or the beach. Thus, these reflections should be 

treated suitably. When the structure or beach is 

perpendicular, it is easy to impose a partial or perfect 

reflection condition. However, it is not easy to deal with 

the boundary condition if they are not perpendicular. For 

this reason, we developed the boundary technique aimed 

at inclined bottom boundary. The water depth at the 

coastline is zero so that a shallow water region around 

the coastline always exist. In the shallow water region, 

the linear wave can be expressed in terms of the Bessel 

function if the bottom slope is constant (Dean 1964). 

Using these two conditions, we developed the technique 

for boundary treatment and validated it with the 

analytical solution.  

 

THEORITICAL BACKGROUND 

The computational domain is divided into three 

regions as shown in Fig. 1. Region 1 is a constant water 

depth region where the incident and reflected waves are 

superimposed. Region 2 is a varying water depth region 

to which the finite element method is applied. Finally, 

region 3 is the shallow water region. Under the 
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assumption that Region 3 is small enough, a constant 

bottom slope is applied. 
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Fig. 1 Schematic definition of computational domain. 

 

 

Governing Equation 

Under the condition of incompressible and inviscid 

fluid and irrotational flow, the one-dimensional mild-

slope equation for linear wave is given by: 
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where   is the free surface elevation, C is the phase 

velocity, 
g

C  is the group velocity, and k  is the 

wavenumber determined by Eq. (2): 

 
2 tanhgk kh    (2) 

 

where   is the angular frequency, g gravitational 

acceleration, and h  water depth. 

 

Since the region 1 is the constant water depth, Eq. (1) 

is reduced to the second-order linear ordinary differential 

equation: 
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The general solution of Eq. (3) is given by 
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The subscript 1 of Eq. (4) represents the region. 
1

k  is the 

wavenumber corresponding to 
1

h . If the incident wave 

amplitude is set to be 1, the unknown coefficient A  and 

B  become 1  and the reflection coefficient R , 

respectively.   

 

Because Region 3 is the shallow water region, the 

phase and group velocities are approximated as:  

g
C C gh      (5) 

 

Thus, Eq. (1) becomes: 
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If the water depth in Region 3 varies linearly, Eq. (6) 

can be transformed into Eq. (7) by using the relation of 

( ) ( )( )X h L h L x L m   , where m  is the bottom slope 

of Region 3. 
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Use of an another variable substitution, 
2 4t Xs , 

gives the following form of equation: 
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As a result, the solution of Eq. (9) can be expressed 

by the Bessel function: 
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where 
0

J  is the Bessel function of the first kind and 
0

Y  

is the Bessel function of the second kind.  Since the 

second term of right-hand side diverges when the x  

approaches coastline, the coefficient D  should be zero 

to avoid unrealistic results. Therefore, the free surface 

elevation in the region 3 can be expressed by: 
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FEM Formulation 

The governing equation represented by Eq. (1) 

should be transformed into finite element form in the 

region 2. If we set   T e

2
N η   and insert this into Eq. (1), 

the following integral for each element is obtained.  
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where, e  is an element, N  is a shape function, T  is a 

transpose of matrix, and 
e

2
η  is a nodal value vector of a 

free surface elevation. Conducting integration by part on 

the first integral of the left-hand side and assembling 
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over the entire elements give the following system 

matrix equation: 
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To complete the problem, the following matching 

conditions are used. 
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In combination with Eqs. (4) and (11), Eqs. (14) and 

(15) become 
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Substituting Eqs. (16) and (17) into Eq. (13) gives 

final set of equation. 
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VALIDATION 

To validate the present method, we compared the 

calculation result with an analytical solution for constant 

slope as shown in Fig. 2.  
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Fig. 2. Computational bathymetry of constant bottom 

slope. 

 

The analytical solution is obtained by Eqs. (4), (11), 

and (14) (see Dean, 1964, for details). 
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The relative water depth is set to 
1

0.05kh   

because the analytical solution is valid only when the 

shallow water region. The constant water depth of h1 is 

5.0 m . 
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Fig. 3. Comparison between numerical and analytical 

solutions for 
1

0.05kh  : (a) 0.05m  ; (b) 0.9m  . 

 

Fig. 3 shows the wave amplitude of the numerical 

solution and the analytical solution under the condition 

of different bottom slopes. The x -and y  axes are 

normalized by the wavelength and amplitude of incident 
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waves, respectively. Fig. 3(a) and Fig. 3(b) show the 

results for mild-slope ( 0.05)m   and steep slope 

( 0.9)m   respectively.  

 

To obtain the numerical solution, the computational 

domain should be divided into three regions as 

mentioned above. The outer boundary where Region 2 

and Region 3 overlap is fixed at the end of slope. The 

inner boundary where Region 1 and Region 2 are 

overlapped is not fixed. In our calculation, the relative 

water depth in the entire domain is less than 0.1 . Thus, 

the location of inner boundary does not affect the result. 

At the point of 0.01kh   of inner boundary, the 

calculation is conducted. However, if there is a region 

whose relative water depth is greater than 0.1 , the 

location of inner boundary should be determined with 

care. 

 

CONCLUSION 

In this study, a new boundary treatment method for a 

sloping bottom boundary is proposed. If the coastline or 

vertically inclined structure is located in the computation 

domain, it is not easy to deal with these boundaries 

because the water depth at this point becomes always 

zero. To overcome this limitation, a small region 

surrounding the coastline is separated from the 

computational domain and, then, is calculated 

individually. For this, two assumptions are used. One is 

that the separated small region is under shallow water 

region. Another assumption is that the bottom slope of 

small region is always constant. When the region is 

small enough, these two assumptions are considered to 

be appropriate. The proposed approach has been 

validated by comparing with an analytical solution. 
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