Prime factor rings of skew polynomial rings over a commutative Dedekind domain

¹Y. Wang, ²A.K. Amir^{*}, and ³H. Marubayashi[†]

¹College of Sciences, Hohai University Xikang Road1, Nanjing 210098, China E-mail: yunxiawang@hhu.edu.cn

²Algebra Research Group Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung Jl. Ganesa 10 Bandung, Indonesia, 40132 E-mail: s301_amir@students.itb.ac.id

> ³Faculty of Engineering, Tokushima Bunri University Shido, Sanuki, Kagawa 769-2193 Japan E-mail: marubaya@kagawa.bunri-u.ac.jp

Abstract

This paper is concerned with prime factor rings of a skew polynomial ring over a commutative Dedekind domain. Let P be a non-zero prime ideal of a skew polynomial ring $R = D[x; \sigma]$, where D is a commutative Dedekind domain and σ is an automorphism of D. If P is not a minimal prime ideal of R, then R/Pis a simple Artinian ring. If P is a minimal prime ideal of R, then there are two different types of P, namely, either $P = \mathfrak{p}[x; \sigma]$ or $P = P' \cap R$, where \mathfrak{p} is a σ -prime ideal of D, P' is a prime ideal of $K[x; \sigma]$ and K is the quotient field of D. In the first case R/P is a hereditary prime ring and in the second case, it is shown that R/P is a hereditary prime ring if and only if $M^2 \not\supseteq P$ for any maximal ideal M of R. We give some examples of minimal prime ideals such that the factor rings are not hereditary or hereditary or Dedekind, respectively.

Keywords : minimal prime, prime factor, hereditary, Dedekind domain.

0 Introduction

^{*}**Permanent Address**: Mathematics Department, Faculty of Mathematics and Natural Science, Hasanuddin University, Makassar Indonesia 90245. The second author's research was partially supported by ITB according to Surat Perjanjian Pelaksanaan Riset No. 265/K01.7/PL/2009, 6 February 2009. Email: amirkamalamir@yahoo.com.

[†]The third author was supported by Grant-in-Aid for Scientific Research (No. 21540056) from Japan Society for the Promotion of Science.

Let D be a commutative Dedekind domain with its quotient field K and let σ be an automorphism of D. We denote by $R = D[x; \sigma]$ the skew polynomial ring over D in an indeterminate x.

The aim of the paper is to study the structure of the prime factor ring R/P for any prime ideal P of R, which is one of the ways to investigate the structure of rings. If Pis not a minimal prime ideal of R, then the Krull dimension of R/P is zero([MR]), that is, it is a simple Artinian ring. So we can restrict to the case P is a minimal prime ideal of R. There are two types of minimal prime ideals P of R, that is, either $P = \mathfrak{p}[x; \sigma]$ or $P = P' \cap R$, where \mathfrak{p} is a non-zero σ -prime ideal of D and P' is a non-zero prime ideal of $K[x;\sigma]$. In the first case R/P is always a hereditary prime ring. In the second case R/P is a hereditary prime ring if and only if $P \nsubseteq M^2$ for any maximal ideal M of R, which is motivated by [H] and he only considered in the case where P is principal generated by a monic polynomial and $\sigma = 1$ (note that in this case, P is a minimal prime ideal and see [PR] and [MLP] for related papers). We give some examples of minimal prime ideals P such that R/P is not hereditary or hereditary or Dedekind, respectively, by using Gauss's integers $D = \mathbb{Z} \oplus \mathbb{Z}i$, where \mathbb{Z} is the ring of integers.

We refer the readers to [MR] and [MMU] for some known terminologies not defined in this paper.

1 Notes on hereditary prime PI rings

Through out this section, let R be a hereditary prime PI ring with the center C and let Q be the quotient ring of R, which is a simple Artinian ring. It is well known that R is a classical C-order in Q and that C is a Dedekind domain (see [MR, (13.9.16)]).

In this section, we will shortly discuss some relations between the maximal ideals of R and C, which are used in latter sections. For any R-ideal A, we use the following notation:

$$(R:A)_l = \{q \in Q \mid qA \subseteq R\}, \quad (R:A)_r = \{q \in Q \mid Aq \subseteq R\},$$
$$(A:A)_l = \{q \in Q \mid qA \subseteq A\} = O_l(A), \text{the left order of } A,$$
$$(A:A)_r = \{q \in Q \mid Aq \subseteq A\} = O_r(A), \text{the right order of } A,$$

and

$$A_v = (R : (R : A)_l)_r, \quad _v A = (R : (R : A)_r)_l,$$

which are both *R*-ideals containing *A*. Note that $A_v = A = {}_vA$, because *R* is a hereditary prime ring. A finite set of distinct idempotent maximal ideals M_1, \ldots, M_m of *R* such that $O_r(M_1) = O_l(M_2), \ldots, O_r(M_m) = O_l(M_1)$ is called a *cycle*. We will also consider an invertible maximal ideal to be a trivial case of a cycle.

It is well known that an ideal P is a maximal invertible ideal if and only if $P = M_1 \cap \ldots \cap M_m$, where M_1, \ldots, M_m is a cycle (see [ER, (2.5) and (2.6)]). Let P be a maximal invertible ideal. Then $C(P) = \{c \in R \mid c \text{ is regular mod } P\}$ is a regular Ore set and we denote by R_P the localization of R at P (see [M₁, proposition 2.7]). We denote by Spec(R) and Max-in(R) the set of all prime ideals and the set of all maximal invertible ideals, respectively. For any ring S, J(S) stands for Jacobson

radical of S.

Lemma 1.1. (1) Let $P \in \text{Max-in}(R)$ and let $\mathfrak{p} = P \cap C$. Then $\mathfrak{p} \in \text{Spec}(C)$.

(2) C is a discrete rank one valuation ring if and only if J(R) of R is the intersection of a cycle.

Proof. (1) Let $P = M_1 \cap \ldots \cap M_m \in \text{Max-in}(R)$. If m = 1, then $\mathfrak{p} = P \cap C \in \text{Spec}(C)$. If $m \geq 2$, then M_i are all idempotents. Set $\mathfrak{p} = M_1 \cap C$, then $M_1 \supseteq \mathfrak{p}R$, an invertible ideal. So

$$(R: M_2)_l = O_l(M_2) = O_r(M_1) = (R: M_1)_r \subseteq (R: \mathfrak{p}R)_r = (R: \mathfrak{p}R)_l$$

imply

$$M_2 = (M_2)_v = (R : (R : M_2)_l)_r \supseteq (R : (R : \mathfrak{p}R)_l)_r = \mathfrak{p}R.$$

Thus $M_2 \cap C = \mathfrak{p}$ follows. Continuing this process, we have $P \cap C = \mathfrak{p}$.

(2) Suppose that C is a discrete rank one valuation ring with $J(C) = \mathfrak{p}$, the unique maximal ideal. Then $J(R) \supseteq \mathfrak{p}R$ (see [R, (6.15)]). So J(R) is invertible by [ER, (4.13)]. Let $J(R) = P_1 \cap \ldots \cap P_k$, where $P_i \in \text{Max-in}(R)$. It suffices to prove that k = 1. We assume that $k \ge 2$. Then $R_{P_1} \supset R$ and $\mathbb{Z}(R_{P_1}) \supseteq \mathbb{Z}(R) = C$, where $\mathbb{Z}(R_{P_1})$ is the center of R_{P_1} , so that $\mathbb{Z}(R_{P_1}) = C$. Since R_{P_1} is a finitely generated C-module (see [MR, (13.9.16)]), there is a $c \in C(P_1)$ with $R_{P_1} = cR_{P_1} \subseteq R$, a contradiction. Hence k = 1 and so J(R) is the intersection of a cycle.

Suppose that J(R) is the intersection of a cycle. Then $\mathfrak{p} = J(R) \cap C \in \operatorname{Spec}(C)$ by (1). Let $\mathfrak{p}_1 \in \operatorname{Spec}(C)$. Then $\mathfrak{p}_1 R = J(R)^l$ for some $l \ge 1$ by [ER, (2.1)] and the assumption. It follows that $\mathfrak{p}_1 \subseteq J(R) \cap C = \mathfrak{p}$ and so $\mathfrak{p}_1 = \mathfrak{p}$, that is, C is a discrete rank one valuation ring.

The following proposition is just a generalization of a Dedekind C-order to a hereditary prime PI ring (see, [R, (22.4)]).

Proposition 1.2. Suppose that R is a hereditary prime PI ring. Then there is a oneto-one correspondence between $\operatorname{Max-in}(R)$ and $\operatorname{Spec}(C)$, which is given by: $P \longrightarrow \mathfrak{p} = P \cap C$, where $P \in \operatorname{Max-in}(R)$.

Proof. Let $P \in \text{Max-in}(R)$. Then $\mathfrak{p} = P \cap C \in \text{Spec}(C)$ by Lemma 1.1. Conversely, let $\mathfrak{p} \in \text{Spec}(C)$. Then there is a maximal ideal M of R containing $\mathfrak{p}R$, an invertible ideal. So there is a $P \in \text{Max-in}(R)$ with $P \supseteq \mathfrak{p}R$ by [ER, (2.4)]. This shows $P \cap C = \mathfrak{p}$ by lemma 1.1. To prove the correspondence is one-to-one, let $P, P_1 \in \text{Max-in}(R)$ with $P \cap C = \mathfrak{p} = P_1 \cap C$. Then $P_{\mathfrak{p}}, P_{1\mathfrak{p}} \in \text{Max-in}(R_{\mathfrak{p}})$ and $\mathbb{Z}(R_P) = C_{\mathfrak{p}}$, a discrete rank one valuation ring. Thus $P_{\mathfrak{p}} = J(R_{\mathfrak{p}}) = P_{1\mathfrak{p}}$ by lemma 1.1 and so $P = P_{\mathfrak{p}} \cap R = P_{1\mathfrak{p}} \cap R = P_1$. Hence the correspondence is one-to-one.

2 Prime factor rings of skew polynomial rings

Throughout this section, let D be a commutative Dedekind domain with its quotient field K and σ be an automorphism of D. We always assume that $D \neq K$ to avoid the

trivial case. Let $R = D[x; \sigma]$, a skew polynomial ring over D.

The aim of this section is to study the structure of the factor rings of R by minimal prime ideals. It is well known that R is a Noetherian maximal order in $K(x;\sigma)$, the quotient ring of $K[x;\sigma]$ and gl.dim R = 2 (see [C. Proposition 3.3] and [MR, (7.5.3)]). We denote by $\operatorname{Spec}_0(R) = \{P \in \operatorname{Spec}(R) \mid P \cap D = (0)\}$. It is well known that there is a one-to-one correspondence between $\operatorname{Spec}_0(R)$ and $\operatorname{Spec}(K[x;\sigma])$, which is given by $P \longrightarrow P' = PK[x;\sigma]$ and $P' \longrightarrow P' \cap R$, where $P \in \operatorname{Spec}_0(R)$ and $P' \in \operatorname{Spec}(K[x;\sigma])$ (see [GW, (9.22)]).

We start with the following easy proposition.

Proposition 2.1. (1) { $\mathfrak{p}[x;\sigma]$, $P \mid \mathfrak{p}$ is a σ -prime ideal of D and $P \in \operatorname{Spec}_0(R)$ with $P \neq (0)$ } is the set of all minimal prime ideals of R.

(2) Let $P \in \text{Spec}(R)$ with $P \neq (0)$. Then P is invertible if and only if it is a minimal prime ideal of R.

Proof. (1) Let P be a minimal prime ideal of R and let $\mathfrak{p} = P \cap D$. If $\mathfrak{p} = (0)$, then $P \in \operatorname{Spec}_0(R)$. If $\mathfrak{p} \neq (0)$, then there are two cases; namely, either $x \in P$ or $x \notin P$. Suppose that $x \in P$. Then $P = \mathfrak{p} + xR \supset xR$, a prime ideal, which is a contradiction. So $x \notin P$. Then \mathfrak{p} is a σ -prime ideal of D and $\mathfrak{p}[x;\sigma]$ is a prime ideal of R. Hence $P = \mathfrak{p}[x;\sigma]$ follows.

Conversely, let $P \in \operatorname{Spec}_0(R)$. Then P is a minimal prime ideal of R, because $P' = PK[x; \sigma]$ is a maximal ideal as well as a minimal prime ideal of $K[x; \sigma]$. Let $P = \mathfrak{p}[x; \sigma]$, where \mathfrak{p} is a σ -prime ideal. Then P is invertible, because \mathfrak{p} is invertible and so P is a v-ideal. Hence P is a minimal prime ideal of R (see [MR, (5.1.9)]).

(2) Let P be a prime and invertible ideal. Then it is a v-ideal and so it is a minimal prime ideal (see [MR,(5.1.9)]).

Conversely, let P be a minimal prime ideal. If $P = \mathfrak{p}[x; \sigma]$, where \mathfrak{p} is a σ -prime ideal of D. Then P is invertible. If $P \in \operatorname{Spec}_0(R)$, with $P \neq (0)$ and $P' = PK[x; \sigma]$, then since any ideal of $K[x; \sigma]$ is a v-ideal and R is Noetherian, we have

$$P' = P'_v = (K[x;\sigma] : (K[x;\sigma] : P')_l)_r = (K[x;\sigma] : K[x;\sigma](R : P)_l)_r$$
$$= (R : (R : P)_l)_r K[x;\sigma] = P_v K[x;\sigma].$$

Thus $P = P' \cap R = P_v$ follows and similarly $P = {}_v P$. Hence P is invertible by [CS, p.324].

Proposition 2.2. (1) Let P be a minimal prime ideal of R with $P = \mathfrak{p}[x;\sigma]$, where \mathfrak{p} is a σ -prime ideal of D. Then R/P is a hereditary prime ring. In particular, R/P is a Dedekind prime ring if and only if $\mathfrak{p} \in \operatorname{Spec}(D)$.

(2) Suppose that σ is of infinite order. Then P = xR is the only minimal prime ideal of R in $Spec_0(R)$ and R/P is a Dedekind prime ring.

Proof. (1) The first statement follows from [MR, (7.5.3)].

If $\mathfrak{p} \in \operatorname{Spec}(D)$. Then $(R/P) \cong (D/\mathfrak{p})[x; \sigma]$ is a principal ideal ring so that R/P is a Dedekind prime ring. If $\mathfrak{p} \notin \operatorname{Spec}(D)$, then there is a maximal ideal \mathfrak{m} of D with $\mathfrak{m} \supset \mathfrak{p}$ and $\mathfrak{p} = \mathfrak{m} \cap \sigma(\mathfrak{m}) \cap \ldots \cap \sigma^n(\mathfrak{m})$ for some natural number $n \ge 1$. Set $M = \mathfrak{m} + xR$, a

maximal ideal of R. Then $M = M^2 + P$, because $\mathfrak{m}^2 + \mathfrak{p} = \mathfrak{m}$. Thus M/P is idempotent and R/P is not Dedekind.

(2) Let P = xR. Then P is the only minimal prime ideal of R in $\text{Spec}_0(R)$ by [J, Theorem 2] and R/P is a Dedekind prime ring because $(R/P) \cong D$.

Because of Propositions 2.1 and 2.2, we may assume that σ is of finite order to study the hereditaryness of R/P. So in the remainder of this section, we may assume that σ is of finite order, say, n.

It is well known that K is separable over $K_{\sigma} = \{k \in K \mid \sigma(k) = k\}$ and $[K : K_{\sigma}] = n$ (see [A, Theorems 14 and 15]). Furthermore, $D_{\sigma} = \{d \in D \mid \sigma(d) = d\}$ is also Dedekind domain by [G, (36.1) and (37.2)] and D is a finitely generated D_{σ} -module by [ZS, Corollary 1, p.265]. Since the center $\mathbb{Z}(R)$ of R is $D_{\sigma}[x^n]$, it follows that R is a finitely generated C-module, where $C = D_{\sigma}[x^n]$. Thus R is a classical C-order in $K(x; \sigma)$ and so R is a prime PI ring with $\mathcal{K}(R) = \dim(R) = 2$ (see[MR, (6.4.8) and (6.5.4.)]), where $\mathcal{K}(R)$ is the Krull dimension of R and dim(R) is the classical Krull dimension of R.

The following lemma is due to [Ro, (1.6.27)].

Lemma 2.3. Let σ be an automorphism of K with order n. Then

(1) there is a one-to-one correspondence between $\operatorname{Spec}(K[x;\sigma])$ and $\operatorname{Spec}(K_{\sigma}[x^n])$, which is given by $P' \longrightarrow \mathfrak{p}' = P' \cap K_{\sigma}[x^n]$, where $P' \in \operatorname{Spec}(K[x;\sigma])$.

(2) If $P' = xK[x;\sigma]$, then $\mathfrak{p}' = x^n K_{\sigma}[x^n]$ and $\mathfrak{p}'K[x;\sigma] = P'^n$. If $P' \neq xK[x;\sigma]$, then $\mathfrak{p}' = f(x^n)K_{\sigma}[x^n]$ for some irreducible polynomial $f(x^n)$ in $K_{\sigma}[x^n]$ different from x^n and $\mathfrak{p}'K[x;\sigma] = P'$.

Lemma 2.4. Let σ be an automorphism of D with order n. Then

(1) There is a one-to-one correspondence between $\operatorname{Spec}_0(R)$ and $\operatorname{Spec}_0(C)$, which is given by $P \longrightarrow \mathfrak{p} = P \cap C$, where $P \in \operatorname{Spec}_0(R)$.

(2) If P = xR, then $P^n = \mathfrak{p}R$, where $\mathfrak{p} = P \cap C$. If $P \neq xR$, then $P = \mathfrak{p}R$, where $\mathfrak{p} = P \cap C$.

Proof. (1) Let $P \in \operatorname{Spec}_0(R)$. Then it is clear that $\mathfrak{p} = P \cap C \in \operatorname{Spec}_0(C)$. Conversely, let $\mathfrak{p} \in \operatorname{Spec}_0(C)$. If $\mathfrak{p} \neq x^n C$, then $P = \mathfrak{p}K[x;\sigma] \cap R \in \operatorname{Spec}_0(R)$ by Lemma 2.3 and [GW, (9.22)], and so $\mathfrak{p} \subseteq \mathfrak{p}_1 = P \cap C \in \operatorname{Spec}_0(C)$. Hence $\mathfrak{p} = \mathfrak{p}_1$ by Proposition 2.1. If $\mathfrak{p} = x^n C$, then $P = xR \in \operatorname{Spec}_0(R)$ with $\mathfrak{p} = P \cap C$. Hence the correspondence is onto.

To prove the correspondence is one to one, let P and $P_1 \in \operatorname{Spec}_0(R)$ with $P \cap C = \mathfrak{p} = P_1 \cap C$. We may assume that $P \neq xR$ and $P_1 \neq xR$. Then $PK[x;\sigma]$ and $P_1K[x;\sigma]$ both contain $\mathfrak{p}K[x;\sigma] \in \operatorname{Spec}(K[x;\sigma])$ and so $PK[x;\sigma] = \mathfrak{p}K[x;\sigma] = P_1K[x;\sigma]$ follows. Hence $P = PK[x;\sigma] \cap R = P_1$.

(2) $P \in \operatorname{Spec}_0(R)$ with $\mathfrak{p} = P \cap C$. If P = xR then $P^n = \mathfrak{p}R$ where $\mathfrak{p} = x^n C$. Suppose that $P \neq xR$. Let P_1 be an invertible prime ideal containing $\mathfrak{p}R$. By Proposition 2.1, P_1 is a minimal prime ideal of R. So either $P_1 = \mathfrak{p}_1[x;\sigma]$, where \mathfrak{p}_1 is a σ -prime ideal of D or $P_1 \in \operatorname{Spec}_0(R)$ by Proposition 2.1. If $P_1 = \mathfrak{p}_1[x;\sigma]$, then $P_1 \cap C = (\mathfrak{p}_1)_{\sigma}[x^n]$, a minimal prime ideal of $C[x^n]$, where $(\mathfrak{p}_1)_{\sigma} = \mathfrak{p}_1 \cap D_{\sigma}$, containing \mathfrak{p} so that $\mathfrak{p} = (\mathfrak{p}_1)_{\sigma}[x^n]$, a contradiction, because $P \in \operatorname{Spec}_0(R)$. Hence $P_1 \in \operatorname{Spec}_0(R)$. It follows that $\mathfrak{p}_1 = P_1 \cap C \supseteq \mathfrak{p}$ and so $\mathfrak{p}_1 = \mathfrak{p}$. Hence $P = P_1$ by (1). Since the invertible ideal $\mathfrak{p}R$ is a finite product of invertible prime ideals (see [CS, Theorem 1.6 and Proposition 2.3]), we have $\mathfrak{p}R = P^e$ for some $e \ge 1$. Then $\mathfrak{p}K[x;\sigma] = P^eK[x;\sigma] = P'^e$ implies e = 1. Hence $P = \mathfrak{p}R$ follows.

Lemma 2.5. Let $P \in \operatorname{Spec}_0(R)$ with $P \neq xR$. Then $P_{\mathfrak{n}}$ is principal generated by a central polynomial in $C_{\mathfrak{n}}$ for any $\mathfrak{n} \in \operatorname{Spec}(D_{\sigma})$.

Proof. Let $\mathfrak{p} = P \cap C$. Then $\mathfrak{p}_{\mathfrak{n}}$ is principal by $[M_2, (3.1)]$, because $C_{\mathfrak{n}} = (D_{\sigma})_{\mathfrak{n}}[x^n]$ and $(D_{\sigma})_{\mathfrak{n}}$ is a discrete rank one valuation ring. Hence $P_{\mathfrak{n}}$ is principal generated by a central element in $C_{\mathfrak{n}}$ by Lemma 2.4.

Lemma 2.6. Let $P \in \text{Spec}_0(R)$ with $P \neq xR$. Then the following are equivalent:

(1) $P \not\subseteq M^2$ for any maximal ideal M of R.

(2) $P_{\mathfrak{n}} \not\subseteq (M_{\mathfrak{n}})^2$ for any $\mathfrak{n} \in \operatorname{Spec}(D_{\sigma})$ and for any maximal ideal M of R with $M \cap (D_{\sigma} \setminus \mathfrak{n}) = \emptyset$.

Proof. (1) \Rightarrow (2): Suppose that there is an $\mathbf{n} \in \operatorname{Spec}(D_{\sigma})$ and a maximal ideal M of R with $M \cap (D_{\sigma} \setminus \mathbf{n}) = \emptyset$ satisfying $P_{\mathbf{n}} \subseteq (M_{\mathbf{n}})^2$. Then there is a $c \in D_{\sigma} \setminus \mathbf{n}$ with $cP \subseteq M^2 \subseteq M$, which implies $P \subseteq M$ and cR + M = R. Hence $P = (cR + M)P \subseteq M^2$, a contradiction. Hence, for any $\mathbf{n} \in \operatorname{Spec}(D_{\sigma})$ and any maximal ideal M of R with $M \cap (D_{\sigma} \setminus \mathbf{n}) = \emptyset$, $P_{\mathbf{n}} \nsubseteq (M_{\mathbf{n}})^2$.

(2) \Rightarrow (1): Suppose that there is a maximal ideal M of R with $P \subseteq M^2$. Then $M \cap D \neq (0)$ by Proposition 2.1 and so $\mathfrak{n} = M \cap D_{\sigma} \neq (0)$, which is a prime ideal of D_{σ} with $M \cap (D_{\sigma} \setminus \mathfrak{n}) = \emptyset$. By the assumption, $P_{\mathfrak{n}} \not\subseteq (M^2)_{\mathfrak{n}} = M_{\mathfrak{n}}^2$, a contradiction. Hence $P \not\subseteq M^2$ for any maximal ideal M of R.

Lemma 2.7. Let $P \in \text{Spec}_0(R)$ with $P \neq xR$ and $\mathfrak{p} = P \cap C$. Then $\mathbb{Z}(R/P) = (C/\mathfrak{p})$.

Proof. Since $\mathbb{Z}(R/P) = \mathbb{Z}(K[x;\sigma]/P') \cap (R/P)$, it suffices to prove that $\mathbb{Z}(K[x;\sigma]/P') = (K_{\sigma}[x^n]/\mathfrak{p}')$, where $\mathfrak{p}' = K_{\sigma}[x^n] \cap P'$. We set $\overline{K[x;\sigma]} = K[x;\sigma]/P'$. It is clear that $\mathbb{Z}(\overline{K[x;\sigma]}) \supseteq (K_{\sigma}[x^n]/\mathfrak{p}')$. To prove the converse inclusion, let $f(x^n) \in K_{\sigma}[x^n]$ be a monic polynomial with $P' = f(x^n)K[x;\sigma]$ and $\deg f(x^n) = nl$. Write

$$f(x^n) = x^{nl} + a_{l-1}x^{n(l-1)} + \dots + a_1x^n + a_0$$
, where $a_i \in K_{\sigma}$

Suppose that $a_0 = 0$. Then $f(x^n) = h(x^n)x^n$, where $h(x^n) = x^{n(l-1)} + \cdots + a_1$, shows that $P' \subseteq xK[x;\sigma]$ and so $P' = xK[x;\sigma]$, a contradiction. So we may assume that $a_0 \neq 0$. Note that

$$\overline{K[x;\sigma]} \cong K \oplus K\overline{x} \oplus \ldots \oplus K\overline{x}^{nl-1},$$

as a ring and that

$$\overline{x}^{nl} = -(a_{l-1}\overline{x}^{n(l-1)} + \dots + a_1\overline{x}^n + a_0).$$

Let $\overline{g(x)} = b_{nl-1}\overline{x}^{nl-1} + \dots + b_1\overline{x} + b_0$ be any element in $\mathbb{Z}(\overline{K[x;\sigma]})$, where $b_i \in K$. Then, for any $k \in K$, $k\overline{g(x)} = \overline{g(x)}k$ implies $b_i\sigma^i(k) = b_ik$ for any $i, 0 \le i \le nl-1$. Suppose that there is an *i* with $b_i \neq 0$ and i = nj + s $(1 \leq s < n)$. Then $b_i \sigma^s(k) = b_i k$ and so $\sigma^s(k) = k$ for all $k \in K$, a contradiction. Thus if $b_i \neq 0$, then i = nj, $0 \leq j \leq l-1$. Next

$$\overline{g(x)}\overline{x} = b_0\overline{x} + b_1\overline{x}^2 + \dots + b_{nl-2}\overline{x}^{nl-1} + b_{nl-1}\left(-a_{l-1}\overline{x}^{n(l-1)} - \dots - a_1\overline{x}^n - a_0\right) \text{ and}$$

 $\overline{x}\overline{g(x)} = \sigma(b_0)\overline{x} + \sigma(b_1)\overline{x}^2 + \dots + \sigma(b_{nl-2})\overline{x}^{nl-1} + \sigma(b_{nl-1})\left(-a_{l-1}\overline{x}^{n(l-1)} - \dots - a_1\overline{x}^n - a_0\right).$

Since $\overline{xg}(x) = \overline{g(x)}\overline{x}$, comparing the coefficients, we have $\sigma(b_{nl-1}) = b_{nl-1}$, that is, $b_{nl-1} \in K_{\sigma}$ and so $\sigma(b_i) = b_i$ for all $0 \le i \le nl-2$. Thus we have

$$\overline{g(x)} = b_0 + b_n \overline{x}^n + \dots + b_{n(l-1)} \overline{x}^{n(l-1)}$$
 and $b_i \in K_{\sigma}$.

Hence $\overline{g(x)} \in (K_{\sigma}[x^n]/\mathfrak{p}').$

Let $P \in \operatorname{Spec}_0(R)$ with $P \neq xR$. Since $\mathbb{Z}(R/P) = (C/\mathfrak{p}) \supseteq D_{\sigma}$ naturally, it follows from [R, (3.24)] that R/P is a hereditary prime ring if and only if $(R/P)_{\mathfrak{n}} (\cong R_{\mathfrak{n}}/P_{\mathfrak{n}})$ is a hereditary prime ring for any $\mathfrak{n} \in \operatorname{Spec}(D_{\sigma})$.

Let \mathfrak{m} be any maximal ideal of C with $\mathfrak{m} \supset \mathfrak{p}$. By lying over and going up theorems (see [MR, (10.2.9) and (10.2.10)]), there is a maximal ideal M of R with $M \cap C = \mathfrak{m}$ and $M \supset P$. Set $J = \bigcap \{M \mid M \text{ is a maximal ideal of } R \text{ with } \mathfrak{m} = M \cap C \}$. Since $\dim(R/J) = \mathcal{K}(R/J) < \mathcal{K}(R) = 2, M/J$ is a minimal prime ideal of R/J and J is a finite intersection of those M's, that is, $J = M_1 \cap \ldots \cap M_k$ (see [CH, Lemma 1.16]). Thus we have the following lemma.

Lemma 2.8. With the notation above, the following hold:

(1) $P \nsubseteq M_i^2$ if and only if $P_{\mathfrak{m}} \nsubseteq M_{i\mathfrak{m}}^2$.

(2) $M_i \supset M_i^2$ for any $i \ (1 \le i \le k)$.

(3) gl.dim $R_{\mathfrak{m}} = 2$ and $J(R_{\mathfrak{m}}) = M_{1\mathfrak{m}} \cap \ldots \cap M_{k\mathfrak{m}}$.

Proof. (1) This is proved in the same way as in [MLP, Lemma 2].

(2) Set $M = M_i$ and $\mathfrak{m}_0 = M \cap D \neq (0)$, because $M \supset P$. If $x \in M$, then $M = \mathfrak{m}_0 + xR$ and \mathfrak{m}_0 is a maximal ideal of D with $\mathfrak{m}_0 \supset \mathfrak{m}_0^2$. Thus $M^2 \subseteq \mathfrak{m}_0^2 + xR \subset \mathfrak{m}_0 + xR = M$. If $x \notin M$, then \mathfrak{m}_0 is a σ -prime ideal and D/\mathfrak{m}_0 is a semi-simple Artinian ring. Since $M \supseteq \mathfrak{m}_0[x; \sigma]$, we have

$$\overline{M} = \left(M/\mathfrak{m}_0[x;\sigma]\right) \subset \overline{R} = \left(R/\mathfrak{m}_0[x;\sigma]\right) \cong (D/\mathfrak{m}_0)[x;\widetilde{\sigma}],$$

which is hereditary by [MR, (7.5.3)]. Since $\widetilde{x} \notin \widetilde{M}$, \widetilde{M} is principal by [CFH, Lemma 2.6]. So $(\widetilde{M})^2 \subset \widetilde{M}$ and thus $M^2 \subset M$ follows.

(3) It follows that $2 = \text{gl.dim}R \ge \text{gl.dim}R_{\mathfrak{m}}$. If $\text{gl.dim} R_{\mathfrak{m}} \le 1$, then $R_{\mathfrak{m}}$ is hereditary, which is implies $M_{\mathfrak{m}} = P_{\mathfrak{m}}$. Hence $M = M_{\mathfrak{m}} \cap R = P_{\mathfrak{m}} \cap R = P$, a contradiction. Hence $\text{gl.dim} R_{\mathfrak{m}} = 2$. Since $R_{\mathfrak{m}}$ is a PI ring with the maximal ideals $M_{1\mathfrak{m}}, \ldots, M_{k\mathfrak{m}}$, it is clear that $J(R_{\mathfrak{m}}) = M_{1\mathfrak{m}} \cap \cdots \cap M_{k\mathfrak{m}}$.

Proposition 2.9. Let σ be an automorphism of D with order n and let $P \in \operatorname{Spec}_0(R)$ with $P \neq xR$. Then $\overline{R} = R/P$ is a hereditary prime ring if and only if $P \nsubseteq M^2$ for any maximal ideal M of R.

Proof. First note that $\mathbb{Z}(\overline{R}) = \overline{C} = (C/\mathfrak{p})$ by Lemma 2.7, where $\mathfrak{p} = P \cap C$. Suppose that \overline{R} is a hereditary prime ring. Then \overline{C} is a Dedekind domain (see [MR, (13.9.16)]. Let M be a maximal ideal of R. If $P \not\subseteq M$, then $P \not\subseteq M^2$. So we may assume that $P \subseteq M$. In order to prove $P \not\subseteq M^2$, we may assume that P is principal generated by a central element by Lemmas 2.5 and 2.6 and let $\mathfrak{m} = M \cap C$, a maximal ideal of C properly containing \mathfrak{p} . Then there are a finite number of maximal ideals M_1, \ldots, M_k of R lying over \mathfrak{m} such that $J(\overline{R}_{\overline{\mathfrak{m}}}) = (\overline{M}_1)_{\overline{\mathfrak{m}}} \cap \cdots \cap (\overline{M}_k)_{\overline{\mathfrak{m}}}$ and $\overline{C}_{\overline{\mathfrak{m}}}$ is a discrete rank one valuation ring, where $M = M_1, \overline{M_i} = M_i/P$ and $\overline{\mathfrak{m}} = (\mathfrak{m}/\mathfrak{p})$. If k = 1, then $\overline{R}_{\overline{\mathfrak{m}}}$ is a local Dedekind prime ring so that it is a principal ideal ring. So $\overline{M}_{\overline{\mathfrak{m}}} = \overline{a}\overline{R}_{\overline{\mathfrak{m}}}$ for some $a \in M_{\mathfrak{m}}$ and $M_{\mathfrak{m}} = aR_{\mathfrak{m}} + P_{\mathfrak{m}}$. Suppose that $P \subseteq M^2$. Then $M_{\mathfrak{m}} = aR_{\mathfrak{m}} + P_{\mathfrak{m}} \subseteq aR_{\mathfrak{m}} + M_{\mathfrak{m}}J(R_{\mathfrak{m}}) \subseteq M_{\mathfrak{m}}$. Hence $M_{\mathfrak{m}} = aR_{\mathfrak{m}}$ by Nakayama's lemma, which is invertible. It follows from [HL, Proposition 1.3] that $R_{\mathfrak{m}}$ is a principal ideal ring. So gl.dim $R_{\mathfrak{m}} \leq 1$, which contradicts Lemma 2.8. Hence $P \not\subseteq M^2$.

If $k \geq 2$, then $\overline{M}_{1\overline{\mathfrak{m}}}, \ldots, \overline{M}_{k\overline{\mathfrak{m}}}$ is a cycle by Lemma 1.1, because $\overline{C}_{\overline{\mathfrak{m}}}$ is a discrete rank one valuation ring. Suppose that $P \subseteq M^2$. Then $\overline{M}_{\overline{\mathfrak{m}}} = \overline{M}_{\overline{\mathfrak{m}}}^2$ implies

$$M_{\mathfrak{m}} = (M_{\mathfrak{m}})^2 + P_{\mathfrak{m}} = (M_{\mathfrak{m}})^2 = M_{\mathfrak{m}}^2.$$

Let \mathfrak{m}_i be another maximal ideal of C. Then $M_{\mathfrak{m}_i} = R_{\mathfrak{m}_i}$ and so $R_{\mathfrak{m}_i} = (M_{\mathfrak{m}_i})^2 = (M^2)_{\mathfrak{m}_i}$. Hence $M = \cap M_{\mathfrak{m}_j} = \cap (M^2)_{\mathfrak{m}_j} = M^2$, which contradicts Lemma 2.8, where \mathfrak{m}_j runs over all maximal ideals of C. Hence $P \not\subseteq M^2$.

Conversely, suppose that $P \not\subseteq M^2$ for any maximal ideal M of R. Let \mathfrak{m} be a maximal ideals of C with $\mathfrak{m} \supset \mathfrak{p}$ and $\mathfrak{n} = \mathfrak{m} \cap D_{\sigma}$, a maximal ideal of D_{σ} . Since $(R_{\mathfrak{n}})_{\mathfrak{m}_{\mathfrak{n}}} = R_{\mathfrak{m}}$ and $(P_{\mathfrak{n}})_{\mathfrak{m}_{\mathfrak{n}}} = P_{\mathfrak{m}}$, we may suppose that P is principal by Lemmas 2.5 and 2.6. It follows from Lemma 2.8 and [MLP, Lemma 3] that $\overline{R}_{\overline{\mathfrak{m}}} = R_{\mathfrak{m}}/P_{\mathfrak{m}}$ is a hereditary prime ring. Hence \overline{R} is a hereditary prime ring by [R, (3.24)].

Summarizing Propositions 2.1, 2.2, and 2.9, we have the following theorem:

Theorem 2.10. Let $R = D[x; \sigma]$ be a skew polynomial ring over a commutative Dedekind domain, where σ is an automorphism of D and let P be a prime ideal of R. Then

(1) *P* is a minimal prime ideal of *R* if and only if either $P = \mathfrak{p}[x; \sigma]$, where \mathfrak{p} is either a non-zero σ -prime ideal of *D* or $P \in \operatorname{Spec}_0(R)$ with $P \neq (0)$.

(2) If $P = \mathfrak{p}[x; \sigma]$, where \mathfrak{p} is a non-zero σ -prime ideal of D, then R/P is a hereditary prime ring. In particular, R/P is a Dedekind prime ring if and only if $\mathfrak{p} \in \operatorname{Spec}(D)$.

(3) If $P \in \operatorname{Spec}_0(R)$ with P = xR, then R/P is a Dedekind prime ring. In particular, if the order of σ is infinite, then P = xR is the only minimal prime ideal belonging to $\operatorname{Spec}_0(R)$.

(4) If $P \in \text{Spec}_0(R)$ with $P \neq xR$ and $P \neq (0)$, then R/P is a hereditary prime ring if and only if $P \nsubseteq M^2$ for any maximal ideal M of R.

3 Examples

Let $D = \mathbb{Z} \oplus \mathbb{Z}i$ be the Gauss integers, where $i^2 = -1$, and let σ be the automorphism of D with $\sigma(a + bi) = a - bi$, where $a, b \in \mathbb{Z}$, the ring of integers.

In this section, we will give some examples of minimal prime ideals of a skew polynomial ring over D, in order to display some of the various phenomena in section 2.

Let p be a prime number. Then the following properties are well known in the elementary number theory:

(1) If p = 2, then $2D = (1+i)^2 D$ and (1+i)D is a prime ideal.

(2) If p = 4n+1, then $pD = \pi\sigma(\pi)D$ for some prime element π with $\pi D + \sigma(\pi)D = D$.

(3) If p = 4n + 3, then pD is a prime ideal of R.

We let $R = D[x; \sigma]$ be the skew polynomial ring, $P = (x^2 + p)R \in \text{Spec}_0(R)$ and $\overline{R} = R/P$.

Lemma 3.1. If p = 2, then \overline{R} is not a hereditary prime ring.

Proof. Let M = (1 + i)D + xR be a maximal ideal of R. Then $M^2 = 2D \oplus (1 + i)Dx \oplus x^2R$ and so $M^2 \ni x^2 + 2$. Hence \overline{R} is not a hereditary prime ring by Theorem 2.10.

In what follows, we suppose that $p \neq 2$ unless otherwise stated. Let M be maximal ideal containing $x^2 + p$. First we will study in the case where $M \ni x$. Then $M = \pi D + xR$ for some prime element π of D with either $pD = \pi\sigma(\pi)D$ and $\pi D + \sigma(\pi)D = D$ if p = 4n + 1 or $pD = \pi D$ if p = 4n + 3.

Lemma 3.2. Let $M = \pi D + xR$ be a maximal ideal of R with $M \supset P$. Then

(1) If p = 4n + 1, then $M^2 \not\supseteq x^2 + p$ and $M = M^2 + P$, that is, \overline{M} is idempotent.

(2) If p = 4n+3, then $M^2 \not\supseteq x^2 + p$ and $M \supset M^2 + P$, that is, \overline{M} is not idempotent.

Proof. (1) It follows that $M^2 = \pi^2 D + xR$, because $D = \pi D + \sigma(\pi)D$. Suppose that $x^2 + p \in M^2$. Then $p \in \pi^2 D$ and so $\sigma(\pi)D = \pi D$ follows, a contradiction. Hence $M^2 \not\supseteq x^2 + p$. Since $\pi D = M \cap D \supseteq (M^2 + P) \cap D \supseteq M^2 \cap D = \pi^2 D$, we have either $(M^2 + P) \cap D = \pi D$ or $(M^2 + P) \cap D = \pi^2 D$. If $(M^2 + P) \cap D = \pi^2 D$, then $M^2 + P \supseteq \pi^2 + x^2 - (x^2 + p) = \pi^2 - p$, which implies $p \in \pi^2 D$, a contradiction as the above. So $(M^2 + P) \cap D = \pi D$ and thus $M^2 + P \supseteq \pi D + xR = M$. Hence $M = M^2 + P$ follows.

(2) It is easy to see that $M^2 \not\supseteq x^2 + p$ since $M^2 = p^2D + pxR + x^2R$. Suppose that $M = M^2 + P$. Then $x \in M^2 + P$ and write $x = p^2d + pxf(x) + x^2g(x) + (x^2 + p)h(x)$, where $d \in D$, $f(x) = \sum f_i x^i$, $g(x) = \sum g_i x^i$ and $h(x) = \sum h_i x^i$, where $f_i, g_i, h_i \in D$. Then $1 = p\sigma(f_0) + ph_1$, a contradiction. Hence $M \supset M^2 + P$.

Next we will study a maximal ideal M with $M \not\supseteq x$.

Lemma 3.3. Let M be a maximal ideal of R with $M \ni x^2 + p$ and $M \not\supseteq x$. Then (1) There is a prime number $q \ (\neq p)$ and a monic polynomial $f(x) \in M$ with M = f(x)R + qR.

(2) If deg $f(x) \ge 2$, then M = P + qR, $M^2 \not\supseteq x^2 + p$ and \overline{M} is not idempotent.

(3) If deg f(x) = 1, then q = 2 and either M = (x+1)R + 2R or M = (x+i)R + 2R.

Proof. (1) Since $M \cap D$ is a non-zero σ -prime ideal, there is a prime number q with $M \cap D = qD$. Set $\widetilde{R} = R/qD[x;\sigma] = \widetilde{D}[x;\widetilde{\sigma}]$, where $\widetilde{D} = D/qD = (\mathbb{Z}/q\mathbb{Z}) \oplus (\mathbb{Z}/q\mathbb{Z})i$, a semi-simple Artinian ring. Since $\widetilde{M} = M/qD[x;\sigma] \not \cong \widetilde{x}$, it follows from [CFH, Lemma 2.6] that $\widetilde{M} = \widetilde{f(x)}\widetilde{R}$ for some monic polynomial $\widetilde{f(x)}$, where $f(x) \in M$. So M = f(x)R + qR and we may suppose that f(x) is monic. It is clear $q \neq p$, because $x \notin M$ and $x^2 + p \in M$.

(2) If deg $f(x) \ge 2$, then $\tilde{x}^2 + \tilde{p} = \tilde{f(x)}d$ for some $d \in D$ and so $\tilde{d} = \tilde{1}$. Hence $\tilde{M} = (\tilde{x}^2 + \tilde{p})\tilde{R}$ and thus $M = (x^2 + p)R + qR = P + qR$. Suppose that $x^2 + p \in M^2$. Then $\tilde{M} = \tilde{M}^2$, a contradiction, because \tilde{M} is principal. Hence $x^2 + p \notin M^2$. Since $M^2 + P = q^2R + P$, it follows that $\overline{M} = \overline{qR} \supset \overline{M}^2 = \overline{q}^2\overline{R}$ and so \overline{M} is not idempotent.

(3) Suppose that deg f(x) = 1. Then $\widetilde{f(x)} = \widetilde{x} + \widetilde{\alpha}$ for some nonzero $\widetilde{\alpha} \in \widetilde{D}$. Since $\widetilde{M} = (\widetilde{x} + \widetilde{\alpha})\widetilde{R}$ is an ideal, we have $\widetilde{i}(\widetilde{x} + \widetilde{\alpha}) = (\widetilde{x} + \widetilde{\alpha})\widetilde{\beta}$ for some $\beta = a + bi \in D$ with $\widetilde{\beta} \neq \widetilde{0}$ and so $\widetilde{i} = \widetilde{\sigma}(\widetilde{\beta})$ and $\widetilde{i}\widetilde{\alpha} = \widetilde{\alpha}\widetilde{\beta}$. Thus $\widetilde{a} = \widetilde{0}$ and $2\widetilde{b} = \widetilde{0}$. Hence q = 2 follows. Then note that $\widetilde{D}[x;\widetilde{\sigma}] = \widetilde{D}[x]$, the polynomial ring over \widetilde{D} . Since $\widetilde{D} = \{\widetilde{0}, \widetilde{1}, \widetilde{i}, \widetilde{i+1}\}, f(x)$ is one of $\{x+1, x+i, x+i+1\}$. Let M = (x+i+1)R+2R.

Since $D = \{0, 1, i, i+1\}, f(x)$ is one of $\{x+1, x+i, x+i+1\}$. Let M = (x+i+1)R+2R. Then $\widetilde{M} \ni (x+i+1)(x-i-1) = \widetilde{x}^2$ and so $M \ni x$. Hence we do not need to consider the maximal ideal (x+i+1)R+2R. If M = (x+1)R+2R, then it is easy to see that $M \not\supseteq x$, because $\widetilde{M} = (x+1)\widetilde{R}$. Let p = 2l+1 (note $p \neq 2$). Then $M \ni (x+1)^2 + 2(l-x) = x^2 + p$. Similarly we can prove that $(x+i)R + 2R \not\supseteq x$ and $(x+i)R + 2R \ni x^2 + p$.

From the proof of Lemma 3.3, we have

Remark. M = (x + 1)R + 2R and N = (x + i)R + 2R are both maximal ideals of R containing $x^2 + p$.

Lemma 3.4. If p = 4n + 3, then \overline{R} is not a hereditary prime ring.

Proof. Let M = (x+1)R + 2R, a maximal ideal of R. Then $M^2 \ni (x+1)^2 - 2(x+1) + 4(n+1) = x^2 + p$. Hence \overline{R} is not a hereditary prime ring by Theorem 2.10.

Lemma 3.5. If p = 4n + 1, then \overline{R} is a hereditary prime ring, but not a Dedekind prime ring.

Proof. Let M = (x+1)R + 2R and N = (x+i)R + 2R, the maximal ideals of

R. By Lemmas 3.2, 3.3 and Theorem 2.10, it suffices to prove that $M^2 \not\supseteq x^2 + p$ and $N^2 \not\supseteq x^2 + p$.

First we will prove that $M^2 \not\supseteq x^2 + p$. Suppose, on the contrary, that $M^2 \supseteq x^2 + p$. Then since $M^2 = (x+1)^2 R + 2(x+1)R + 4R$, considering R/4R, and using the same notation in R, we may suppose that

$$x^{2} + 1 = (x^{2} + 2x + 1)f(x) + 2(x + 1)g(x)$$

for some $f(x) = f_n x^n + \cdots + f_1 x + f_0$ and $g(x) = g_{n+1} x^{n+1} + \cdots + g_1 x + g_0$, where $f_i, g_j \in D$. Comparing the coefficients of x^j $(0 \le j \le n+2)$, we have

$$1 = f_0 + 2g_0,$$

$$0 = 2\sigma(f_0) + f_1 + 2\sigma(g_0) + 2g_1,$$

$$1 = f_0 + 2\sigma(f_1) + f_2 + 2\sigma(g_1) + 2g_2,$$

$$0 = f_{j-2} + 2\sigma(f_{j-1}) + f_j + 2\sigma(g_{j-1}) + 2g_j \ (2 \le j \le n),$$

$$0 = f_{n-1} + 2\sigma(f_n) + 2\sigma(g_n) + 2g_{n+1},$$

$$0 = f_n + 2\sigma(g_{n+1}).$$

Here if $\deg f(x) = 0$, then $f_1 = f_2 = g_2 = 0$, and if $\deg f(x) = 1$, then $f_2 = 0$. Adding the coefficients of x^{2j} and x^{2j+1} , respectively, we have the following equations: Case 1, n is even number, say, n = 2l.

$$2 = 2\left(\sum_{j=0}^{l} f_{2j} + \sum_{j=1}^{l} \sigma(f_{2j-1})\right) + 2\left(\sum_{j=0}^{l} g_{2j} + \sum_{j=1}^{l+1} \sigma(g_{2j-1})\right)$$
(1)

and

$$0 = 2\left(\sum_{j=0}^{l} \sigma(f_{2j}) + \sum_{j=1}^{l} f_{2j-1}\right) + 2\left(\sum_{j=0}^{l} \sigma(g_{2j}) + \sum_{j=1}^{l+1} g_{2j-1}\right)$$
(2)

Set $\alpha = \sum_{j=0}^{l} f_{2j}$, $\beta = \sum_{j=1}^{l} f_{2j-1}$, $\gamma = \sum_{j=0}^{l} g_{2j}$, and $\delta = \sum_{j=1}^{l+1} g_{2j-1}$. Then adding (1) to (2), we have $2 = 2(\alpha + \sigma(\alpha) + \beta + \sigma(\beta) + \gamma + \sigma(\gamma) + \delta + \sigma(\delta)) = 4c$ for some $c \in \mathbb{Z}$, a contradiction. Hence $M^2 \not\supseteq x^2 + p$. Case 2, n = 2l + 1,

$$2 = 2\left(\sum_{j=0}^{l} f_{2j} + \sum_{j=1}^{l+1} \sigma(f_{2j-1})\right) + 2\left(\sum_{j=0}^{l+1} g_{2j} + \sum_{j=1}^{l+1} \sigma(g_{2j-1})\right)$$
(3)

and

$$0 = 2\left(\sum_{j=0}^{l} \sigma(f_{2j}) + \sum_{j=1}^{l+1} f_{2j-1}\right) + 2\left(\sum_{j=0}^{l+1} \sigma(g_{2j}) + \sum_{j=1}^{l+1} g_{2j-1}\right).$$
(4)

Adding (3) to (4), we have 2 = 4d for some $d \in \mathbb{Z}$, a contradiction. Hence $M^2 \not\supseteq x^2 + p$.

Next suppose that $N^2 \ni x^2 + p$. Since $N^2 = (x^2 - 1)R + 2(x + i)R + 4R$, as before, we may suppose that

$$x^{2} + 1 = (x^{2} - 1)h(x) + 2(x + i)k(x)$$

for some $h(x) = h_n x^n + \dots + h_1 x + h_0$ and $k(x) = k_{n+1} x^{n+1} + \dots + k_1 x + k_0$, where $h_i, k_j \in D$. Comparing the coefficients of $x^j \quad (0 \le j \le n+2)$, we have

$$1 = -h_0 + 2k_0 i,$$

$$0 = -h_1 + 2\sigma(k_0) + 2k_1 i,$$

$$1 = (h_0 - h_2) + 2\sigma(k_1) + 2k_2 i,$$

$$0 = h_{j-2} - h_j + 2\sigma(k_{j-1}) + 2k_j i \ (3 \le j \le n),$$

$$0 = h_{n-1} + 2\sigma(k_n) + 2k_{n+1} i,$$

$$0 = h_n + 2\sigma(k_{n+1}).$$

Here if n = 0, then $h_1 = h_2 = k_2 = 0$ and if n = 1, then $h_2 = h_3 = k_3 = 0$. Adding the coefficients of x^{2j} and x^{2j+1} , respectively, we have the following equations: Case 1, n = 2l,

$$2 = 2i\left(\sum_{j=0}^{l} k_{2j}\right) + 2\left(\sum_{j=0}^{l} \sigma(k_{2j+1})\right)$$
(5)

$$0 = 2\left(\sum_{j=0}^{l} \sigma(k_{2j})\right) + 2i\left(\sum_{j=0}^{l} k_{2j+1}\right)$$
(6)

Operating σ to (6) and multiplying it by i,

$$0 = 2i \left(\sum_{j=0}^{l} k_{2j} \right) + 2 \left(\sum_{j=0}^{l} \sigma(k_{2j+1}) \right)$$
(7)

Adding (5) to (7), we have $2 = 4i \left(\sum_{j=0}^{l} k_{2j} \right) + 4\sigma \left(\sum_{j=0}^{l} k_{2j+1} \right)$, a contradiction. Case 2, n = 2l + 1,

$$2 = 2i \left(\sum_{j=0}^{l+1} k_{2j} \right) + 2 \left(\sum_{j=0}^{l} \sigma(k_{2j+1}) \right)$$
(8)

$$0 = 2\left(\sum_{j=0}^{l+1} \sigma(k_{2j})\right) + 2i\left(\sum_{j=0}^{l} k_{2j+1}\right)$$
(9)

Thus, by the same way as in the case n = 2l, $2 = 4i\left(\sum_{j=0}^{l+1} k_{2j}\right) + 4\sigma\left(\sum_{j=0}^{l} k_{2j+1}\right)$, a contradiction. Hence $N^2 \not\supseteq x^2 + p$, which complete the proof.

Lemma 3.6. Let $S = \{2^i | i = 0, 1, 2, \dots\}$ be the central multiplicative set in R and let M be a maximal ideal of R with $M \cap S = \emptyset$ and $M \supset P$. Then

- (1) $M^2 \supseteq P$ if and only if $M_S^2 \supseteq P_S$.
- (2) $M^2 + P = M$ if and only if $(M^2 + P)_S = M_S$.

Proof. (1) If $M^2 \supseteq P$, then it is clear that $(M^2)_S \supseteq P_S$. Conversely suppose $M_S^2 \supseteq P_S$. Then there is an $s \in S$ with $sP \subseteq M^2$. Since sR + M = R, we have $P = (sR + M)P \subseteq M^2$.

(2) This is proved in the same way as in (1).

Summarizing Lemmas $3.1 \sim 3.6$, we have

Proposition 3.7. Let p be a prime number and $P = (x^2 + p)R$. Then

(1) If p = 2, then \overline{R} is not a hereditary prime ring.

(2) If p = 4n + 3, then \overline{R} is not a hereditary prime ring and $\overline{R}_S = R_S/P_S$ is a Dedekind prime ring, where $S = \{2^i | i = 0, 1, 2, \cdots\}$.

(3) If p = 4n + 1, then \overline{R} is a hereditary prime ring but not a Dedekind prime ring.

Proof. (1) This follows from Lemma 3.1

(2) By Lemma 3.4, R is not a hereditary prime ring. Let M be a maximal ideal of R with $M \supset P$ and $M \cap S = \emptyset$. Then, by Lemmas 3.2, 3.3 and 3.6, $(M^2)_S \not\supseteq P_S$ and $\overline{M}_S \supset \overline{M}_S^2$. Hence \overline{R}_S is a Dedekind prime ring by [MR, (5.6.3)].

(3) \overline{R} is a hereditary prime ring but not Dedekind by Lemma 3.5.

We will end the paper with two remarks.

(1) Let $P = \mathfrak{p}[x; \sigma]$ be a minimal prime ideal of R, where \mathfrak{p} is a non-zero σ -prime ideal of D. Then there is a prime number p with $\mathfrak{p} = pD$. If p = 4n + 1, then $\overline{R} = R/P$ is a hereditary prime ring but not Dedekind. If p = 4n + 3, then $\overline{R} = R/P$ is a Dedekind prime ring.

(2) Let $P' = (x^2 + \frac{1}{2})K[x;\sigma] \in \operatorname{Spec}_0(K[x;\sigma])$, where $K = \mathbb{Q} \oplus \mathbb{Q}i$ and \mathbb{Q} is the field of rational numbers. Then $P = P' \cap R = (2x^2 + 1)R \in \operatorname{Spec}_0(R)$ and $2x^2 + 1$ is not a monic polynomial (as it has been mentioned in the introduction, Hillman only considered monic polynomials).

References

- [A] E.Artin, *Galois Theory*, University of Notre Dame Press, 1944.
- [C] M.Chamarie, Anneaux de Krull non commutatifs, J. Algebra, 72 (1981), 210-222.
- [CFH] W.Cortes, M.Ferrero, Y.Hirano and H.Marubayashi, *Partial skew polynomial* rings over semi-simple Artinian rings, to appear in Comm.in Algebra.
 - [CS] J.H.Cozzens and F.L.Sandomierskis, Maximal orders and localization I, J. Algebra, 44 (1977), 319-338.
 - [ER] D.Eisenbud and J.C.Robson, *Hereditary Noetherian prime rings*, J. Algebra, 16 (1970), 86-104.
 - [G] R.Gilmer, Multiplicative Ideal Theory, Queen's Papers in Pure and Applied Mathematics, 90 (1992), Kingston Ontario Canada.
- [GW] K.R. Goodearl and R.B Warfield, JR, An Introduction to Noncommutative Noetherian rings, London Mathematical Society Student Texts, 16 (1989).

- [H] J.A.Hillman, Polynomials determining Dedekind domains, Bull. Austral. Math. Soc. 29 (1984), 167-175
- [HL] C.R. Hajarnavis and T.H. Lenagan, Localization in Asano orders, J.Algebra, 21 (1972), 441-449.
 - [J] N.Jacobson, *Pseudo-linear transformations*, Annals of Math., **38** (1937), 484-507.
- [M₁] H. Marubayashi, A Krull type generalization of HNP rings with enough invertible ideals, Comm. in Algebra, 11(5) (1983), 469-499.
- [M₂] H. Marubayashi, *Ore extensions over total valuation rings*, to appear in Algebras and Representation Theory.
- [MLP] H. Marubayashi, Y. Lee and J.K. Park, *Polynomials determining hereditary prime PI-rings*, Comm. in Algebra, **20**(9), (1992), 2503-2511.
- [MMU] H. Marubayashi, H. Miyamoto and A. Ueda, Non-commutative Valuation Rings and Semi-Hereditary Orders, K-Monog. Math. 3, Kluwer Academic Publisher, 1997.
 - [MR] J.C. McConnell and J.C. Robson, Noncommutative Noetherian Rings, Wiley-Interscience, New York, 1987.
 - [PR] J.K. Park and K.W. Roggenkamp, A note on hereditary rings, Comm. in Algebra, 17(6), (1989), 1477-1493.
 - [PS] K.R. Pearson and W. Stephenson, A skew polynomial ring over a Jacobson ring need not be a Jacobson ring, Comm. in Algebra, 5(8), (1977), 783-794.
 - [R] I. Reiner, *Maximal Order*, Academic Press, New York, 5, 1975.
 - [Ro] L. Rowen, *Ring Theory I*, Academic Press, New York, **127**, 1988.
 - [ZS] O. Zariski and P. Samuel, Commutative Algebra I, Van Nostrand, Princeton, N.J., 1958.