
On Maximal Orders and Factor Rings of Ore
Extension over a Commutative Dedekind Domain

1Amir Kamal Amir*, 2Pudji Astuti,
3Intan Muchtadi-Alamsyah, and 4Irawati

1,2,3,4Algebra Research Group
Faculty of Mathematics and Natural Sciences

Institut Teknologi Bandung
Jl. Ganesa 10 Bandung, Indonesia, 40132

E-mail: s301 amir@students.itb.ac.id, {pudji, ntan, irawati}@math.itb.ac.id

*Mathematics Department
Faculty of Mathematics and Natural Sciences

Hasanuddin University
Jl. Perintis Kemerdekaan KM.10, Makassar, Indonesia, 90245.

Email: amirkamalamir@yahoo.com.

Abstract

Let R = D[x;σ, δ] be an Ore extension over a commutative Dedekind domain
D, where σ is an automorphism on D. Chamarie [2] implicitly proved that R is
a maximal order. In this paper we give an explicit and simpler proof. Then we
use that result to study the prime factor ring of D[x;σ, δ] over prime ideals.
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1 Introduction

This paper studies maximal order and factor rings of an Ore extension over the prime
ideals. Ore extensions are widely used as the underlying rings of various linear sys-
tems investigated in the area algebraic system theory. These systems may represent
systems coming from mathematical physics, applied mathematics and engineering sci-
ences which can be described by means of systems of ordinary or partial differential
equations, difference equations, differential time-delay equations, etc. If these systems
are linear, they can be defined by means of matrices with entries in non-commutative
algebras of functional operators such as the ring of differential operators, shift oper-
ators, time-delay operators, etc. An important class of such algebras is called Ore
extensions (Ore Algebras).
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Chamarie [2] implicitly proved that R is a maximal order. In this paper we give
an explicit and simpler proof. Then we use that result to study the prime factor ring
of D[x; σ, δ] over prime ideals.

2 Ore Extension as a Maximal Order

2.1 Definitions and Notations of Ore Extension

We recall some definitions, notations, and more or less well known facts concerning. A
(left) skew derivation on a ring D is a pair (σ, δ) where σ is a ring endomorphism of
D and δ is a (left) σ-derivation on D; that is, an additive map from D to itself such
that δ(ab) = σ(a)δ(b) + δ(a)b for all a, b ∈ D. For (σ, δ) any skew derivation on a ring
D, we obtain

δ(am) =
m−1∑
i=0

σ(a)iδ(a)am−1−i

for all a ∈ D and m = 1, 2, · · · . (See [3, Lemma 1.1])

Definition 2.1 Let D be a ring with identity 1 and (σ, δ) be a (left) skew derivation
on the ring D. The Ore Extension over D with respect to the skew derivation (σ, δ) is
the ring consisting of all polynomials over D with an indeterminate x denoted by:

D[x; σ, δ] = { f(x) = anx
n + · · · + a0 | ai ∈ D }

satisfying the following equation, for all a ∈ D

xa = σ(a)x + δ(a).

The notations D[x; σ] stand for the particular Ore extensions where δ = 0 and D[x; δ]
for σ the identity map. In this paper, we describe the Ore Extension R = D[x; σ, δ]
where D is a commutative Dedekind domain and σ is an automorphism.

The Ore extension D[x; σ, δ] is a free left D-module with basis 1, x, x2, · · · . To abbre-
viate the assertion, the symbol R stands for the Ore extension D[x; σ, δ] constructed
from a ring D and a skew derivation (σ, δ) on D. The degree of a nonzero element
f ∈ R is defined in the obvious fashion. Since the standard form for elements of R is
with left-hand coefficients, the leading coefficient of f is fn if

f(x) = f0 + f1x + · · ·+ fn−1x
n−1 + fnx

n

with all fi ∈ D and fn 6= 0. If σ is an automorphism, f can also be written with
right-hand coefficients, but then its xn-coefficient is σ−n(fn). While a general formula
for xna where a ∈ D and n ∈ N is too involved to be of much use, an easy induction
establishes that

xna = δn(a) + a1x + · · ·+ an−1x
n−1 + σn(a)xn
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for some a1, · · · , an−1 ∈ D.

In preparation for our analysis of the types of ideals occurred when prime ideals of
an Ore extension D[x; σ, δ] are contracted to the coefficient ring D, we consider σ-
prime, δ-prime, and (σ, δ)-prime ideals of D.

Definition 2.2 Let Σ be a set of maps from the ring D to itself. A Σ-ideal of D is any
ideal I of D such that α(I) ⊆ I for all α ∈ Σ. A Σ-prime ideal is any proper Σ-ideal I
such that whenever J, K are Σ-ideals satisfying JK ⊆ I, then either J ⊆ I or K ⊆ I.

In the context of a ring D equipped with a skew derivation (σ, δ), we shall make use
of the above definition in the cases Σ = {σ}, Σ = {δ} and Σ = {σ, δ}; and simplify the
prefix Σ to respectively σ, δ, or (σ, δ).

2.2 Ore Extension as a Maximal Order

Let R = D[x; σ, δ] be an Ore extension, where σ is an automorphism and δ is a
σ−derivative on D. By [6, Theorem 2.1.14 and 2.1.15], R has a right quotient division
ring, denoted by Q(R) or Q for short . So, R is right order in Q, i.e, for all q ∈ Q, q =
a(x)b(x)−1 for some a(x), b(x) ∈ R. In this section we will show that R is a maximal
order. We start with some easy lemmas.

Lemma 2.1 Let I be an ideal of R and a(x), b(x) ∈ R. Then
(i). Ia(x)b(x)−1 ⊆ I ⇐⇒ Ia(x) ⊆ Ib(x).
(ii). Ia(x) ⊆ Ib(x) =⇒ der(a(x)) ≥ der(b(x))

Proof.
We get them by simple calculation. �

Lemma 2.2 Let I be an ideal of R. Set T = {d ∈ D | d is a leading coefficient of f(x)
for some f(x) ∈ I, where f(x) 6= 0} ∪ {0}. Then T is an ideal of D and σ(T ) = T .

Proof.
It is easy to see that T is an ideal of D and σ(T ) ⊆ T . Using the facts that σ is an
automorphism and T is an ideal in Dedekind domain D, we get σ(T ) = T . �

As T is an ideal in Dedekind domain D, T can be generated by two elements, say s1 and
s2. Since s1, s2 ∈ T then there are two polynomials p1(x), p2(x) ∈ I such that s1, s2 are
leading coefficients of p1(x), p2(x), respectively, where der(p1(x)) = der(p2(x)) = t for
some natural number t. Now set S = {d ∈ D | d is a leading coefficient of a polynomial
d1p1(x) + d2p2(x), where d1s1 + d2s2 6= 0, for some d1, d2 ∈ D} ∪ {0}. It is easy to see
that T = S. Using S and t we prove the following lemma.

Lemma 2.3 Let I be an ideal of R and a(x), b(x) ∈ R where a(x) = amxm + · · ·+ a0

and b(x) = blx
l + · · ·+ b0. . If Ia(x) ⊆ Ib(x) then am = cσm−l(bl) for some c ∈ D.
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Proof.
The proof is done in two steps. In the first step, it will be shown that Sam ⊆ Sσm−l(bl).
In the second step, it will be shown that am = cσm−l(bl) for some c ∈ D.
Proof step I.
Let v ∈ S, then there exists w ∈ S such that σ−t(w) = v. The existence of w is
guarantee by automorphism of σ and σ(S) = S. Since w ∈ S, there is a polynomial,
say q(x) = wxt + · · · ∈ I. By definition of S, q(x) has degrre t. Using relation,
Ia(x) ⊆ Ib(x), we get

[wxt + · · · ]a(x) = wσt(am)xt+m + · · · ∈ Ia(x) ⊆ Ib(x).

So,
wσt(am)xt+m + · · · =

[
qxt+m−l + · · ·

]
b(x) = qσt+m−l(bl)x

t+m + · · · .

for some qxt+m−l + · · · ∈ I where q ∈ T = S. From the last equation, we get

wσt(am) = qσt+m−l(bl)

σ−t(w)am = σ−t(q)σm−l(bl)

vam = σ−t(q)σm−l(bl).

Since σ−t(q) ∈ S, it means that

Sam ⊆ Sσm−l(bl) or Sam[σm−l(bl)]
−1 ⊆ S or am[σm−l(bl)] ∈ D.

Proof step II.
Since S is an ideal in Dedekind domain D which is a maximal order, then from the
last relation, we get

S
(
(am)[σm−l(bl)]

−1
)
⊆ S or am[σm−l(bl)]

−1 ∈ D.

This implies, am = cσm−l(bl) for some c ∈ D. �

Lemma 2.4 Let I be an ideal in R and a(x), b(x) ∈ R. Then

I
[
a(x)b(x)−1

]
⊆ I =⇒ a(x)b(x)−1 ∈ R.

Proof.
Let a(x) = amxm + · · ·+a0 and b(x) = blx

l + · · ·+b0. The proof is done by induction on
m− l. First let m− l = 0. By Lemma 2.3, am = cσm−l(bl) for some c ∈ D. We can find
a polynomial p(x) ∈ R where der(p(x)) < m = l, such that a(x) =

(
cxm−l

)
b(x) + p(x).

Moreover,

a(x)b(x)−1 =
[(

cxm−l
)
b(x) + p(x)

]
b(x)−1 = cxm−l + p(x)b(x)−1.

Since I
[
a(x)b(x)−1

]
⊆ I, then I

[
cxm−l + p(x)b(x)−1

]
⊆ I. Therefore,

Ip(x)b(x)−1 ⊆ I. Since der(p(x)) < l, then by Lemma 2.1, we conclude that p(x) = 0.
This leads to,

a(x)b(x)−1 = cxm−l ∈ R.
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Now, let the statement,

I
[
a(x)b(x)−1

]
⊆ I =⇒ a(x)b(x)−1 ∈ R,

be true for 0 ≤ m− l ≤ k. Next, we will prove that it is true for m− l = k + 1.
From above we have, Ip(x)b(x)−1 ⊆ I, where der(p(x)) < m. Since der(p(x)) < m, then
der(p(x)) − l ≤ k. So, using induction hypothesis, we conclude that p(x)b(x)−1 ∈ R.
Finally,

a(x)b(x)−1 = cxm−l + p(x)b(x)−1 ∈ R.

�

Lemma 2.5 Let I be an ideal in R and a(x), b(x) ∈ R. Then[
a(x)b(x)−1

]
I ⊆ I =⇒ a(x)b(x)−1 ∈ R.

Proof.
Since Q is a quotient ring of Ore extension R = D[x; σ, δ], where D is a commutative
Dedekind domain, then Q is two side quotient ring of R, by [4, p.6]. It means, for
all q(x) ∈ Q(R), q(x) = b(x)−1a(x) for some a(x), b(x) ∈ R. Therefore, to prove this
lemma, it is enough to prove the following.[

b(x)−1a(x)
]
I ⊆ I =⇒ b(x)−1a(x) ∈ R.

Using the same technique as the proof of Lemma 2.4, the proof follows. �

For the theorem below, we need the following notations. Let I is an ideal of R,

Or(I) = {q ∈ Q(R) | Iq ⊆ I} and Ol(I) = {q ∈ Q(R) | qI ⊆ I}.

Theorem 2.1 Let R = D[x; σ, δ] be an Ore extension, then R = D[x; σ, δ] is a maximal
Order.

Proof. Using Lemma 2.4 and Lemma 2.5, we get, respectively, Or(I) = R and
Ol(I) = R for all ideals I of R. So, R = D[x; σ, δ] is a maximal order, by [6, Theorem
5.1.4]. �.

3 Factor Rings of Ore Extension

Throughout this section, let D be a commutative Dedekind domain and σ be an auto-
morphism of D. Let R = D[x; σ, δ], an Ore extension over D.

In this section, we study the structure of the prime factor ring R/P for any prime
ideal P of R, which is one of the ways to investigate the structure of rings. This
investigation will be described into three subsections. In the first and the second
subsection, we study the structure of the prime factor ring R/P where P is a minimal
prime ideal of R while in the last subsection P is not a minimal prime ideal of R.
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3.1 Factor Ring as a Maximal Order

Let P be a minimal prime of R. In this subsection we will show that factor ring R/P
is a maximal order.

Theorem 3.1 If P is a prime ideal of R, then R/P is a maximal order

Proof.
In the first step, we will show that

Or(Ĩ) = Ol(Ĩ) = R/P, for all ideal Ĩ of R/P.

Let q̃ ∈ Or(Ĩ). It means q̃ ∈ Q̃ and Ĩ q̃ ⊆ Ĩ. This implies Iq ⊆ I, where I is the ideal
of R and q ∈ Q. Since R is maximal order then Or(I) = Ol(I) = R by [6, Theorem
5.1.4] . So, qI ⊆ I. This implies q̃Ĩ ⊆ Ĩ. So,Or(Ĩ) ⊆ Ol(Ĩ). With similar technique, it
easy to show that Ol(Ĩ) ⊆ Or(Ĩ) and Or(Ĩ) = R/P .
Now we have Or(Ĩ) = Ol(Ĩ) = R/P, for all ideal Ĩ ofR/P . So, using again [6, Theorem
5.1.4] we get R/P is a maximal order. �

3.2 Dedekind Factor Ring of Ore Extension

In this subsection, we study the structure of the prime factor ring R/P where P is a
minimal prime ideal of R.

Theorem 3.2 Let P be a minimal prime ideal of R with P = p[x; σ, δ], where p is a
(σ, δ)-prime ideal of D. Then R/P is a Dedekind domain if and only if p ∈ Spec(D).

Proof.
⇐
Since p is a (σ, δ)-prime ideal of D, then according to [3, page 330](

R/pR
) ∼= (

D/p
)
[x; σ, δ].

Moreover, pR ∈ Spec(R) by [3, Theorem 3.1]. So, P = pR since pR ⊆ P and P is
minimal prime. It means, we are in the situation

(
R/P

) ∼= (
D/p

)
[x; σ, δ]. On the

other hand, if p ∈ Spec(D) then D/p is a field. So,
(
D/p

)
[x; σ, δ] is a principal ideal

domain by [1, Theorem 1.3.2]. This implies
(
D/p

)
[x; σ, δ] is a Dedekind domain and

so, R/P is a Dedekind domain.
⇒
Let R/P be a Dedekind domain. Then it is clear that D/p ⊆ R/P also Dedekind
domain. Hence p ∈ Spec(D). �

3.3 Field Factor Rings of Ore Extension

In this subsection, we study the structure of the prime factor ring R/P where P is a
prime ideal of R but not a minimal prime. For the case P is not a minimal prime ideal
and P ∩D = p is not a (σ, δ)-ideal of D, we will show that R/P is a field.

With the situations above, by [3, Theorem 3.1], we get the following:
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i. p is a prime ideal of D

ii. σ(p) 6= p

iii. P is the unique prime ideal of R where P ∩D = p

iv. R/P is a commutative domain.

From the above conditions, we get the following theorem.

Theorem 3.3 R/P is a field.

Proof.
Let S/P be an ideal of R/P , then S/P is contained in a maximal ideal, say M/P .
Since R/P a commutative domain then M/P also a prime ideal. Hence M a prime
ideal of R such that M ∩D ⊇ P ∩D = p. Since p is a maximal ideal then M ∩D = p.
Using [3, Theorem 3.1], we get M = P . So (M/P ) = (0) and S/P = (0). �

4 Concluding Remark

In this paper we study the factor rings of D[x; σ, δ] over the prime ideals P , where
P ∩ D = p 6= 0. Studying these results, it is expected that this identification can
be used to study the structure of the corresponding factor rings of D[x; σ, δ] over the
minimal prime ideals P , where P ∩D = 0, which is currently under investigation.
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