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Abstract

This paper is concerned with prime factor rings of a skew polynomial ring over
a commutative Dedekind domain. Let P be a non-zero prime ideal of a skew
polynomial ring R = D[x;σ], where D is a commutative Dedekind domain and
σ is an automorphism of D. If P is not a minimal prime ideal of R, then R/P
is a simple Artinian ring. If P is a minimal prime ideal of R, then there are
two different types of P , namely, either P = p[x;σ] or P = P ′ ∩ R, where p is
a σ-prime ideal of D, P ′ is a prime ideal of K[x;σ] and K is the quotient field
of D. In the first case R/P is a hereditary prime ring and in the second case,
it is shown that R/P is a hereditary prime ring if and only if M2 + P for any
maximal ideal M of R. We give some examples of minimal prime ideals such
that the factor rings are not hereditary or hereditary or Dedekind, respectively.
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Let D be a commutative Dedekind domain with its quotient field K and let σ be
an automorphism of D. We denote by R = D[x; σ] the skew polynomial ring over D
in an indeterminate x.

The aim of the paper is to study the structure of the prime factor ring R/P for any
prime ideal P of R, which is one of the ways to investigate the structure of rings. If P
is not a minimal prime ideal of R, then the Krull dimension of R/P is zero([MR]), that
is, it is a simple Artinian ring. So we can restrict to the case P is a minimal prime ideal
of R. There are two types of minimal prime ideals P of R, that is, either P = p[x; σ]
or P = P ′ ∩ R, where p is a non-zero σ-prime ideal of D and P ′ is a non-zero prime
ideal of K[x; σ]. In the first case R/P is always a hereditary prime ring. In the second
case R/P is a hereditary prime ring if and only if P * M2 for any maximal ideal M of
R, which is motivated by [H] and he only considered in the case where P is principal
generated by a monic polynomial and σ = 1 (note that in this case, P is a minimal
prime ideal and see [PR] and [MLP] for related papers). We give some examples of
minimal prime ideals P such that R/P is not hereditary or hereditary or Dedekind,
respectively, by using Gauss’s integers D = Z⊕ Zi, where Z is the ring of integers.

We refer the readers to [MR] and [MMU] for some known terminologies not defined
in this paper.

1 Notes on hereditary prime PI rings

Through out this section, let R be a hereditary prime PI ring with the center C and
let Q be the quotient ring of R, which is a simple Artinian ring. It is well known that
R is a classical C-order in Q and that C is a Dedekind domain (see [MR, (13.9.16)]).

In this section, we will shortly discuss some relations between the maximal ideals
of R and C, which are used in latter sections. For any R-ideal A, we use the following
notation:

(R : A)l = {q ∈ Q | qA ⊆ R}, (R : A)r = {q ∈ Q | Aq ⊆ R},

(A : A)l = {q ∈ Q | qA ⊆ A} = Ol(A), the left order of A,

(A : A)r = {q ∈ Q | Aq ⊆ A} = Or(A), the right order of A,

and
Av =

(
R : (R : A)l

)
r

, vA =
(
R : (R : A)r

)
l
,

which are both R-ideals containing A. Note that Av = A = vA, because R is a
hereditary prime ring. A finite set of distinct idempotent maximal ideals M1, . . . ,Mm

of R such that Or(M1) = Ol(M2), . . . , Or(Mm) = Ol(M1) is called a cycle. We will also
consider an invertible maximal ideal to be a trivial case of a cycle.

It is well known that an ideal P is a maximal invertible ideal if and only if
P = M1 ∩ . . . ∩ Mm, where M1, . . . ,Mm is a cycle (see [ER, (2.5) and (2.6)]). Let
P be a maximal invertible ideal. Then C(P ) = {c ∈ R | c is regular mod P} is a
regular Ore set and we denote by RP the localization of R at P (see [M1, proposition
2.7]). We denote by Spec(R) and Max-in(R) the set of all prime ideals and the set of
all maximal invertible ideals, respectively. For any ring S, J(S) stands for Jacobson
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radical of S.

Lemma 1.1. (1) Let P ∈ Max-in(R) and let p = P ∩ C. Then p ∈ Spec(C).
(2) C is a discrete rank one valuation ring if and only if J(R) of R is the intersec-

tion of a cycle.

Proof. (1) Let P = M1 ∩ . . . ∩ Mm ∈ Max-in(R). If m = 1, then p = P ∩ C ∈
Spec(C). If m ≥ 2, then Mi are all idempotents. Set p = M1 ∩ C, then M1 ⊇ pR, an
invertible ideal. So

(R : M2)l = Ol(M2) = Or(M1) = (R : M1)r ⊆ (R : pR)r = (R : pR)l

imply
M2 = (M2)v = (R : (R : M2)l)r ⊇ (R : (R : pR)l)r = pR.

Thus M2 ∩ C = p follows. Continuing this process, we have P ∩ C = p.
(2) Suppose that C is a discrete rank one valuation ring with J(C) = p, the unique

maximal ideal. Then J(R) ⊇ pR (see [R, (6.15)]). So J(R) is invertible by [ER, (4.13)].
Let J(R) = P1 ∩ . . . ∩ Pk, where Pi ∈ Max-in(R). It suffices to prove that k = 1. We
assume that k ≥ 2. Then RP1 ⊃ R and Z(RP1) ⊇ Z(R) = C, where Z(RP1) is the
center of RP1 , so that Z(RP1) = C. Since RP1 is a finitely generated C-module (see
[MR, (13.9.16)]), there is a c ∈ C(P1) with RP1 = cRP1 ⊆ R, a contradiction.
Hence k = 1 and so J(R) is the intersection of a cycle.
Suppose that J(R) is the intersection of a cycle. Then p = J(R) ∩ C ∈ Spec(C) by
(1). Let p1 ∈ Spec(C). Then p1R = J(R)l for some l ≥ 1 by [ER, (2.1)] and the
assumption. It follows that p1 ⊆ J(R) ∩ C = p and so p1 = p, that is, C is a discrete
rank one valuation ring.

The following proposition is just a generalization of a Dedekind C-order to a hered-
itary prime PI ring (see, [R, (22.4)]).

Proposition 1.2. Suppose that R is a hereditary prime PI ring. Then there is a one-
to-one correspondence between Max-in(R) and Spec(C), which is given by: P −→ p =
P ∩ C, where P ∈ Max-in(R).

Proof. Let P ∈ Max-in(R). Then p = P ∩ C ∈ Spec(C) by Lemma 1.1.
Conversely, let p ∈ Spec(C). Then there is a maximal ideal M of R containing pR,
an invertible ideal. So there is a P ∈ Max-in(R) with P ⊇ pR by [ER, (2.4)]. This
shows P ∩C = p by lemma 1.1. To prove the correspondence is one-to-one, let P, P1 ∈
Max-in(R) with P ∩ C = p = P1 ∩ C. Then Pp, P1p ∈ Max-in(Rp) and Z(RP ) = Cp,
a discrete rank one valuation ring. Thus Pp = J(Rp) = P1p by lemma 1.1 and so
P = Pp ∩R = P1p ∩R = P1. Hence the correspondence is one-to-one.

2 Prime factor rings of skew polynomial rings

Throughout this section, let D be a commutative Dedekind domain with its quotient
field K and σ be an automorphism of D. We always assume that D 6= K to avoid the
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trivial case. Let R = D[x; σ], a skew polynomial ring over D.
The aim of this section is to study the structure of the factor rings of R by minimal

prime ideals. It is well known that R is a Noetherian maximal order in K(x; σ), the
quotient ring of K[x; σ] and gl.dim R = 2 (see [C. Proposition 3.3] and [MR, (7.5.3)]).
We denote by Spec0(R) = {P ∈ Spec(R) | P ∩D = (0)}. It is well known that there
is a one-to-one correspondence between Spec0(R) and Spec(K[x; σ]), which is given by
P −→ P ′ = PK[x; σ] and P ′ −→ P ′ ∩R, where P ∈ Spec0(R) and P ′ ∈ Spec(K[x; σ])
(see [GW, (9.22)]).

We start with the following easy proposition.

Proposition 2.1. (1) {p[x; σ], P | p is a σ-prime ideal of D and P ∈ Spec0(R) with
P 6= (0)} is the set of all minimal prime ideals of R.

(2) Let P ∈ Spec(R) with P 6= (0). Then P is invertible if and only if it is a
minimal prime ideal of R.

Proof. (1) Let P be a minimal prime ideal of R and let p = P ∩D. If p = (0), then
P ∈ Spec0(R). If p 6= (0), then there are two cases; namely, either x ∈ P or x /∈ P .
Suppose that x ∈ P . Then P = p + xR ⊃ xR, a prime ideal, which is a contradiction.
So x /∈ P . Then p is a σ-prime ideal of D and p[x; σ] is a prime ideal of R. Hence
P = p[x; σ] follows.
Conversely, let P ∈ Spec0(R). Then P is a minimal prime ideal of R, because P ′ =
PK[x; σ] is a maximal ideal as well as a minimal prime ideal of K[x; σ]. Let P = p[x; σ],
where p is a σ-prime ideal. Then P is invertible, because p is invertible and so P is a
v-ideal. Hence P is a minimal prime ideal of R (see [MR, (5.1.9)]).

(2) Let P be a prime and invertible ideal. Then it is a v-ideal and so it is a minimal
prime ideal (see [MR,(5.1.9)]).
Conversely, let P be a minimal prime ideal. If P = p[x; σ], where p is a σ-prime ideal
of D. Then P is invertible. If P ∈ Spec0(R), with P 6= (0) and P ′ = PK[x; σ], then
since any ideal of K[x; σ] is a v-ideal and R is Noetherian, we have

P ′ = P ′
v =

(
K[x; σ] : (K[x; σ] : P ′)l

)
r

=
(
K[x; σ] : K[x; σ](R : P )l

)
r

=
(
R : (R : P )l

)
r
K[x; σ] = PvK[x; σ].

Thus P = P ′ ∩ R = Pv follows and similarly P = vP . Hence P is invertible by [CS,
p.324].

Proposition 2.2. (1) Let P be a minimal prime ideal of R with P = p[x; σ], where
p is a σ-prime ideal of D. Then R/P is a hereditary prime ring. In particular, R/P
is a Dedekind prime ring if and only if p ∈ Spec(D).

(2) Suppose that σ is of infinite order. Then P = xR is the only minimal prime
ideal of R in Spec0(R) and R/P is a Dedekind prime ring.

Proof. (1) The first statement follows from [MR, (7.5.3)].
If p ∈ Spec(D). Then (R/P ) ∼= (D/p)[x; σ] is a principal ideal ring so that R/P is a
Dedekind prime ring. If p /∈ Spec(D), then there is a maximal ideal m of D with m ⊃ p

and p = m ∩ σ(m) ∩ . . . ∩ σn(m) for some natural number n ≥ 1. Set M = m + xR, a
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maximal ideal of R. Then M = M2+P , because m2+p = m. Thus M/P is idempotent
and R/P is not Dedekind.

(2) Let P = xR. Then P is the only minimal prime ideal of R in Spec0(R) by [J,
Theorem 2] and R/P is a Dedekind prime ring because (R/P ) ∼= D.

Because of Propositions 2.1 and 2.2, we may assume that σ is of finite order to
study the hereditaryness of R/P . So in the remainder of this section, we may assume
that σ is of finite order, say, n.

It is well known that K is separable over Kσ = {k ∈ K | σ(k) = k} and [K : Kσ] = n
(see [A, Theorems 14 and 15]). Furthermore, Dσ = {d ∈ D | σ(d) = d} is also
Dedekind domain by [G, (36.1) and (37.2)] and D is a finitely generated Dσ-module
by [ZS, Corollary 1, p.265]. Since the center Z(R) of R is Dσ[xn], it follows that R is
a finitely generated C-module, where C = Dσ[xn]. Thus R is a classical C-order in
K(x; σ) and so R is a prime PI ring with K(R) = dim(R) = 2 (see[MR, (6.4.8) and
(6.5.4.)]), where K(R) is the Krull dimension of R and dim(R) is the classical Krull
dimension of R.

The following lemma is due to [Ro, (1.6.27)].

Lemma 2.3. Let σ be an automorphism of K with order n. Then
(1) there is a one-to-one correspondence between Spec(K[x; σ]) and Spec(Kσ[xn]),

which is given by P ′ −→ p′ = P ′ ∩Kσ[xn], where P ′ ∈ Spec(K[x; σ]).
(2) If P ′ = xK[x; σ], then p′ = xnKσ[xn] and p′K[x; σ] = P ′n. If P ′ 6= xK[x; σ],

then p′ = f(xn)Kσ[xn] for some irreducible polynomial f(xn) in Kσ[xn] different from
xn and p′K[x; σ] = P ′.

Lemma 2.4. Let σ be an automorphism of D with order n. Then
(1) There is a one-to-one correspondence between Spec0(R) and Spec0(C), which

is given by P −→ p = P ∩ C, where P ∈ Spec0(R).
(2) If P = xR, then P n = pR, where p = P ∩ C. If P 6= xR, then P = pR, where

p = P ∩ C.

Proof. (1) Let P ∈ Spec0(R). Then it is clear that p = P ∩ C ∈ Spec0(C).
Conversely, let p ∈ Spec0(C). If p 6= xnC, then P = pK[x; σ] ∩ R ∈ Spec0(R) by
Lemma 2.3 and [GW, (9.22)], and so p ⊆ p1 = P ∩ C ∈ Spec0(C). Hence p = p1 by
Proposition 2.1. If p = xnC, then P = xR ∈ Spec0(R) with p = P ∩ C. Hence the
correspondence is onto.
To prove the correspondence is one to one, let P and P1 ∈ Spec0(R) with P ∩C = p =
P1 ∩ C. We may assume that P 6= xR and P1 6= xR. Then PK[x; σ] and P1K[x; σ]
both contain pK[x; σ] ∈ Spec(K[x; σ]) and so PK[x; σ] = pK[x; σ] = P1K[x; σ] follows.
Hence P = PK[x; σ] ∩R = P1.

(2) P ∈ Spec0(R) with p = P ∩ C. If P = xR then P n = pR where p = xnC.
Suppose that P 6= xR. Let P1 be an invertible prime ideal containing pR. By Propo-
sition 2.1, P1 is a minimal prime ideal of R. So either P1 = p1[x; σ], where p1 is
a σ-prime ideal of D or P1 ∈ Spec0(R) by Proposition 2.1. If P1 = p1[x; σ], then
P1 ∩C = (p1)σ[xn], a minimal prime ideal of C[xn], where (p1)σ = p1 ∩Dσ, containing
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p so that p = (p1)σ[xn], a contradiction, because P ∈ Spec0(R). Hence P1 ∈ Spec0(R).
It follows that p1 = P1 ∩C ⊇ p and so p1 = p. Hence P = P1 by (1). Since the invert-
ible ideal pR is a finite product of invertible prime ideals (see [ CS, Theorem 1.6 and
Proposition 2.3]), we have pR = P e for some e ≥ 1. Then pK[x; σ] = P eK[x; σ] = P ′e

implies e = 1. Hence P = pR follows.

Lemma 2.5. Let P ∈ Spec0(R) with P 6= xR. Then Pn is principal generated by a
central polynomial in Cn for any n ∈ Spec(Dσ).

Proof. Let p = P ∩C. Then pn is principal by [M2, (3.1)], because Cn = (Dσ)n[x
n]

and (Dσ)n is a discrete rank one valuation ring. Hence Pn is principal generated by a
central element in Cn by Lemma 2.4.

Lemma 2.6. Let P ∈ Spec0(R) with P 6= xR. Then the following are equivalent:
(1) P * M2 for any maximal ideal M of R.
(2) Pn * (Mn)

2 for any n ∈ Spec(Dσ) and for any maximal ideal M of R with
M ∩ (Dσ \ n) = ∅.

Proof. (1) ⇒ (2): Suppose that there is an n ∈ Spec(Dσ) and a maximal ideal M
of R with M ∩ (Dσ \ n) = ∅ satisfying Pn ⊆ (Mn)

2. Then there is a c ∈ Dσ \ n with
cP ⊆ M2 ⊆ M , which implies P ⊆ M and cR+M = R. Hence P = (cR+M)P ⊆ M2,
a contradiction. Hence, for any n ∈ Spec(Dσ) and any maximal ideal M of R with
M ∩ (Dσ \ n) = ∅, Pn * (Mn)

2.
(2) ⇒ (1): Suppose that there is a maximal ideal M of R with P ⊆ M2. Then

M ∩D 6= (0) by Proposition 2.1 and so n = M ∩Dσ 6= (0), which is a prime ideal of
Dσ with M ∩ (Dσ \ n) = ∅. By the assumption, Pn * (M2)n = M2

n , a contradiction.
Hence P * M2 for any maximal ideal M of R.

Lemma 2.7. Let P ∈ Spec0(R) with P 6= xR and p = P ∩C. Then Z(R/P ) = (C/p).

Proof. Since Z(R/P ) = Z
(
K[x; σ]/P ′) ∩ (R/P ), it suffices to prove that

Z
(
K[x; σ]/P ′) =

(
Kσ[xn]/p′

)
, where p′ = Kσ[xn] ∩ P ′. We set K[x; σ] = K[x; σ]/P ′.

It is clear that Z
(
K[x; σ]

)
⊇

(
Kσ[xn]/p′

)
. To prove the converse inclusion, let f(xn) ∈

Kσ[xn] be a monic polynomial with P ′ = f(xn)K[x; σ] and degf(xn) = nl. Write

f(xn) = xnl + al−1x
n(l−1) + · · ·+ a1x

n + a0, where ai ∈ Kσ.

Suppose that a0 = 0. Then f(xn) = h(xn)xn, where h(xn) = xn(l−1) + · · · + a1, shows
that P ′ ⊆ xK[x; σ] and so P ′ = xK[x; σ], a contradiction. So we may assume that
a0 6= 0. Note that

K[x; σ] ∼= K ⊕Kx⊕ . . .⊕Kxnl−1,

as a ring and that
xnl = −

(
al−1x

n(l−1) + · · ·+ a1x
n + a0

)
.

Let g(x) = bnl−1x
nl−1 + · · · + b1x + b0 be any element in Z

(
K[x; σ]

)
, where bi ∈ K.

Then, for any k ∈ K, kg(x) = g(x)k implies biσ
i(k) = bik for any i, 0 ≤ i ≤ nl − 1.
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Suppose that there is an i with bi 6= 0 and i = nj + s (1 ≤ s < n). Then biσ
s(k) = bik

and so σs(k) = k for all k ∈ K, a contradiction. Thus if bi 6= 0 , then i = nj,
0 ≤ j ≤ l − 1. Next

g(x)x = b0x + b1x
2 + · · ·+ bnl−2x

nl−1 + bnl−1

(
− al−1x

n(l−1) − · · · − a1x
n − a0

)
and

xg(x) = σ(b0)x+σ(b1)x
2+ · · ·+σ(bnl−2)x

nl−1+σ(bnl−1)
(
−al−1x

n(l−1)−· · ·−a1x
n−a0

)
.

Since xg(x) = g(x)x, comparing the coefficients, we have σ(bnl−1) = bnl−1, that is,
bnl−1 ∈ Kσ and so σ(bi) = bi for all 0 ≤ i ≤ nl − 2. Thus we have

g(x) = b0 + bnx
n + · · ·+ bn(l−1)x

n(l−1) and bi ∈ Kσ.

Hence g(x) ∈
(
Kσ[xn]/p′

)
.

Let P ∈ Spec0(R) with P 6= xR. Since Z(R/P ) = (C/p) ⊇ Dσ naturally, it follows
from [R, (3.24)] that R/P is a hereditary prime ring if and only if (R/P )n

( ∼= Rn/Pn

)
is a hereditary prime ring for any n ∈ Spec(Dσ).
Let m be any maximal ideal of C with m ⊃ p. By lying over and going up theorems
(see [MR, (10.2.9) and (10.2.10)]), there is a maximal ideal M of R with M ∩ C = m

and M ⊃ P . Set J =
⋂
{M | M is a maximal ideal of R with m = M ∩ C}. Since

dim(R/J) = K(R/J) < K(R) = 2, M/J is a minimal prime ideal of R/J and J is a
finite intersection of those M ’s, that is, J = M1 ∩ . . . ∩ Mk (see [CH, Lemma 1.16]).
Thus we have the following lemma.

Lemma 2.8. With the notation above, the following hold:
(1) P * M2

i if and only if Pm * M2
im.

(2) Mi ⊃ M2
i for any i (1 ≤ i ≤ k).

(3) gl.dim Rm = 2 and J(Rm) = M1m ∩ . . . ∩Mkm.

Proof. (1) This is proved in the same way as in [MLP, Lemma 2].
(2) Set M = Mi and m0 = M ∩ D 6= (0), because M ⊃ P . If x ∈ M , then

M = m0 + xR and m0 is a maximal ideal of D with m0 ⊃ m2
0. Thus M2 ⊆ m2

0 + xR ⊂
m0 + xR = M . If x /∈ M , then m0 is a σ-prime ideal and D/m0 is a semi-simple
Artinian ring. Since M ⊇ m0[x; σ], we have

M̃ =
(
M/m0[x; σ]

)
⊂ R̃ =

(
R/m0[x; σ]

) ∼= (D/m0)[x; σ̃],

which is hereditary by [MR, (7.5.3)]. Since x̃ /∈ M̃ , M̃ is principal by [CFH, Lemma

2.6]. So (M̃)2 ⊂ M̃ and thus M2 ⊂ M follows.
(3) It follows that 2 = gl.dimR ≥ gl.dimRm. If gl.dim Rm ≤ 1, then Rm is heredi-

tary, which is implies Mm = Pm. Hence M = Mm ∩ R = Pm ∩ R = P , a contradiction.
Hence gl.dim Rm = 2. Since Rm is a PI ring with the maximal ideals M1m, . . . ,Mkm, it
is clear that J(Rm) = M1m ∩ · · · ∩Mkm.

Proposition 2.9. Let σ be an automorphism of D with order n and let P ∈ Spec0(R)
with P 6= xR. Then R = R/P is a hereditary prime ring if and only if P * M2 for
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any maximal ideal M of R.

Proof. First note that Z(R) = C = (C/p) by Lemma 2.7, where p = P ∩ C.
Suppose that R is a hereditary prime ring. Then C is a Dedekind domain (see [MR,
(13.9.16)]. Let M be a maximal ideal of R. If P * M , then P * M2. So we may
assume that P ⊆ M . In order to prove P * M2, we may assume that P is principal
generated by a central element by Lemmas 2.5 and 2.6 and let m = M ∩C, a maximal
ideal of C properly containing p. Then there are a finite number of maximal ideals
M1, . . . ,Mk of R lying over m such that J(Rm) = (M1)m ∩ · · · ∩ (Mk)m and Cm is a
discrete rank one valuation ring, where M = M1, Mi = Mi/P and m = (m/p). If
k = 1, then Rm is a local Dedekind prime ring so that it is a principal ideal ring. So
Mm = aRm for some a ∈ Mm and Mm = aRm + Pm. Suppose that P ⊆ M2. Then
Mm = aRm + Pm ⊆ aRm + MmJ(Rm) ⊆ Mm. Hence Mm = aRm by Nakayama’s lemma,
which is invertible. It follows from [HL, Proposition 1.3] that Rm is a principal ideal
ring. So gl.dimRm ≤ 1, which contradicts Lemma 2.8. Hence P * M2.
If k ≥ 2, then M1m, . . . ,Mkm is a cycle by Lemma 1.1, because Cm is a discrete rank

one valuation ring. Suppose that P ⊆ M2. Then Mm = M
2

m implies

Mm = (Mm)2 + Pm = (Mm)2 = M2
m.

Let mi be another maximal ideal of C. Then Mmi
= Rmi

and so Rmi
= (Mmi

)2 =
(M2)mi

. Hence M = ∩Mmj
= ∩(M2)mj

= M2, which contradicts Lemma 2.8, where
mj runs over all maximal ideals of C. Hence P * M2.

Conversely, suppose that P * M2 for any maximal ideal M of R. Let m be a
maximal ideals of C with m ⊃ p and n = m ∩ Dσ, a maximal ideal of Dσ. Since
(Rn)mn = Rm and (Pn)mn = Pm, we may suppose that P is principal by Lemmas 2.5
and 2.6. It follows from Lemma 2.8 and [MLP, Lemma 3] that Rm = Rm/Pm is a
hereditary prime ring. Hence R is a hereditary prime ring by [R, (3.24)].

Summarizing Propositions 2.1, 2.2, and 2.9, we have the following theorem:

Theorem 2.10. Let R = D[x; σ] be a skew polynomial ring over a commutative
Dedekind domain, where σ is an automorphism of D and let P be a prime ideal of
R. Then

(1) P is a minimal prime ideal of R if and only if either P = p[x; σ], where p is
either a non-zero σ-prime ideal of D or P ∈ Spec0(R) with P 6= (0).

(2) If P = p[x; σ], where p is a non-zero σ-prime ideal of D, then R/P is a hereditary
prime ring. In particular, R/P is a Dedekind prime ring if and only if p ∈ Spec(D).

(3) If P ∈ Spec0(R) with P = xR, then R/P is a Dedekind prime ring. In particu-
lar, if the order of σ is infinite, then P = xR is the only minimal prime ideal belonging
to Spec0(R).

(4) If P ∈ Spec0(R) with P 6= xR and P 6= (0), then R/P is a hereditary prime
ring if and only if P * M2 for any maximal ideal M of R.

8



3 Examples

Let D = Z ⊕ Zi be the Gauss integers, where i2 = −1, and let σ be the automorphism
of D with σ(a + bi) = a− bi, where a, b ∈ Z, the ring of integers.

In this section, we will give some examples of minimal prime ideals of a skew
polynomial ring over D, in order to display some of the various phenomena in section
2.

Let p be a prime number. Then the following properties are well known in the
elementary number theory:

(1) If p = 2, then 2D = (1 + i)2D and (1 + i)D is a prime ideal.
(2) If p = 4n+1, then pD = πσ(π)D for some prime element π with πD+σ(π)D =

D.
(3) If p = 4n + 3, then pD is a prime ideal of R.

We let R = D[x; σ] be the skew polynomial ring, P = (x2 + p)R ∈ Spec0(R) and
R = R/P .

Lemma 3.1. If p = 2, then R is not a hereditary prime ring.

Proof. Let M = (1 + i)D + xR be a maximal ideal of R. Then M2 = 2D ⊕ (1 +
i)Dx⊕ x2R and so M2 3 x2 + 2. Hence R is not a hereditary prime ring by Theorem
2.10.

In what follows, we suppose that p 6= 2 unless otherwise stated. Let M be maximal ideal
containing x2 + p. First we will study in the case where M 3 x. Then M = πD + xR
for some prime element π of D with either pD = πσ(π)D and πD + σ(π)D = D if
p = 4n + 1 or pD = πD if p = 4n + 3.

Lemma 3.2. Let M = πD + xR be a maximal ideal of R with M ⊃ P . Then
(1) If p = 4n + 1, then M2 63 x2 + p and M = M2 + P , that is, M is idempotent.
(2) If p = 4n+3, then M2 63 x2 +p and M ⊃ M2 +P , that is, M is not idempotent.

Proof. (1) It follows that M2 = π2D + xR, because D = πD + σ(π)D. Suppose
that x2 + p ∈ M2. Then p ∈ π2D and so σ(π)D = πD follows, a contradiction. Hence
M2 63 x2 + p. Since πD = M ∩ D ⊇ (M2 + P ) ∩ D ⊇ M2 ∩ D = π2D, we have
either (M2 + P ) ∩D = πD or (M2 + P ) ∩D = π2D. If (M2 + P ) ∩D = π2D, then
M2 + P 3 π2 + x2 − (x2 + p) = π2 − p, which implies p ∈ π2D, a contradiction as the
above. So (M2 +P )∩D = πD and thus M2 +P ⊇ πD+xR = M . Hence M = M2 +P
follows.

(2) It is easy to see that M2 63 x2 + p since M2 = p2D + pxR + x2R. Suppose that
M = M2 + P . Then x ∈ M2 + P and write x = p2d + pxf(x) + x2g(x) + (x2 + p)h(x),
where d ∈ D, f(x) =

∑
fix

i, g(x) =
∑

gix
i and h(x) =

∑
hix

i, where fi, gi, hi ∈ D.
Then 1 = pσ(f0) + ph1, a contradiction. Hence M ⊃ M2 + P .
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Next we will study a maximal ideal M with M 63 x.

Lemma 3.3. Let M be a maximal ideal of R with M 3 x2 + p and M 63 x. Then
(1) There is a prime number q (6= p) and a monic polynomial f(x) ∈ M with

M = f(x)R + qR.
(2) If degf(x) ≥ 2, then M = P + qR, M2 63 x2 + p and M is not idempotent.
(3) If degf(x) = 1, then q = 2 and either M = (x+1)R+2R or M = (x+i)R+2R.

Proof. (1) Since M ∩D is a non-zero σ-prime ideal, there is a prime number q with

M ∩D = qD. Set R̃ = R/qD[x; σ] = D̃[x; σ̃], where D̃ = D/qD =
(
Z/qZ

)
⊕

(
Z/qZ

)
i,

a semi-simple Artinian ring. Since M̃ = M/qD[x; σ] 63 x̃, it follows from [CFH,

Lemma 2.6] that M̃ = f̃(x)R̃ for some monic polynomial f̃(x), where f(x) ∈ M .
So M = f(x)R+ qR and we may suppose that f(x) is monic. It is clear q 6= p, because
x /∈ M and x2 + p ∈ M .

(2) If degf(x) ≥ 2, then x̃2 + p̃ = f̃(x)d̃ for some d ∈ D and so d̃ = 1̃. Hence

M̃ =
(
x̃2 + p̃

)
R̃ and thus M = (x2 + p)R + qR = P + qR. Suppose that x2 + p ∈ M2.

Then M̃ = M̃2, a contradiction, because M̃ is principal. Hence x2 + p /∈ M2. Since

M2 + P = q2R + P , it follows that M = qR ⊃ M
2

= q2R and so M is not idempotent.

(3) Suppose that degf(x) = 1. Then f̃(x) = x̃ + α̃ for some nonzero α̃ ∈ D̃. Since

M̃ = (x̃ + α̃)R̃ is an ideal, we have ĩ
(
x̃ + α̃

)
=

(
x̃ + α̃

)
β̃ for some β = a + bi ∈ D with

β̃ 6= 0̃ and so ĩ = σ̃(β̃) and ĩα̃ = α̃β̃. Thus ã = 0̃ and 2b̃ = 0̃. Hence q = 2 follows.

Then note that D̃[x; σ̃] = D̃[x], the polynomial ring over D̃.

Since D̃ = {0̃, 1̃, ĩ, ĩ + 1}, f(x) is one of {x+1, x+i, x+i+1}. Let M = (x+i+1)R+2R.

Then M̃ 3 ˜(x + i + 1) ˜(x− i− 1) = x̃2 and so M 3 x. Hence we do not need to con-
sider the maximal ideal (x + i + 1)R + 2R. If M = (x + 1)R + 2R, then it is easy

to see that M 63 x, because M̃ =
(
x + 1̃

)
R̃. Let p = 2l + 1 (note p 6= 2). Then

M 3 (x + 1)2 + 2(l − x) = x2 + p. Similarly we can prove that (x + i)R + 2R 63 x and
(x + i)R + 2R 3 x2 + p.

From the proof of Lemma 3.3, we have

Remark. M = (x + 1)R + 2R and N = (x + i)R + 2R are both maximal ideals of R
containing x2 + p.

Lemma 3.4. If p = 4n + 3, then R is not a hereditary prime ring.

Proof. Let M = (x + 1)R + 2R, a maximal ideal of R. Then M2 3 (x + 1)2− 2(x +
1) + 4(n + 1) = x2 + p. Hence R is not a hereditary prime ring by Theorem 2.10.

Lemma 3.5. If p = 4n + 1, then R is a hereditary prime ring, but not a Dedekind
prime ring.

Proof. Let M = (x + 1)R + 2R and N = (x + i)R + 2R, the maximal ideals of
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R. By Lemmas 3.2, 3.3 and Theorem 2.10, it suffices to prove that M2 63 x2 + p and
N2 63 x2 + p.
First we will prove that M2 63 x2 + p. Suppose, on the contrary, that M2 3 x2 + p.
Then since M2 = (x + 1)2R + 2(x + 1)R + 4R, considering R/4R, and using the same
notation in R, we may suppose that

x2 + 1 = (x2 + 2x + 1)f(x) + 2(x + 1)g(x)

for some f(x) = fnx
n + · · · + f1x + f0 and g(x) = gn+1x

n+1 + · · · + g1x + g0, where
fi, gj ∈ D. Comparing the coefficients of xj (0 ≤ j ≤ n + 2), we have

1 = f0 + 2g0,

0 = 2σ(f0) + f1 + 2σ(g0) + 2g1,

1 = f0 + 2σ(f1) + f2 + 2σ(g1) + 2g2,

0 = fj−2 + 2σ(fj−1) + fj + 2σ(gj−1) + 2gj (2 ≤ j ≤ n),

0 = fn−1 + 2σ(fn) + 2σ(gn) + 2gn+1,

0 = fn + 2σ(gn+1).

Here if degf(x) = 0, then f1 = f2 = g2 = 0, and if degf(x) = 1, then f2 = 0.
Adding the coefficients of x2j and x2j+1, respectively, we have the following equations:
Case 1, n is even number, say, n = 2l.

2 = 2
( l∑

j=0

f2j +
l∑

j=1

σ(f2j−1)
)

+ 2
( l∑

j=0

g2j +
l+1∑
j=1

σ(g2j−1)
)

(1)

and

0 = 2
( l∑

j=0

σ(f2j) +
l∑

j=1

f2j−1

)
+ 2

( l∑
j=0

σ(g2j) +
l+1∑
j=1

g2j−1

)
(2)

Set α =
∑l

j=0 f2j, β =
∑l

j=1 f2j−1, γ =
∑l

j=0 g2j, and δ =
∑l+1

j=1 g2j−1. Then

adding (1) to (2), we have 2 = 2
(
α + σ(α) + β + σ(β) + γ + σ(γ) + δ + σ(δ)

)
= 4c for

some c ∈ Z, a contradiction. Hence M2 63 x2 + p.
Case 2, n = 2l + 1,

2 = 2
( l∑

j=0

f2j +
l+1∑
j=1

σ(f2j−1)
)

+ 2
( l+1∑

j=0

g2j +
l+1∑
j=1

σ(g2j−1)
)

(3)

and

0 = 2
( l∑

j=0

σ(f2j) +
l+1∑
j=1

f2j−1

)
+ 2

( l+1∑
j=0

σ(g2j) +
l+1∑
j=1

g2j−1

)
. (4)

Adding (3) to (4), we have 2 = 4d for some d ∈ Z, a contradiction. Hence M2 63 x2 +p.
Next suppose that N2 3 x2 + p. Since N2 = (x2− 1)R + 2(x + i)R + 4R, as before,

we may suppose that

x2 + 1 = (x2 − 1)h(x) + 2(x + i)k(x)
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for some h(x) = hnx
n + · · · + h1x + h0 and k(x) = kn+1x

n+1 + · · · + k1x + k0, where
hi, kj ∈ D. Comparing the coefficients of xj (0 ≤ j ≤ n + 2), we have

1 = −h0 + 2k0i,

0 = −h1 + 2σ(k0) + 2k1i,

1 = (h0 − h2) + 2σ(k1) + 2k2i,

0 = hj−2 − hj + 2σ(kj−1) + 2kji (3 ≤ j ≤ n),

0 = hn−1 + 2σ(kn) + 2kn+1i,

0 = hn + 2σ(kn+1).

Here if n = 0, then h1 = h2 = k2 = 0 and if n = 1, then h2 = h3 = k3 = 0. Adding the
coefficients of x2j and x2j+1, respectively, we have the following equations:
Case 1, n = 2l,

2 = 2i
( l∑

j=0

k2j

)
+ 2

( l∑
j=0

σ(k2j+1)
)

(5)

0 = 2
( l∑

j=0

σ(k2j)
)

+ 2i
( l∑

j=0

k2j+1

)
(6)

Operating σ to (6) and multiplying it by i,

0 = 2i
( l∑

j=0

k2j

)
+ 2

( l∑
j=0

σ(k2j+1)
)

(7)

Adding (5) to (7), we have 2 = 4i
( ∑l

j=0 k2j

)
+ 4σ

( ∑l
j=0 k2j+1

)
, a contradiction.

Case 2, n = 2l + 1,

2 = 2i
( l+1∑

j=0

k2j

)
+ 2

( l∑
j=0

σ(k2j+1)
)

(8)

0 = 2
( l+1∑

j=0

σ(k2j)
)

+ 2i
( l∑

j=0

k2j+1

)
(9)

Thus, by the same way as in the case n = 2l, 2 = 4i
( ∑l+1

j=0 k2j

)
+ 4σ

( ∑l
j=0 k2j+1

)
, a

contradiction. Hence N2 63 x2 + p, which complete the proof.

Lemma 3.6. Let S = {2i|i = 0, 1, 2, · · · } be the central multiplicative set in R and let
M be a maximal ideal of R with M ∩ S = ∅ and M ⊃ P . Then

(1) M2 ⊇ P if and only if M2
S ⊇ PS.

(2) M2 + P = M if and only if
(
M2 + P

)
S

= MS.

Proof. (1) If M2 ⊇ P , then it is clear that (M2)S ⊇ PS. Conversely suppose
M2

S ⊇ PS. Then there is an s ∈ S with sP ⊆ M2. Since sR + M = R, we have
P = (sR + M)P ⊆ M2.
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(2) This is proved in the same way as in (1).

Summarizing Lemmas 3.1 ∼ 3.6, we have

Proposition 3.7. Let p be a prime number and P = (x2 + p)R. Then
(1) If p = 2, then R is not a hereditary prime ring.
(2) If p = 4n + 3, then R is not a hereditary prime ring and RS = RS/PS is a

Dedekind prime ring, where S = {2i|i = 0, 1, 2, · · · }.
(3) If p = 4n + 1, then R is a hereditary prime ring but not a Dedekind prime ring.

Proof. (1) This follows from Lemma 3.1
(2) By Lemma 3.4, R is not a hereditary prime ring. Let M be a maximal ideal of

R with M ⊃ P and M ∩ S = ∅. Then, by Lemmas 3.2, 3.3 and 3.6, (M2)S + PS and

MS ⊃ M2
S. Hence RS is a Dedekind prime ring by [MR, (5.6.3)].

(3) R is a hereditary prime ring but not Dedekind by Lemma 3.5.

We will end the paper with two remarks.

(1) Let P = p[x; σ] be a minimal prime ideal of R, where p is a non-zero σ-prime ideal
of D. Then there is a prime number p with p = pD. If p = 4n + 1, then R = R/P is a
hereditary prime ring but not Dedekind. If p = 4n + 3, then R = R/P is a Dedekind
prime ring.
(2) Let P ′ = (x2 + 1

2
)K[x; σ] ∈ Spec0

(
K[x; σ]

)
, where K = Q ⊕ Qi and Q is the field

of rational numbers. Then P = P ′ ∩ R = (2x2 + 1)R ∈ Spec0(R) and 2x2 + 1 is
not a monic polynomial (as it has been mentioned in the introduction, Hillman only
considered monic polynomials).
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