Prime factor rings of skew polynomial rings over a commutative Dedekind domain

${ }^{1}$ Y. Wang, ${ }^{2}$ A.K. Amir, and ${ }^{3}$ H. Marubayashi ${ }^{\dagger}$

${ }^{1}$ College of Sciences, Hohai University
Xikang Road1, Nanjing 210098, China
E-mail: yunxiawang@hhu.edu.cn
${ }^{2}$ Algebra Research Group
Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung
Jl. Ganesa 10 Bandung, Indonesia, 40132
E-mail: s301_amir@students.itb.ac.id
${ }^{3}$ Faculty of Engineering, Tokushima Bunri University
Shido, Sanuki, Kagawa 769-2193 Japan
E-mail: marubaya@kagawa.bunri-u.ac.jp

Abstract

This paper is concerned with prime factor rings of a skew polynomial ring over a commutative Dedekind domain. Let P be a non-zero prime ideal of a skew polynomial ring $R=D[x ; \sigma]$, where D is a commutative Dedekind domain and σ is an automorphism of D. If P is not a minimal prime ideal of R, then R / P is a simple Artinian ring. If P is a minimal prime ideal of R, then there are two different types of P, namely, either $P=\mathfrak{p}[x ; \sigma]$ or $P=P^{\prime} \cap R$, where \mathfrak{p} is a σ-prime ideal of D, P^{\prime} is a prime ideal of $K[x ; \sigma]$ and K is the quotient field of D. In the first case R / P is a hereditary prime ring and in the second case, it is shown that R / P is a hereditary prime ring if and only if $M^{2} \nsupseteq P$ for any maximal ideal M of R. We give some examples of minimal prime ideals such that the factor rings are not hereditary or hereditary or Dedekind, respectively.

Keywords : minimal prime, prime factor, hereditary, Dedekind domain.

0 Introduction

[^0]Let D be a commutative Dedekind domain with its quotient field K and let σ be an automorphism of D. We denote by $R=D[x ; \sigma]$ the skew polynomial ring over D in an indeterminate x.

The aim of the paper is to study the structure of the prime factor ring R / P for any prime ideal P of R, which is one of the ways to investigate the structure of rings. If P is not a minimal prime ideal of R, then the Krull dimension of R / P is zero([MR]), that is, it is a simple Artinian ring. So we can restrict to the case P is a minimal prime ideal of R. There are two types of minimal prime ideals P of R, that is, either $P=\mathfrak{p}[x ; \sigma]$ or $P=P^{\prime} \cap R$, where \mathfrak{p} is a non-zero σ-prime ideal of D and P^{\prime} is a non-zero prime ideal of $K[x ; \sigma]$. In the first case R / P is always a hereditary prime ring. In the second case R / P is a hereditary prime ring if and only if $P \nsubseteq M^{2}$ for any maximal ideal M of R, which is motivated by $[\mathrm{H}]$ and he only considered in the case where P is principal generated by a monic polynomial and $\sigma=1$ (note that in this case, P is a minimal prime ideal and see [PR] and [MLP] for related papers). We give some examples of minimal prime ideals P such that R / P is not hereditary or hereditary or Dedekind, respectively, by using Gauss's integers $D=\mathbb{Z} \oplus \mathbb{Z} i$, where \mathbb{Z} is the ring of integers.

We refer the readers to $[\mathrm{MR}]$ and $[\mathrm{MMU}]$ for some known terminologies not defined in this paper.

1 Notes on hereditary prime PI rings

Through out this section, let R be a hereditary prime PI ring with the center C and let Q be the quotient ring of R, which is a simple Artinian ring. It is well known that R is a classical C-order in Q and that C is a Dedekind domain (see [MR, (13.9.16)]).

In this section, we will shortly discuss some relations between the maximal ideals of R and C, which are used in latter sections. For any R-ideal A, we use the following notation:

$$
\begin{gathered}
(R: A)_{l}=\{q \in Q \mid q A \subseteq R\}, \quad(R: A)_{r}=\{q \in Q \mid A q \subseteq R\}, \\
(A: A)_{l}=\{q \in Q \mid q A \subseteq A\}=O_{l}(A), \text { the left order of } A, \\
(A: A)_{r}=\{q \in Q \mid A q \subseteq A\}=O_{r}(A), \text { the right order of } A,
\end{gathered}
$$

and

$$
A_{v}=\left(R:(R: A)_{l}\right)_{r}, \quad{ }_{v} A=\left(R:(R: A)_{r}\right)_{l},
$$

which are both R-ideals containing A. Note that $A_{v}=A={ }_{v} A$, because R is a hereditary prime ring. A finite set of distinct idempotent maximal ideals M_{1}, \ldots, M_{m} of R such that $O_{r}\left(M_{1}\right)=O_{l}\left(M_{2}\right), \ldots, O_{r}\left(M_{m}\right)=O_{l}\left(M_{1}\right)$ is called a cycle. We will also consider an invertible maximal ideal to be a trivial case of a cycle.

It is well known that an ideal P is a maximal invertible ideal if and only if $P=M_{1} \cap \ldots \cap M_{m}$, where M_{1}, \ldots, M_{m} is a cycle (see [ER, (2.5) and (2.6)]). Let P be a maximal invertible ideal. Then $C(P)=\{c \in R \mid c$ is regular $\bmod P\}$ is a regular Ore set and we denote by R_{P} the localization of R at P (see [M_{1}, proposition 2.7]). We denote by $\operatorname{Spec}(R)$ and $\operatorname{Max}-\operatorname{in}(R)$ the set of all prime ideals and the set of all maximal invertible ideals, respectively. For any ring $S, J(S)$ stands for Jacobson
radical of S.
Lemma 1.1. (1) Let $P \in \operatorname{Max-in}(R)$ and let $\mathfrak{p}=P \cap C$. Then $\mathfrak{p} \in \operatorname{Spec}(C)$.
(2) C is a discrete rank one valuation ring if and only if $J(R)$ of R is the intersection of a cycle.

Proof. (1) Let $P=M_{1} \cap \ldots \cap M_{m} \in \operatorname{Max}-\operatorname{in}(R)$. If $m=1$, then $\mathfrak{p}=P \cap C \in$ $\operatorname{Spec}(C)$. If $m \geq 2$, then M_{i} are all idempotents. Set $\mathfrak{p}=M_{1} \cap C$, then $M_{1} \supseteq \mathfrak{p} R$, an invertible ideal. So

$$
\left(R: M_{2}\right)_{l}=O_{l}\left(M_{2}\right)=O_{r}\left(M_{1}\right)=\left(R: M_{1}\right)_{r} \subseteq(R: \mathfrak{p} R)_{r}=(R: \mathfrak{p} R)_{l}
$$

imply

$$
M_{2}=\left(M_{2}\right)_{v}=\left(R:\left(R: M_{2}\right)_{l}\right)_{r} \supseteq\left(R:(R: \mathfrak{p} R)_{l}\right)_{r}=\mathfrak{p} R .
$$

Thus $M_{2} \cap C=\mathfrak{p}$ follows. Continuing this process, we have $P \cap C=\mathfrak{p}$.
(2) Suppose that C is a discrete rank one valuation ring with $J(C)=\mathfrak{p}$, the unique maximal ideal. Then $J(R) \supseteq \mathfrak{p} R$ (see [R, (6.15)]). So $J(R)$ is invertible by [ER, (4.13)]. Let $J(R)=P_{1} \cap \ldots \cap P_{k}$, where $P_{i} \in \operatorname{Max}-\mathrm{in}(R)$. It suffices to prove that $k=1$. We assume that $k \geq 2$. Then $R_{P_{1}} \supset R$ and $\mathbb{Z}\left(R_{P_{1}}\right) \supseteq \mathbb{Z}(R)=C$, where $\mathbb{Z}\left(R_{P_{1}}\right)$ is the center of $R_{P_{1}}$, so that $\mathbb{Z}\left(R_{P_{1}}\right)=C$. Since $R_{P_{1}}$ is a finitely generated C-module (see [MR, (13.9.16)]), there is a $c \in C\left(P_{1}\right)$ with $R_{P_{1}}=c R_{P_{1}} \subseteq R$, a contradiction.
Hence $k=1$ and so $J(R)$ is the intersection of a cycle.
Suppose that $J(R)$ is the intersection of a cycle. Then $\mathfrak{p}=J(R) \cap C \in \operatorname{Spec}(C)$ by (1). Let $\mathfrak{p}_{1} \in \operatorname{Spec}(C)$. Then $\mathfrak{p}_{1} R=J(R)^{l}$ for some $l \geq 1$ by [ER, (2.1)] and the assumption. It follows that $\mathfrak{p}_{1} \subseteq J(R) \cap C=\mathfrak{p}$ and so $\mathfrak{p}_{1}=\mathfrak{p}$, that is, C is a discrete rank one valuation ring.

The following proposition is just a generalization of a Dedekind C-order to a hereditary prime PI ring (see, $[\mathrm{R},(22.4)]$).

Proposition 1.2. Suppose that R is a hereditary prime PI ring. Then there is a one-to-one correspondence between $\operatorname{Max}-\mathrm{in}(R)$ and $\operatorname{Spec}(C)$, which is given by: $P \longrightarrow \mathfrak{p}=$ $P \cap C$, where $P \in \operatorname{Max}-\operatorname{in}(R)$.

Proof. Let $P \in \operatorname{Max}-\operatorname{in}(R)$. Then $\mathfrak{p}=P \cap C \in \operatorname{Spec}(C)$ by Lemma 1.1.
Conversely, let $\mathfrak{p} \in \operatorname{Spec}(C)$. Then there is a maximal ideal M of R containing $\mathfrak{p} R$, an invertible ideal. So there is a $P \in \operatorname{Max}-\operatorname{in}(R)$ with $P \supseteq \mathfrak{p} R$ by [ER, (2.4)]. This shows $P \cap C=\mathfrak{p}$ by lemma 1.1. To prove the correspondence is one-to-one, let $P, P_{1} \in$ $\operatorname{Max}-\mathrm{in}(R)$ with $P \cap C=\mathfrak{p}=P_{1} \cap C$. Then $P_{\mathfrak{p}}, P_{1 \mathfrak{p}} \in \operatorname{Max}-\operatorname{in}\left(R_{\mathfrak{p}}\right)$ and $\mathbb{Z}\left(R_{P}\right)=C_{\mathfrak{p}}$, a discrete rank one valuation ring. Thus $P_{\mathfrak{p}}=J\left(R_{\mathfrak{p}}\right)=P_{1 \mathfrak{p}}$ by lemma 1.1 and so $P=P_{\mathfrak{p}} \cap R=P_{1 \mathfrak{p}} \cap R=P_{1}$. Hence the correspondence is one-to-one.

2 Prime factor rings of skew polynomial rings

Throughout this section, let D be a commutative Dedekind domain with its quotient field K and σ be an automorphism of D. We always assume that $D \neq K$ to avoid the
trivial case. Let $R=D[x ; \sigma]$, a skew polynomial ring over D.
The aim of this section is to study the structure of the factor rings of R by minimal prime ideals. It is well known that R is a Noetherian maximal order in $K(x ; \sigma)$, the quotient ring of $K[x ; \sigma]$ and gl. $\operatorname{dim} R=2$ (see [C. Proposition 3.3] and [MR, (7.5.3)]). We denote by $\operatorname{Spec}_{0}(R)=\{P \in \operatorname{Spec}(R) \mid P \cap D=(0)\}$. It is well known that there is a one-to-one correspondence between $\operatorname{Spec}_{0}(R)$ and $\operatorname{Spec}(K[x ; \sigma])$, which is given by $P \longrightarrow P^{\prime}=P K[x ; \sigma]$ and $P^{\prime} \longrightarrow P^{\prime} \cap R$, where $P \in \operatorname{Spec}_{0}(R)$ and $P^{\prime} \in \operatorname{Spec}(K[x ; \sigma])$ (see [GW, (9.22)]).

We start with the following easy proposition.
Proposition 2.1. (1) $\left\{\mathfrak{p}[x ; \sigma], P \mid \mathfrak{p}\right.$ is a σ-prime ideal of D and $P \in \operatorname{Spec}_{0}(R)$ with $P \neq(0)\}$ is the set of all minimal prime ideals of R.
(2) Let $P \in \operatorname{Spec}(R)$ with $P \neq(0)$. Then P is invertible if and only if it is a minimal prime ideal of R.

Proof. (1) Let P be a minimal prime ideal of R and let $\mathfrak{p}=P \cap D$. If $\mathfrak{p}=(0)$, then $P \in \operatorname{Spec}_{0}(R)$. If $\mathfrak{p} \neq(0)$, then there are two cases; namely, either $x \in P$ or $x \notin P$. Suppose that $x \in P$. Then $P=\mathfrak{p}+x R \supset x R$, a prime ideal, which is a contradiction. So $x \notin P$. Then \mathfrak{p} is a σ-prime ideal of D and $\mathfrak{p}[x ; \sigma]$ is a prime ideal of R. Hence $P=\mathfrak{p}[x ; \sigma]$ follows.
Conversely, let $P \in \operatorname{Spec}_{0}(R)$. Then P is a minimal prime ideal of R, because $P^{\prime}=$ $P K[x ; \sigma]$ is a maximal ideal as well as a minimal prime ideal of $K[x ; \sigma]$. Let $P=\mathfrak{p}[x ; \sigma]$, where \mathfrak{p} is a σ-prime ideal. Then P is invertible, because \mathfrak{p} is invertible and so P is a v-ideal. Hence P is a minimal prime ideal of R (see [MR, (5.1.9)]).
(2) Let P be a prime and invertible ideal. Then it is a v-ideal and so it is a minimal prime ideal (see [MR,(5.1.9)]).
Conversely, let P be a minimal prime ideal. If $P=\mathfrak{p}[x ; \sigma]$, where \mathfrak{p} is a σ-prime ideal of D. Then P is invertible. If $P \in \operatorname{Spec}_{0}(R)$, with $P \neq(0)$ and $P^{\prime}=P K[x ; \sigma]$, then since any ideal of $K[x ; \sigma]$ is a v-ideal and R is Noetherian, we have

$$
\begin{aligned}
P^{\prime}=P_{v}^{\prime} & =\left(K[x ; \sigma]:\left(K[x ; \sigma]: P^{\prime}\right)_{l}\right)_{r}=\left(K[x ; \sigma]: K[x ; \sigma](R: P)_{l}\right)_{r} \\
& =\left(R:(R: P)_{l}\right)_{r} K[x ; \sigma]=P_{v} K[x ; \sigma] .
\end{aligned}
$$

Thus $P=P^{\prime} \cap R=P_{v}$ follows and similarly $P={ }_{v} P$. Hence P is invertible by [CS, p.324].

Proposition 2.2. (1) Let P be a minimal prime ideal of R with $P=\mathfrak{p}[x ; \sigma]$, where \mathfrak{p} is a σ-prime ideal of D. Then R / P is a hereditary prime ring. In particular, R / P is a Dedekind prime ring if and only if $\mathfrak{p} \in \operatorname{Spec}(D)$.
(2) Suppose that σ is of infinite order. Then $P=x R$ is the only minimal prime ideal of R in $\operatorname{Spec}_{0}(R)$ and R / P is a Dedekind prime ring.

Proof. (1) The first statement follows from [MR, (7.5.3)].
If $\mathfrak{p} \in \operatorname{Spec}(D)$. Then $(R / P) \cong(D / \mathfrak{p})[x ; \sigma]$ is a principal ideal ring so that R / P is a Dedekind prime ring. If $\mathfrak{p} \notin \operatorname{Spec}(D)$, then there is a maximal ideal \mathfrak{m} of D with $\mathfrak{m} \supset \mathfrak{p}$ and $\mathfrak{p}=\mathfrak{m} \cap \sigma(\mathfrak{m}) \cap \ldots \cap \sigma^{n}(\mathfrak{m})$ for some natural number $n \geq 1$. Set $M=\mathfrak{m}+x R$, a
maximal ideal of R. Then $M=M^{2}+P$, because $\mathfrak{m}^{2}+\mathfrak{p}=\mathfrak{m}$. Thus M / P is idempotent and R / P is not Dedekind.
(2) Let $P=x R$. Then P is the only minimal prime ideal of R in $\operatorname{Spec}_{0}(R)$ by [J, Theorem 2] and R / P is a Dedekind prime ring because $(R / P) \cong D$.

Because of Propositions 2.1 and 2.2 , we may assume that σ is of finite order to study the hereditaryness of R / P. So in the remainder of this section, we may assume that σ is of finite order, say, n.

It is well known that K is separable over $K_{\sigma}=\{k \in K \mid \sigma(k)=k\}$ and $\left[K: K_{\sigma}\right]=n$ (see [A, Theorems 14 and 15]). Furthermore, $D_{\sigma}=\{d \in D \mid \sigma(d)=d\}$ is also Dedekind domain by $\left[\mathrm{G},(36.1)\right.$ and (37.2)] and D is a finitely generated D_{σ}-module by [ZS, Corollary 1, p.265]. Since the center $\mathbb{Z}(R)$ of R is $D_{\sigma}\left[x^{n}\right]$, it follows that R is a finitely generated C-module, where $C=D_{\sigma}\left[x^{n}\right]$. Thus R is a classical C-order in $K(x ; \sigma)$ and so R is a prime PI ring with $\mathcal{K}(R)=\operatorname{dim}(R)=2$ (see[MR, (6.4.8) and (6.5.4.)]), where $\mathcal{K}(R)$ is the Krull dimension of R and $\operatorname{dim}(R)$ is the classical Krull dimension of R.

The following lemma is due to [Ro, (1.6.27)].
Lemma 2.3. Let σ be an automorphism of K with order n. Then
(1) there is a one-to-one correspondence between $\operatorname{Spec}(K[x ; \sigma])$ and $\operatorname{Spec}\left(K_{\sigma}\left[x^{n}\right]\right)$, which is given by $P^{\prime} \longrightarrow \mathfrak{p}^{\prime}=P^{\prime} \cap K_{\sigma}\left[x^{n}\right]$, where $P^{\prime} \in \operatorname{Spec}(K[x ; \sigma])$.
(2) If $P^{\prime}=x K[x ; \sigma]$, then $\mathfrak{p}^{\prime}=x^{n} K_{\sigma}\left[x^{n}\right]$ and $\mathfrak{p}^{\prime} K[x ; \sigma]=P^{\prime n}$. If $P^{\prime} \neq x K[x ; \sigma]$, then $\mathfrak{p}^{\prime}=f\left(x^{n}\right) K_{\sigma}\left[x^{n}\right]$ for some irreducible polynomial $f\left(x^{n}\right)$ in $K_{\sigma}\left[x^{n}\right]$ different from x^{n} and $\mathfrak{p}^{\prime} K[x ; \sigma]=P^{\prime}$.

Lemma 2.4. Let σ be an automorphism of D with order n. Then
(1) There is a one-to-one correspondence between $\operatorname{Spec}_{0}(R)$ and $\operatorname{Spec}_{0}(C)$, which is given by $P \longrightarrow \mathfrak{p}=P \cap C$, where $P \in \operatorname{Spec}_{0}(R)$.
(2) If $P=x R$, then $P^{n}=\mathfrak{p} R$, where $\mathfrak{p}=P \cap C$. If $P \neq x R$, then $P=\mathfrak{p} R$, where $\mathfrak{p}=P \cap C$.

Proof. (1) Let $P \in \operatorname{Spec}_{0}(R)$. Then it is clear that $\mathfrak{p}=P \cap C \in \operatorname{Spec}_{0}(C)$. Conversely, let $\mathfrak{p} \in \operatorname{Spec}_{0}(C)$. If $\mathfrak{p} \neq x^{n} C$, then $P=\mathfrak{p} K[x ; \sigma] \cap R \in \operatorname{Spec}_{0}(R)$ by Lemma 2.3 and [GW, (9.22)], and so $\mathfrak{p} \subseteq \mathfrak{p}_{1}=P \cap C \in \operatorname{Spec}_{0}(C)$. Hence $\mathfrak{p}=\mathfrak{p}_{1}$ by Proposition 2.1. If $\mathfrak{p}=x^{n} C$, then $P=x R \in \operatorname{Spec}_{0}(R)$ with $\mathfrak{p}=P \cap C$. Hence the correspondence is onto.
To prove the correspondence is one to one, let P and $P_{1} \in \operatorname{Spec}_{0}(R)$ with $P \cap C=\mathfrak{p}=$ $P_{1} \cap C$. We may assume that $P \neq x R$ and $P_{1} \neq x R$. Then $P K[x ; \sigma]$ and $P_{1} K[x ; \sigma]$ both contain $\mathfrak{p} K[x ; \sigma] \in \operatorname{Spec}(K[x ; \sigma])$ and so $P K[x ; \sigma]=\mathfrak{p} K[x ; \sigma]=P_{1} K[x ; \sigma]$ follows. Hence $P=P K[x ; \sigma] \cap R=P_{1}$.
(2) $P \in \operatorname{Spec}_{0}(R)$ with $\mathfrak{p}=P \cap C$. If $P=x R$ then $P^{n}=\mathfrak{p} R$ where $\mathfrak{p}=x^{n} C$. Suppose that $P \neq x R$. Let P_{1} be an invertible prime ideal containing $\mathfrak{p} R$. By Proposition 2.1, P_{1} is a minimal prime ideal of R. So either $P_{1}=\mathfrak{p}_{1}[x ; \sigma]$, where \mathfrak{p}_{1} is a σ-prime ideal of D or $P_{1} \in \operatorname{Spec}_{0}(R)$ by Proposition 2.1. If $P_{1}=\mathfrak{p}_{1}[x ; \sigma]$, then $P_{1} \cap C=\left(\mathfrak{p}_{1}\right)_{\sigma}\left[x^{n}\right]$, a minimal prime ideal of $C\left[x^{n}\right]$, where $\left(\mathfrak{p}_{1}\right)_{\sigma}=\mathfrak{p}_{1} \cap D_{\sigma}$, containing
\mathfrak{p} so that $\mathfrak{p}=\left(\mathfrak{p}_{1}\right)_{\sigma}\left[x^{n}\right]$, a contradiction, because $P \in \operatorname{Spec}_{0}(R)$. Hence $P_{1} \in \operatorname{Spec}_{0}(R)$. It follows that $\mathfrak{p}_{1}=P_{1} \cap C \supseteq \mathfrak{p}$ and so $\mathfrak{p}_{1}=\mathfrak{p}$. Hence $P=P_{1}$ by (1). Since the invertible ideal $\mathfrak{p} R$ is a finite product of invertible prime ideals (see [CS, Theorem 1.6 and Proposition 2.3]), we have $\mathfrak{p} R=P^{e}$ for some $e \geq 1$. Then $\mathfrak{p} K[x ; \sigma]=P^{e} K[x ; \sigma]=P^{\prime e}$ implies $e=1$. Hence $P=\mathfrak{p} R$ follows.

Lemma 2.5. Let $P \in \operatorname{Spec}_{0}(R)$ with $P \neq x R$. Then $P_{\mathfrak{n}}$ is principal generated by a central polynomial in $C_{\mathfrak{n}}$ for any $\mathfrak{n} \in \operatorname{Spec}\left(D_{\sigma}\right)$.

Proof. Let $\mathfrak{p}=P \cap C$. Then $\mathfrak{p}_{\mathfrak{n}}$ is principal by $\left[\mathrm{M}_{2},(3.1)\right]$, because $C_{\mathfrak{n}}=\left(D_{\sigma}\right)_{\mathfrak{n}}\left[x^{n}\right]$ and $\left(D_{\sigma}\right)_{\mathfrak{n}}$ is a discrete rank one valuation ring. Hence $P_{\mathfrak{n}}$ is principal generated by a central element in $C_{\mathfrak{n}}$ by Lemma 2.4.

Lemma 2.6. Let $P \in \operatorname{Spec}_{0}(R)$ with $P \neq x R$. Then the following are equivalent:
(1) $P \nsubseteq M^{2}$ for any maximal ideal M of R.
(2) $P_{\mathfrak{n}} \nsubseteq\left(M_{\mathfrak{n}}\right)^{2}$ for any $\mathfrak{n} \in \operatorname{Spec}\left(D_{\sigma}\right)$ and for any maximal ideal M of R with $M \cap\left(D_{\sigma} \backslash \mathfrak{n}\right)=\emptyset$.

Proof. (1) \Rightarrow (2): Suppose that there is an $\mathfrak{n} \in \operatorname{Spec}\left(D_{\sigma}\right)$ and a maximal ideal M of R with $M \cap\left(D_{\sigma} \backslash \mathfrak{n}\right)=\emptyset$ satisfying $P_{\mathfrak{n}} \subseteq\left(M_{\mathfrak{n}}\right)^{2}$. Then there is a $c \in D_{\sigma} \backslash \mathfrak{n}$ with $c P \subseteq M^{2} \subseteq M$, which implies $P \subseteq M$ and $c R+M=R$. Hence $P=(c R+M) P \subseteq M^{2}$, a contradiction. Hence, for any $\mathfrak{n} \in \operatorname{Spec}\left(D_{\sigma}\right)$ and any maximal ideal M of R with $M \cap\left(D_{\sigma} \backslash \mathfrak{n}\right)=\emptyset, P_{\mathfrak{n}} \nsubseteq\left(M_{\mathfrak{n}}\right)^{2}$.
$(2) \Rightarrow(1)$: Suppose that there is a maximal ideal M of R with $P \subseteq M^{2}$. Then $M \cap D \neq(0)$ by Proposition 2.1 and so $\mathfrak{n}=M \cap D_{\sigma} \neq(0)$, which is a prime ideal of D_{σ} with $M \cap\left(D_{\sigma} \backslash \mathfrak{n}\right)=\emptyset$. By the assumption, $P_{\mathfrak{n}} \nsubseteq\left(M^{2}\right)_{\mathfrak{n}}=M_{\mathfrak{n}}^{2}$, a contradiction. Hence $P \nsubseteq M^{2}$ for any maximal ideal M of R.

Lemma 2.7. Let $P \in \operatorname{Spec}_{0}(R)$ with $P \neq x R$ and $\mathfrak{p}=P \cap C$. Then $\mathbb{Z}(R / P)=(C / \mathfrak{p})$.
Proof. Since $\mathbb{Z}(R / P)=\mathbb{Z}\left(K[x ; \sigma] / P^{\prime}\right) \cap(R / P)$, it suffices to prove that $\mathbb{Z}\left(K[x ; \sigma] / P^{\prime}\right)=\left(K_{\sigma}\left[x^{n}\right] / \mathfrak{p}^{\prime}\right)$, where $\mathfrak{p}^{\prime}=K_{\sigma}\left[x^{n}\right] \cap P^{\prime}$. We set $\overline{K[x ; \sigma]}=K[x ; \sigma] / P^{\prime}$. It is clear that $\mathbb{Z}(\overline{K[x ; \sigma]}) \supseteq\left(K_{\sigma}\left[x^{n}\right] / \mathfrak{p}^{\prime}\right)$. To prove the converse inclusion, let $f\left(x^{n}\right) \in$ $K_{\sigma}\left[x^{n}\right]$ be a monic polynomial with $P^{\prime}=f\left(x^{n}\right) K[x ; \sigma]$ and $\operatorname{deg} f\left(x^{n}\right)=n l$. Write

$$
f\left(x^{n}\right)=x^{n l}+a_{l-1} x^{n(l-1)}+\cdots+a_{1} x^{n}+a_{0}, \quad \text { where } a_{i} \in K_{\sigma} .
$$

Suppose that $a_{0}=0$. Then $f\left(x^{n}\right)=h\left(x^{n}\right) x^{n}$, where $h\left(x^{n}\right)=x^{n(l-1)}+\cdots+a_{1}$, shows that $P^{\prime} \subseteq x K[x ; \sigma]$ and so $P^{\prime}=x K[x ; \sigma]$, a contradiction. So we may assume that $a_{0} \neq 0$. Note that

$$
\overline{K[x ; \sigma]} \cong K \oplus K \bar{x} \oplus \ldots \oplus K \bar{x}^{n l-1}
$$

as a ring and that

$$
\bar{x}^{n l}=-\left(a_{l-1} \bar{x}^{n(l-1)}+\cdots+a_{1} \bar{x}^{n}+a_{0}\right) .
$$

 Then, for any $k \in K, k \overline{g(x)}=\overline{g(x)} k$ implies $b_{i} \sigma^{i}(k)=b_{i} k$ for any $i, 0 \leq i \leq n l-1$.

Suppose that there is an i with $b_{i} \neq 0$ and $i=n j+s \quad(1 \leq s<n)$. Then $b_{i} \sigma^{s}(k)=b_{i} k$ and so $\sigma^{s}(k)=k$ for all $k \in K$, a contradiction. Thus if $b_{i} \neq 0$, then $i=n j$, $0 \leq j \leq l-1$. Next

$$
\begin{gathered}
\overline{g(x)} \bar{x}=b_{0} \bar{x}+b_{1} \bar{x}^{2}+\cdots+b_{n l-2} \bar{x}^{n l-1}+b_{n l-1}\left(-a_{l-1} \bar{x}^{n(l-1)}-\cdots-a_{1} \bar{x}^{n}-a_{0}\right) \quad \text { and } \\
\bar{x} \overline{g(x)}=\sigma\left(b_{0}\right) \bar{x}+\sigma\left(b_{1}\right) \bar{x}^{2}+\cdots+\sigma\left(b_{n l-2}\right) \bar{x}^{n l-1}+\sigma\left(b_{n l-1}\right)\left(-a_{l-1} \bar{x}^{n(l-1)}-\cdots-a_{1} \bar{x}^{n}-a_{0}\right) .
\end{gathered}
$$

Since $\bar{x} \overline{g(x)}=\overline{g(x)} \bar{x}$, comparing the coefficients, we have $\sigma\left(b_{n l-1}\right)=b_{n l-1}$, that is, $b_{n l-1} \in K_{\sigma}$ and so $\sigma\left(b_{i}\right)=b_{i}$ for all $0 \leq i \leq n l-2$. Thus we have

$$
\overline{g(x)}=b_{0}+b_{n} \bar{x}^{n}+\cdots+b_{n(l-1)} \bar{x}^{n(l-1)} \text { and } b_{i} \in K_{\sigma} .
$$

Hence $\overline{g(x)} \in\left(K_{\sigma}\left[x^{n}\right] / \mathfrak{p}^{\prime}\right)$.
Let $P \in \operatorname{Spec}_{0}(R)$ with $P \neq x R$. Since $\mathbb{Z}(R / P)=(C / \mathfrak{p}) \supseteq D_{\sigma}$ naturally, it follows from $[\mathrm{R},(3.24)]$ that R / P is a hereditary prime ring if and only if $(R / P)_{\mathfrak{n}}\left(\cong R_{\mathfrak{n}} / P_{\mathfrak{n}}\right)$ is a hereditary prime ring for any $\mathfrak{n} \in \operatorname{Spec}\left(D_{\sigma}\right)$.
Let \mathfrak{m} be any maximal ideal of C with $\mathfrak{m} \supset \mathfrak{p}$. By lying over and going up theorems (see $[\mathrm{MR},(10.2 .9)$ and (10.2.10)]), there is a maximal ideal M of R with $M \cap C=\mathfrak{m}$ and $M \supset P$. Set $J=\bigcap\{M \mid M$ is a maximal ideal of R with $\mathfrak{m}=M \cap C\}$. Since $\operatorname{dim}(R / J)=\mathcal{K}(R / J)<\mathcal{K}(R)=2, M / J$ is a minimal prime ideal of R / J and J is a finite intersection of those M 's, that is, $J=M_{1} \cap \ldots \cap M_{k}$ (see [CH, Lemma 1.16]). Thus we have the following lemma.

Lemma 2.8. With the notation above, the following hold:
(1) $P \nsubseteq M_{i}^{2}$ if and only if $P_{\mathfrak{m}} \nsubseteq M_{i \mathfrak{m}}^{2}$.
(2) $M_{i} \supset M_{i}^{2}$ for any $i(1 \leq i \leq k)$.
(3) gl. $\operatorname{dim} R_{\mathfrak{m}}=2$ and $J\left(R_{\mathfrak{m}}\right)=M_{1 \mathfrak{m}} \cap \ldots \cap M_{k \mathfrak{m}}$.

Proof. (1) This is proved in the same way as in [MLP, Lemma 2].
(2) Set $M=M_{i}$ and $\mathfrak{m}_{0}=M \cap D \neq(0)$, because $M \supset P$. If $x \in M$, then $M=\mathfrak{m}_{0}+x R$ and \mathfrak{m}_{0} is a maximal ideal of D with $\mathfrak{m}_{0} \supset \mathfrak{m}_{0}^{2}$. Thus $M^{2} \subseteq \mathfrak{m}_{0}^{2}+x R \subset$ $\mathfrak{m}_{0}+x R=M$. If $x \notin M$, then \mathfrak{m}_{0} is a σ-prime ideal and D / \mathfrak{m}_{0} is a semi-simple Artinian ring. Since $M \supseteq \mathfrak{m}_{0}[x ; \sigma]$, we have

$$
\widetilde{M}=\left(M / \mathfrak{m}_{0}[x ; \sigma]\right) \subset \widetilde{R}=\left(R / \mathfrak{m}_{0}[x ; \sigma]\right) \cong\left(D / \mathfrak{m}_{0}\right)[x ; \widetilde{\sigma}]
$$

which is hereditary by $[M R,(7.5 .3)]$. Since $\widetilde{x} \notin \widetilde{M}, \widetilde{M}$ is principal by [CFH, Lemma 2.6]. So $(\widetilde{M})^{2} \subset \widetilde{M}$ and thus $M^{2} \subset M$ follows.
(3) It follows that $2=$ gl. $\operatorname{dim} R \geq$ gl. $\operatorname{dim} R_{\mathfrak{m}}$. If gl. $\operatorname{dim} R_{\mathfrak{m}} \leq 1$, then $R_{\mathfrak{m}}$ is hereditary, which is implies $M_{\mathfrak{m}}=P_{\mathfrak{m}}$. Hence $M=M_{\mathfrak{m}} \cap R=P_{\mathfrak{m}} \cap R=P$, a contradiction. Hence gl. $\operatorname{dim} R_{\mathfrak{m}}=2$. Since $R_{\mathfrak{m}}$ is a PI ring with the maximal ideals $M_{1 \mathfrak{m}}, \ldots, M_{k \mathfrak{m}}$, it is clear that $J\left(R_{\mathfrak{m}}\right)=M_{1 \mathfrak{m}} \cap \cdots \cap M_{k \mathfrak{m}}$.

Proposition 2.9. Let σ be an automorphism of D with order n and let $P \in \operatorname{Spec}_{0}(R)$ with $P \neq x R$. Then $\bar{R}=R / P$ is a hereditary prime ring if and only if $P \nsubseteq M^{2}$ for
any maximal ideal M of R.
Proof. First note that $\mathbb{Z}(\bar{R})=\bar{C}=(C / \mathfrak{p})$ by Lemma 2.7, where $\mathfrak{p}=P \cap C$. Suppose that \bar{R} is a hereditary prime ring. Then \bar{C} is a Dedekind domain (see [MR, (13.9.16)]. Let M be a maximal ideal of R. If $P \nsubseteq M$, then $P \nsubseteq M^{2}$. So we may assume that $P \subseteq M$. In order to prove $P \nsubseteq M^{2}$, we may assume that P is principal generated by a central element by Lemmas 2.5 and 2.6 and let $\mathfrak{m}=M \cap C$, a maximal ideal of C properly containing \mathfrak{p}. Then there are a finite number of maximal ideals M_{1}, \ldots, M_{k} of R lying over \mathfrak{m} such that $J\left(\bar{R}_{\overline{\mathfrak{m}}}\right)=\left(\bar{M}_{1}\right)_{\overline{\mathfrak{m}}} \cap \cdots \cap\left(\bar{M}_{k}\right)_{\overline{\mathfrak{m}}}$ and $\bar{C}_{\overline{\mathrm{m}}}$ is a discrete rank one valuation ring, where $M=M_{1}, \overline{M_{i}}=M_{i} / P$ and $\overline{\mathfrak{m}}=(\mathfrak{m} / \mathfrak{p})$. If $k=1$, then $\bar{R}_{\overline{\mathrm{m}}}$ is a local Dedekind prime ring so that it is a principal ideal ring. So $\bar{M}_{\overline{\mathrm{m}}}=\bar{a} \bar{R}_{\overline{\mathrm{m}}}$ for some $a \in M_{\mathfrak{m}}$ and $M_{\mathfrak{m}}=a R_{\mathfrak{m}}+P_{\mathfrak{m}}$. Suppose that $P \subseteq M^{2}$. Then $M_{\mathfrak{m}}=a R_{\mathfrak{m}}+P_{\mathfrak{m}} \subseteq a R_{\mathfrak{m}}+M_{\mathfrak{m}} J\left(R_{\mathfrak{m}}\right) \subseteq M_{\mathfrak{m}}$. Hence $M_{\mathfrak{m}}=a R_{\mathfrak{m}}$ by Nakayama's lemma, which is invertible. It follows from [HL, Proposition 1.3] that $R_{\mathfrak{m}}$ is a principal ideal ring. So gl. $\operatorname{dim} R_{\mathfrak{m}} \leq 1$, which contradicts Lemma 2.8. Hence $P \nsubseteq M^{2}$.
If $k \geq 2$, then $\bar{M}_{1 \overline{\mathrm{~m}}}, \ldots, \bar{M}_{k \overline{\mathrm{~m}}}$ is a cycle by Lemma 1.1, because $\bar{C}_{\overline{\mathrm{m}}}$ is a discrete rank one valuation ring. Suppose that $P \subseteq M^{2}$. Then $\bar{M}_{\overline{\mathrm{m}}}=\bar{M}_{\overline{\mathrm{m}}}^{2}$ implies

$$
M_{\mathfrak{m}}=\left(M_{\mathfrak{m}}\right)^{2}+P_{\mathfrak{m}}=\left(M_{\mathfrak{m}}\right)^{2}=M_{\mathfrak{m}}^{2} .
$$

Let \mathfrak{m}_{i} be another maximal ideal of C. Then $M_{\mathfrak{m}_{i}}=R_{\mathfrak{m}_{i}}$ and so $R_{\mathfrak{m}_{i}}=\left(M_{\mathfrak{m}_{i}}\right)^{2}=$ $\left(M^{2}\right)_{\mathfrak{m}_{i}}$. Hence $M=\cap M_{\mathfrak{m}_{j}}=\cap\left(M^{2}\right)_{\mathfrak{m}_{j}}=M^{2}$, which contradicts Lemma 2.8, where \mathfrak{m}_{j} runs over all maximal ideals of C. Hence $P \nsubseteq M^{2}$.

Conversely, suppose that $P \nsubseteq M^{2}$ for any maximal ideal M of R. Let \mathfrak{m} be a maximal ideals of C with $\mathfrak{m} \supset \mathfrak{p}$ and $\mathfrak{n}=\mathfrak{m} \cap D_{\sigma}$, a maximal ideal of D_{σ}. Since $\left(R_{\mathfrak{n}}\right)_{\mathfrak{m}_{\mathfrak{n}}}=R_{\mathfrak{m}}$ and $\left(P_{\mathfrak{n}}\right)_{\mathfrak{m}_{\mathfrak{n}}}=P_{\mathfrak{m}}$, we may suppose that P is principal by Lemmas 2.5 and 2.6. It follows from Lemma 2.8 and [MLP, Lemma 3] that $\bar{R}_{\overline{\mathfrak{m}}}=R_{\mathfrak{m}} / P_{\mathfrak{m}}$ is a hereditary prime ring. Hence \bar{R} is a hereditary prime ring by $[\mathrm{R},(3.24)]$.

Summarizing Propositions 2.1, 2.2, and 2.9, we have the following theorem:
Theorem 2.10. Let $R=D[x ; \sigma]$ be a skew polynomial ring over a commutative Dedekind domain, where σ is an automorphism of D and let P be a prime ideal of R. Then
(1) P is a minimal prime ideal of R if and only if either $P=\mathfrak{p}[x ; \sigma]$, where \mathfrak{p} is either a non-zero σ-prime ideal of D or $P \in \operatorname{Spec}_{0}(R)$ with $P \neq(0)$.
(2) If $P=\mathfrak{p}[x ; \sigma]$, where \mathfrak{p} is a non-zero σ-prime ideal of D, then R / P is a hereditary prime ring. In particular, R / P is a Dedekind prime ring if and only if $\mathfrak{p} \in \operatorname{Spec}(D)$.
(3) If $P \in \operatorname{Spec}_{0}(R)$ with $P=x R$, then R / P is a Dedekind prime ring. In particular, if the order of σ is infinite, then $P=x R$ is the only minimal prime ideal belonging to $\operatorname{Spec}_{0}(R)$.
(4) If $P \in \operatorname{Spec}_{0}(R)$ with $P \neq x R$ and $P \neq(0)$, then R / P is a hereditary prime ring if and only if $P \nsubseteq M^{2}$ for any maximal ideal M of R.

3 Examples

Let $D=\mathbb{Z} \oplus \mathbb{Z} i$ be the Gauss integers, where $i^{2}=-1$, and let σ be the automorphism of D with $\sigma(a+b i)=a-b i$, where $a, b \in \mathbb{Z}$, the ring of integers.

In this section, we will give some examples of minimal prime ideals of a skew polynomial ring over D, in order to display some of the various phenomena in section 2.

Let p be a prime number. Then the following properties are well known in the elementary number theory:
(1) If $p=2$, then $2 D=(1+i)^{2} D$ and $(1+i) D$ is a prime ideal.
(2) If $p=4 n+1$, then $p D=\pi \sigma(\pi) D$ for some prime element π with $\pi D+\sigma(\pi) D=$ D.
(3) If $p=4 n+3$, then $p D$ is a prime ideal of R.

We let $R=D[x ; \sigma]$ be the skew polynomial ring, $P=\left(x^{2}+p\right) R \in \operatorname{Spec}_{0}(R)$ and $\bar{R}=R / P$.

Lemma 3.1. If $p=2$, then \bar{R} is not a hereditary prime ring.
Proof. Let $M=(1+i) D+x R$ be a maximal ideal of R. Then $M^{2}=2 D \oplus(1+$ i) $D x \oplus x^{2} R$ and so $M^{2} \ni x^{2}+2$. Hence \bar{R} is not a hereditary prime ring by Theorem 2.10.

In what follows, we suppose that $p \neq 2$ unless otherwise stated. Let M be maximal ideal containing $x^{2}+p$. First we will study in the case where $M \ni x$. Then $M=\pi D+x R$ for some prime element π of D with either $p D=\pi \sigma(\pi) D$ and $\pi D+\sigma(\pi) D=D$ if $p=4 n+1$ or $p D=\pi D$ if $p=4 n+3$.

Lemma 3.2. Let $M=\pi D+x R$ be a maximal ideal of R with $M \supset P$. Then
(1) If $p=4 n+1$, then $M^{2} \nexists x^{2}+p$ and $M=M^{2}+P$, that is, \bar{M} is idempotent.
(2) If $p=4 n+3$, then $M^{2} \not \supset x^{2}+p$ and $M \supset M^{2}+P$, that is, \bar{M} is not idempotent.

Proof. (1) It follows that $M^{2}=\pi^{2} D+x R$, because $D=\pi D+\sigma(\pi) D$. Suppose that $x^{2}+p \in M^{2}$. Then $p \in \pi^{2} D$ and so $\sigma(\pi) D=\pi D$ follows, a contradiction. Hence $M^{2} \not \nexists x^{2}+p$. Since $\pi D=M \cap D \supseteq\left(M^{2}+P\right) \cap D \supseteq M^{2} \cap D=\pi^{2} D$, we have either $\left(M^{2}+P\right) \cap D=\pi D$ or $\left(M^{2}+P\right) \cap D=\pi^{2} D$. If $\left(M^{2}+P\right) \cap D=\pi^{2} D$, then $M^{2}+P \ni \pi^{2}+x^{2}-\left(x^{2}+p\right)=\pi^{2}-p$, which implies $p \in \pi^{2} D$, a contradiction as the above. So $\left(M^{2}+P\right) \cap D=\pi D$ and thus $M^{2}+P \supseteq \pi D+x R=M$. Hence $M=M^{2}+P$ follows.
(2) It is easy to see that $M^{2} \nexists x^{2}+p$ since $M^{2}=p^{2} D+p x R+x^{2} R$. Suppose that $M=M^{2}+P$. Then $x \in M^{2}+P$ and write $x=p^{2} d+p x f(x)+x^{2} g(x)+\left(x^{2}+p\right) h(x)$, where $d \in D, f(x)=\sum f_{i} x^{i}, g(x)=\sum g_{i} x^{i}$ and $h(x)=\sum h_{i} x^{i}$, where $f_{i}, g_{i}, h_{i} \in D$. Then $1=p \sigma\left(f_{0}\right)+p h_{1}$, a contradiction. Hence $M \supset M^{2}+P$.

Next we will study a maximal ideal M with $M \not \supset x$.
Lemma 3.3. Let M be a maximal ideal of R with $M \ni x^{2}+p$ and $M \not \supset x$. Then
(1) There is a prime number $q(\neq p)$ and a monic polynomial $f(x) \in M$ with $M=f(x) R+q R$.
(2) If $\operatorname{deg} f(x) \geq 2$, then $M=P+q R, M^{2} \nexists x^{2}+p$ and \bar{M} is not idempotent.
(3) If $\operatorname{deg} f(x)=1$, then $q=2$ and either $M=(x+1) R+2 R$ or $M=(x+i) R+2 R$.

Proof. (1) Since $M \cap D$ is a non-zero σ-prime ideal, there is a prime number q with $M \cap D=q D$. Set $\widetilde{R}=R / q D[x ; \sigma]=\widetilde{D}[x ; \widetilde{\sigma}]$, where $\widetilde{D}=D / q D=(\mathbb{Z} / q \mathbb{Z}) \oplus(\mathbb{Z} / q \mathbb{Z}) i$, a semi-simple Artinian ring. Since $\widetilde{M}=M / q D[x ; \sigma] \not \supset \widetilde{x}$, it follows from [CFH, Lemma 2.6] that $\widetilde{M}=\widetilde{f(x)} \widetilde{R}$ for some monic polynomial $\widetilde{f(x)}$, where $f(x) \in M$. So $M=f(x) R+q R$ and we may suppose that $f(x)$ is monic. It is clear $q \neq p$, because $x \notin M$ and $x^{2}+p \in M$.
(2) If $\operatorname{deg} f(x) \geq 2$, then $\widetilde{x}^{2}+\widetilde{p}=\widetilde{f(x)} \widetilde{d}$ for some $d \in D$ and so $\widetilde{d}=\widetilde{1}$. Hence $\widetilde{M}=\left(\widetilde{x}^{2}+\widetilde{p}\right) \widetilde{R}$ and thus $M=\left(x^{2}+p\right) R+q R=P+q R$. Suppose that $x^{2}+p \in M^{2}$. Then $\widetilde{M}=\widetilde{M^{2}}$, a contradiction, because \widetilde{M} is principal. Hence $x^{2}+p \notin M^{2}$. Since $M^{2}+P=q^{2} R+P$, it follows that $\bar{M}=\bar{q} \bar{R} \supset \bar{M}^{2}=\bar{q}^{2} \bar{R}$ and so \bar{M} is not idempotent.
(3) Suppose that $\operatorname{deg} f(x)=1$. Then $\widetilde{f(x)}=\widetilde{x}+\widetilde{\alpha}$ for some nonzero $\widetilde{\alpha} \in \widetilde{D}$. Since $\widetilde{M}=(\widetilde{x}+\widetilde{\alpha}) \widetilde{R}$ is an ideal, we have $\widetilde{i}(\widetilde{x}+\widetilde{\alpha})=(\widetilde{x}+\widetilde{\alpha}) \widetilde{\beta}$ for some $\beta=a+b i \in D$ with $\widetilde{\beta} \neq \widetilde{0}$ and so $\widetilde{i}=\widetilde{\sigma}(\widetilde{\beta})$ and $\widetilde{i} \widetilde{\alpha}=\widetilde{\alpha} \widetilde{\beta}$. Thus $\widetilde{a}=\widetilde{0}$ and $2 \widetilde{b}=\widetilde{0}$. Hence $q=2$ follows. Then note that $\widetilde{D}[x ; \widetilde{\sigma}]=\widetilde{D}[x]$, the polynomial ring over \widetilde{D}.
Since $\widetilde{D}=\{\widetilde{0}, \widetilde{1}, \widetilde{i}, \tilde{i+1}\}, f(x)$ is one of $\{x+1, x+i, x+i+1\}$. Let $M=(x+i+1) R+2 R$. Then $\widetilde{M} \ni(x+i+1)(x-i-1)=\widetilde{x}^{2}$ and so $M \ni x$. Hence we do not need to consider the maximal ideal $(x+i+1) R+2 R$. If $M=(x+1) R+2 R$, then it is easy to see that $M \not \supset x$, because $\widetilde{M}=(x+\widetilde{1}) \widetilde{R}$. Let $p=2 l+1$ (note $p \neq 2$). Then $M \ni(x+1)^{2}+2(l-x)=x^{2}+p$. Similarly we can prove that $(x+i) R+2 R \nexists x$ and $(x+i) R+2 R \ni x^{2}+p$.

From the proof of Lemma 3.3, we have
Remark. $M=(x+1) R+2 R$ and $N=(x+i) R+2 R$ are both maximal ideals of R containing $x^{2}+p$.

Lemma 3.4. If $p=4 n+3$, then \bar{R} is not a hereditary prime ring.
Proof. Let $M=(x+1) R+2 R$, a maximal ideal of R. Then $M^{2} \ni(x+1)^{2}-2(x+$ 1) $+4(n+1)=x^{2}+p$. Hence \bar{R} is not a hereditary prime ring by Theorem 2.10.

Lemma 3.5. If $p=4 n+1$, then \bar{R} is a hereditary prime ring, but not a Dedekind prime ring.

Proof. Let $M=(x+1) R+2 R$ and $N=(x+i) R+2 R$, the maximal ideals of
R. By Lemmas 3.2, 3.3 and Theorem 2.10, it suffices to prove that $M^{2} \nexists x^{2}+p$ and $N^{2} \nexists x^{2}+p$.
First we will prove that $M^{2} \not \supset x^{2}+p$. Suppose, on the contrary, that $M^{2} \ni x^{2}+p$. Then since $M^{2}=(x+1)^{2} R+2(x+1) R+4 R$, considering $R / 4 R$, and using the same notation in R, we may suppose that

$$
x^{2}+1=\left(x^{2}+2 x+1\right) f(x)+2(x+1) g(x)
$$

for some $f(x)=f_{n} x^{n}+\cdots+f_{1} x+f_{0}$ and $g(x)=g_{n+1} x^{n+1}+\cdots+g_{1} x+g_{0}$, where $f_{i}, g_{j} \in D$. Comparing the coefficients of $x^{j}(0 \leq j \leq n+2)$, we have

$$
\begin{aligned}
& 1=f_{0}+2 g_{0}, \\
& 0=2 \sigma\left(f_{0}\right)+f_{1}+2 \sigma\left(g_{0}\right)+2 g_{1}, \\
& 1=f_{0}+2 \sigma\left(f_{1}\right)+f_{2}+2 \sigma\left(g_{1}\right)+2 g_{2}, \\
& 0=f_{j-2}+2 \sigma\left(f_{j-1}\right)+f_{j}+2 \sigma\left(g_{j-1}\right)+2 g_{j}(2 \leq j \leq n), \\
& 0=f_{n-1}+2 \sigma\left(f_{n}\right)+2 \sigma\left(g_{n}\right)+2 g_{n+1}, \\
& 0=f_{n}+2 \sigma\left(g_{n+1}\right) .
\end{aligned}
$$

Here if $\operatorname{deg} f(x)=0$, then $f_{1}=f_{2}=g_{2}=0$, and if $\operatorname{deg} f(x)=1$, then $f_{2}=0$.
Adding the coefficients of $x^{2 j}$ and $x^{2 j+1}$, respectively, we have the following equations: Case 1, n is even number, say, $n=2 l$.

$$
\begin{equation*}
2=2\left(\sum_{j=0}^{l} f_{2 j}+\sum_{j=1}^{l} \sigma\left(f_{2 j-1}\right)\right)+2\left(\sum_{j=0}^{l} g_{2 j}+\sum_{j=1}^{l+1} \sigma\left(g_{2 j-1}\right)\right) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
0=2\left(\sum_{j=0}^{l} \sigma\left(f_{2 j}\right)+\sum_{j=1}^{l} f_{2 j-1}\right)+2\left(\sum_{j=0}^{l} \sigma\left(g_{2 j}\right)+\sum_{j=1}^{l+1} g_{2 j-1}\right) \tag{2}
\end{equation*}
$$

Set $\alpha=\sum_{j=0}^{l} f_{2 j}, \quad \beta=\sum_{j=1}^{l} f_{2 j-1}, \quad \gamma=\sum_{j=0}^{l} g_{2 j}, \quad$ and $\quad \delta=\sum_{j=1}^{l+1} g_{2 j-1}$. Then adding (1) to (2), we have $2=2(\alpha+\sigma(\alpha)+\beta+\sigma(\beta)+\gamma+\sigma(\gamma)+\delta+\sigma(\delta))=4 c$ for some $c \in \mathbb{Z}$, a contradiction. Hence $M^{2} \not \supset x^{2}+p$.
Case $2, n=2 l+1$,

$$
\begin{equation*}
2=2\left(\sum_{j=0}^{l} f_{2 j}+\sum_{j=1}^{l+1} \sigma\left(f_{2 j-1}\right)\right)+2\left(\sum_{j=0}^{l+1} g_{2 j}+\sum_{j=1}^{l+1} \sigma\left(g_{2 j-1}\right)\right) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
0=2\left(\sum_{j=0}^{l} \sigma\left(f_{2 j}\right)+\sum_{j=1}^{l+1} f_{2 j-1}\right)+2\left(\sum_{j=0}^{l+1} \sigma\left(g_{2 j}\right)+\sum_{j=1}^{l+1} g_{2 j-1}\right) . \tag{4}
\end{equation*}
$$

Adding (3) to (4), we have $2=4 d$ for some $d \in \mathbb{Z}$, a contradiction. Hence $M^{2} \not \supset x^{2}+p$.
Next suppose that $N^{2} \ni x^{2}+p$. Since $N^{2}=\left(x^{2}-1\right) R+2(x+i) R+4 R$, as before, we may suppose that

$$
x^{2}+1=\left(x^{2}-1\right) h(x)+2(x+i) k(x)
$$

for some $h(x)=h_{n} x^{n}+\cdots+h_{1} x+h_{0}$ and $k(x)=k_{n+1} x^{n+1}+\cdots+k_{1} x+k_{0}$, where $h_{i}, k_{j} \in D$. Comparing the coefficients of $x^{j} \quad(0 \leq j \leq n+2)$, we have

$$
\begin{aligned}
& 1=-h_{0}+2 k_{0} i, \\
& 0=-h_{1}+2 \sigma\left(k_{0}\right)+2 k_{1} i, \\
& 1=\left(h_{0}-h_{2}\right)+2 \sigma\left(k_{1}\right)+2 k_{2} i, \\
& 0=h_{j-2}-h_{j}+2 \sigma\left(k_{j-1}\right)+2 k_{j} i(3 \leq j \leq n), \\
& 0=h_{n-1}+2 \sigma\left(k_{n}\right)+2 k_{n+1} i, \\
& 0=h_{n}+2 \sigma\left(k_{n+1}\right) .
\end{aligned}
$$

Here if $n=0$, then $h_{1}=h_{2}=k_{2}=0$ and if $n=1$, then $h_{2}=h_{3}=k_{3}=0$. Adding the coefficients of $x^{2 j}$ and $x^{2 j+1}$, respectively, we have the following equations:
Case 1, $n=2 l$,

$$
\begin{align*}
& 2=2 i\left(\sum_{j=0}^{l} k_{2 j}\right)+2\left(\sum_{j=0}^{l} \sigma\left(k_{2 j+1}\right)\right) \tag{5}\\
& 0=2\left(\sum_{j=0}^{l} \sigma\left(k_{2 j}\right)\right)+2 i\left(\sum_{j=0}^{l} k_{2 j+1}\right) \tag{6}
\end{align*}
$$

Operating σ to (6) and multiplying it by i,

$$
\begin{equation*}
0=2 i\left(\sum_{j=0}^{l} k_{2 j}\right)+2\left(\sum_{j=0}^{l} \sigma\left(k_{2 j+1}\right)\right) \tag{7}
\end{equation*}
$$

Adding (5) to (7), we have $2=4 i\left(\sum_{j=0}^{l} k_{2 j}\right)+4 \sigma\left(\sum_{j=0}^{l} k_{2 j+1}\right)$, a contradiction. Case 2, $n=2 l+1$,

$$
\begin{align*}
& 2=2 i\left(\sum_{j=0}^{l+1} k_{2 j}\right)+2\left(\sum_{j=0}^{l} \sigma\left(k_{2 j+1}\right)\right) \tag{8}\\
& 0=2\left(\sum_{j=0}^{l+1} \sigma\left(k_{2 j}\right)\right)+2 i\left(\sum_{j=0}^{l} k_{2 j+1}\right) \tag{9}
\end{align*}
$$

Thus, by the same way as in the case $n=2 l, 2=4 i\left(\sum_{j=0}^{l+1} k_{2 j}\right)+4 \sigma\left(\sum_{j=0}^{l} k_{2 j+1}\right)$, a contradiction. Hence $N^{2} \nexists x^{2}+p$, which complete the proof.

Lemma 3.6. Let $S=\left\{2^{i} \mid i=0,1,2, \cdots\right\}$ be the central multiplicative set in R and let M be a maximal ideal of R with $M \cap S=\emptyset$ and $M \supset P$. Then
(1) $M^{2} \supseteq P$ if and only if $M_{S}^{2} \supseteq P_{S}$.
(2) $M^{2}+P=M$ if and only if $\left(M^{2}+P\right)_{S}=M_{S}$.

Proof. (1) If $M^{2} \supseteq P$, then it is clear that $\left(M^{2}\right)_{S} \supseteq P_{S}$. Conversely suppose $M_{S}^{2} \supseteq P_{S}$. Then there is an $s \in S$ with $s P \subseteq M^{2}$. Since $s R+M=R$, we have $P=(s R+M) P \subseteq M^{2}$.
(2) This is proved in the same way as in (1).

Summarizing Lemmas $3.1 \sim 3.6$, we have
Proposition 3.7. Let p be a prime number and $P=\left(x^{2}+p\right) R$. Then
(1) If $p=2$, then \bar{R} is not a hereditary prime ring.
(2) If $p=4 n+3$, then \bar{R} is not a hereditary prime ring and $\bar{R}_{S}=R_{S} / P_{S}$ is a Dedekind prime ring, where $S=\left\{2^{i} \mid i=0,1,2, \cdots\right\}$.
(3) If $p=4 n+1$, then \bar{R} is a hereditary prime ring but not a Dedekind prime ring.

Proof. (1) This follows from Lemma 3.1
(2) By Lemma 3.4, \bar{R} is not a hereditary prime ring. Let M be a maximal ideal of R with $M \supset P$ and $M \cap S=\emptyset$. Then, by Lemmas $3.2,3.3$ and 3.6, $\left(M^{2}\right)_{S} \nsupseteq P_{S}$ and $\bar{M}_{S} \supset \overline{M^{2}}{ }_{S}$. Hence \bar{R}_{S} is a Dedekind prime ring by [MR, (5.6.3)].
(3) \bar{R} is a hereditary prime ring but not Dedekind by Lemma 3.5.

We will end the paper with two remarks.
(1) Let $P=\mathfrak{p}[x ; \sigma]$ be a minimal prime ideal of R, where \mathfrak{p} is a non-zero σ-prime ideal of D. Then there is a prime number p with $\mathfrak{p}=p D$. If $p=4 n+1$, then $\bar{R}=R / P$ is a hereditary prime ring but not Dedekind. If $p=4 n+3$, then $\bar{R}=R / P$ is a Dedekind prime ring.
(2) Let $P^{\prime}=\left(x^{2}+\frac{1}{2}\right) K[x ; \sigma] \in \operatorname{Spec}_{0}(K[x ; \sigma])$, where $K=\mathbb{Q} \oplus \mathbb{Q} i$ and \mathbb{Q} is the field of rational numbers. Then $P=P^{\prime} \cap R=\left(2 x^{2}+1\right) R \in \operatorname{Spec}_{0}(R)$ and $2 x^{2}+1$ is not a monic polynomial (as it has been mentioned in the introduction, Hillman only considered monic polynomials).

References

[A] E.Artin, Galois Theory, University of Notre Dame Press, 1944.
[C] M.Chamarie, Anneaux de Krull non commutatifs, J. Algebra, 72 (1981), 210-222.
[CFH] W.Cortes, M.Ferrero, Y.Hirano and H.Marubayashi, Partial skew polynomial rings over semi-simple Artinian rings, to appear in Comm.in Algebra.
[CS] J.H.Cozzens and F.L.Sandomierskis, Maximal orders and localization I, J. Algebra, 44 (1977), 319-338.
[ER] D.Eisenbud and J.C.Robson, Hereditary Noetherian prime rings, J. Algebra, 16 (1970), 86-104.
[G] R.Gilmer, Multiplicative Ideal Theory, Queen's Papers in Pure and Applied Mathematics, 90 (1992), Kingston Ontario Canada.
[GW] K.R. Goodearl and R.B Warfield, JR, An Introduction to Noncommutative Noetherian rings, London Mathematical Society Student Texts, 16 (1989).
[H] J.A.Hillman, Polynomials determining Dedekind domains, Bull. Austral. Math. Soc. 29 (1984), 167-175
[HL] C.R. Hajarnavis and T.H. Lenagan, Localization in Asano orders, J.Algebra, 21 (1972), 441-449.
[J] N.Jacobson, Pseudo-linear transformations, Annals of Math., 38 (1937), 484-507.
[M_{1}] H. Marubayashi, A Krull type generalization of HNP rings with enough invertible ideals, Comm. in Algebra, 11(5) (1983), 469-499.
[M_{2}] H. Marubayashi, Ore extensions over total valuation rings, to appear in Algebras and Representation Theory.
[MLP] H. Marubayashi, Y. Lee and J.K. Park, Polynomials determining hereditary prime PI-rings, Comm. in Algebra, 20(9), (1992), 2503-2511.
[MMU] H. Marubayashi, H. Miyamoto and A. Ueda, Non-commutative Valuation Rings and Semi-Hereditary Orders, K-Monog. Math. 3, Kluwer Academic Publisher, 1997.
[MR] J.C. McConnell and J.C. Robson, Noncommutative Noetherian Rings, WileyInterscience, New York, 1987.
[PR] J.K. Park and K.W. Roggenkamp, A note on hereditary rings, Comm. in Algebra, 17(6), (1989), 1477-1493.
[PS] K.R. Pearson and W. Stephenson, A skew polynomial ring over a Jacobson ring need not be a Jacobson ring, Comm. in Algebra, 5(8), (1977), 783-794.
[R] I. Reiner, Maximal Order, Academic Press, New York, 5, 1975.
[Ro] L. Rowen, Ring Theory I, Academic Press, New York, 127, 1988.
[ZS] O. Zariski and P. Samuel, Commutative Algebra I, Van Nostrand, Princeton, N.J., 1958.

[^0]: *Permanent Address: Mathematics Department, Faculty of Mathematics and Natural Science, Hasanuddin University, Makassar Indonesia 90245. The second author's research was partially supported by ITB according to Surat Perjanjian Pelaksanaan Riset No. 265/K01.7/PL/2009, 6 February 2009. Email: amirkamalamir@yahoo.com.
 ${ }^{\dagger}$ The third author was supported by Grant-in-Aid for Scientific Research (No. 21540056) from Japan Society for the Promotion of Science.

