

JP Journal of Algebra, Number Theory and Applications Volume ..., Number ..., 2011, Pages ... This paper is available online at http://pphmj.com/journals/jpanta.htm © 2011 Pushpa Publishing House

CORRIGENDUM TO MINIMAL PRIME IDEALS OF ORE **EXTENSION OVER A COMMUTATIVE DEDEKIND** DOMAIN AND ITS APPLICATION

AMIR KAMAL AMIR^{1,2}, HIDETOSHI MARUBAYASHI³, PUDJI ASTUTI¹ and INTAN MUCHTADI-ALAMSYAH¹

¹Algebra Research Division Faculty of Mathematics and Natural Sciences Institut Teknologi Bandung (ITB) Jl. Ganesha 10 Bandung 40132, Indonesia e-mail: pudji@math.itb.ac.id ntan@math.itb.ac.id

²Department of Mathematics Hasanuddin University Makassar 90245, Indonesia e-mail: amirkamalamir@yahoo.com

³Faculty of Engineering Tokushima Bunri University Shido, Sanuki, Kagawa 769-2193, Japan e-mail: marubaya@kagawa.bunri-u.ac.jp

Abstract

Let $R = D[x; \sigma, \delta]$ be an Ore extension over a commutative Dedekind domain D, where σ is an automorphism of D and δ is a left σ -derivation of D. In [1], minimal prime ideals of R were described, but the description

Keywords and phrases: minimal prime, Ore extension, fractional.

The research of ITB's authors is supported by ITB Research Program 2010.

Received January 26, 2011

²⁰¹⁰ Mathematics Subject Classification: Kindly provide.

AMIR KAMAL AMIR et al.

carried a flaw in the proof and it did not describe all minimal prime ideals as pointed out by one of the authors in this paper. In this corrigendum, we provide a corrected proof and an application to the group of fractional *R*-ideals.

In this corrigendum, *D* denotes a commutative Dedekind domain except for Lemma 1 and Remark, and $R = D[x; \sigma, \delta]$ denotes an Ore extension over *D*, where σ is an automorphism of *D*, and δ is a left σ -derivation of *D*.

In [1, Theorem 4], it was shown that:

Let *P* be a prime ideal of *R* and $P \cap D = \mathfrak{p} \neq (0)$. Then *P* is a minimal prime ideal of *R* if and only if either $P = \mathfrak{p}[x; \sigma, \delta]$, where \mathfrak{p} is a minimal (σ, δ) -prime ideal of *D* or (0) is the largest (σ, δ) -ideal of *D* in \mathfrak{p} . This result is not correct as it fails to describe all minimal prime ideals.

We now give a complete description of all minimal prime ideals of R as follows:

Lemma 1 [5, Proposition 3.5]. Let P be a prime ideal of $R = D[x; \sigma, \delta]$, where D is a commutative Noetherian domain and let $\mathfrak{p} = P \cap D$. If \mathfrak{p} is a prime ideal of D with $\sigma(\mathfrak{p}) \neq \mathfrak{p}$, Then P is not a minimal prime ideal of R.

Proof. This implicitly follows from the proof of [5, Proposition 3.5]. However, we give the outline of the proof for reader's convenience by using Goodearl's notation: Let *y* be an indeterminate and $Y = \mathscr{C}_{D[y]}^{\sigma}(\mathfrak{p}[y])$. Set $D^{\circ} = D[y]Y^{-1}$ and $R^{\circ} = R[y]Y^{-1}$. Goodearl showed that $R^{\circ} = D[y]Y^{-1}[x; \sigma, \delta] = D^{\circ}[x^{\circ}; \sigma]$, where $x^{\circ} = x - b$ for some $b \in D^{\circ}$ and $P^{\circ} = \mathfrak{p}D^{\circ} + x^{\circ}R^{\circ}$ is a prime ideal of R° such that R°/P° is a commutative domain. Hence $P^{\circ} \cap R$ is a prime ideal with $\mathfrak{p} = P^{\circ} \cap D$ and so, by uniqueness, $P = P^{\circ} \cap R$. Put $P_1^{\circ} = x^{\circ}R^{\circ}$, a completely prime ideal of R, since $R/P_1 \subset R^{\circ}/P_1^{\circ}$. If $P_1 = P$, then $P_1 \supseteq \mathfrak{p}$ and so $P_1^{\circ} \supseteq \mathfrak{p}D^{\circ} + x^{\circ}R^{\circ} = P^{\circ}$ which is a contradiction. Hence P is not a minimal prime ideal.

Let S be a ring with quotient ring Q and let I(J) be a right (left) R-ideal of Q. We use the following notation:

$$(S:I)_l = \{q \in Q \mid qI \subseteq S\}, \quad (S:J)_r = \{q \in Q \mid Jq \subseteq S\},$$

and $I_v = (S : (S : I)_l)_r$ is again a right S-ideal containing I. If $I = I_v$, then it is called a *right v-ideal*. Similarly $_v J = (S : (S : I)_r)_l$, and J is called *left v-ideal* if $J = _v J$. An R-ideal A is said a *v-ideal* if $A_v = A = _v A$. We denote by Spec(S) the set of prime ideals of S.

Since gl.dim $R \le 2$, each *v*-ideal *A* is an invertible ideal by [4, p. 324]. We denote by $\text{Spec}_0(R) = \{P \in \text{Spec}(R) | P \cap D = (0)\}.$

Proposition 1. Let $R = D[x; \sigma, \delta]$ be the Ore extension over a commutative Dedekind domain D. Then $\{\mathfrak{p}[x; \sigma, \delta], P | \mathfrak{p} \text{ is a non-zero } (\sigma, \delta)\text{-prime ideal of } D$ and $P \in Spec_0(R)$ with $P \neq (0)\}$ is the set of minimal prime ideals of R.

Proof. Let $T = K[x; \sigma, \delta]$, where *K* is the quotient ring of *D* which is a field, and let $C = D - \{0\}$. Then *C* is a regular Ore set of *R* such that $T = R_C$. Hence there is a one-to-one correspondence between $\operatorname{Spec}_0(R)$ and $\operatorname{Spec}(T)$ (cf. [6, Theorem 9.22]) given by $P \to P' = PT$ and $P' \to P' \cap R$, where $P \in \operatorname{Spec}_0(R)$ and $P' \in \operatorname{Spec}(T)$. Let $P \in \operatorname{Spec}_0(R)$ with $P \neq (0)$. Then since *R* is Noetherian and *T* is a principal ideal ring, we have

$$P' = P'_{v} = (T : (T : P')_{l})_{r} = (T : T(R : P)_{l})_{r} = (R : (R : P)_{l})_{r}T = P_{v}T$$

and so $P = P_v$ follows. Similarly, we have $P = {}_v P$ and hence *P* is a minimal prime ideal (cf. [7, Proposition 5.1.9]). Let *P* be a prime ideal of *R* with $\mathfrak{p} = P \cap D \neq (0)$. According to Goodearl's classification, there are two cases: either \mathfrak{p} is a (σ, δ) prime ideal or \mathfrak{p} is a prime ideal with $\sigma(\mathfrak{p}) \neq \mathfrak{p}$. In the second case, *P* is not a minimal prime ideal by Lemma 1. In the first case, by [5, Proposition 3.3], $\mathfrak{p}[x; \sigma, \delta]$ is a prime ideal. Thus if *P* is a minimal prime ideal, then $P = \mathfrak{p}[x; \sigma, \delta]$. Conversely, let \mathfrak{p} be a (σ, δ) -prime ideal of *D*. Then $\mathfrak{p}[x; \sigma, \delta]$ is a prime ideal and invertible, because \mathfrak{p} is invertible. Hence $\mathfrak{p}[x; \sigma, \delta]$ is a *v*-ideal and so it is a minimal prime ideal. This completes the proof.

AMIR KAMAL AMIR et al.

As an application of Proposition 1, we have the following: we denote by $G(R) = \{A \mid A \text{ is an invertible } R \text{-ideal}\}$. It is well known that G(R) is an abelian group generated by prime invertible ideals, i.e., P and $\mathfrak{p}[x; \sigma, \delta]$. Hence any invertible R-ideal is of the form:

$$(\mathfrak{p}_1^{e_1}[x;\,\sigma,\,\delta]\cdots\mathfrak{p}_k^{e_k}[x;\,\sigma,\,\delta])(P_1^{n_1}\cdots P_l^{n_l}),$$

where e_i and n_i are integers, \mathfrak{p}_i are (σ, δ) -prime ideals, and $P_i \in \operatorname{Spec}_0(R)$ with $P_i \neq 0$.

Similarly, let $G_{\sigma,\delta}(D) = \{ \mathfrak{a} \mid \mathfrak{a} \text{ is an invertible } D\text{-ideal which is } (\sigma, \delta)\text{-ideal} \}.$ Then it is an abelian group generated by (σ, δ) -prime ideals. Hence, we have the following:

Proposition 2. $G(R) \cong G_{\sigma,\delta}(D) \oplus D(T)$. The correspondence is given by

$$(\mathfrak{p}_1^{e_1}[x;\sigma,\delta]\cdots\mathfrak{p}_k^{e_k}[x;\sigma,\delta])(P_1^{n_1}\cdots P_l^{n_l})\to (\mathfrak{p}_1^{e_1}\cdots\mathfrak{p}_k^{e_k})\oplus((P_1')^{n_1}\cdots(P_l')^{n_l}),$$

where $P'_i = P_i T$ for any $i, 1 \le i \le l$.

Remark. Let *D* be a Krull ring in the sense of [2] and $R = D[x; \sigma, \delta]$. In [3], the structure of *v*-ideals has been studied in the case either $\sigma = 1$ or $\delta = 0$.

References

- A. K. Amir, P. Astuti and I. Muchtadi-Alamsyah, Minimal prime ideals of Ore over commutative Dedekind domain, JP J. Algebra, Number Theory and Applications 16(2) (2010), 101-107.
- [2] M. Chamarie, Anneaux de Krull non Commutatifs, J. Algebra 72(1) (1981), 210-222.
- [3] M. Chamarie, Anneaux de Krull non Commutatifs, These, 1981.
- [4] J. H. Cozzens and F. L. Sandomierski, Maximal orders and localization I, J. Algebra 44 (1977), 319-338.
- [5] K. R. Goodearl, Prime ideals in skew polynomial ring and quantized Weyl algebras, J. Algebra 150 (1992), 324-377.
- [6] K. R. Goodearl and R. B. Warfield, Jr., An introduction to Noncommutative Noetherian rings, London Mathematical Society Student Texts, 16, Cambridge University Press, Cambridge, 1989.
- [7] J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, Wiley-Interscience, New York, 1987.

Proof read by:
Copyright transferred to the Pushpa Publishing House
Signature:
Date:
Tel:
Fax:
e-mail:
Number of additional reprints required
Cost of a set of 25 copies of additional reprints @ Euro 12.00 per page.
(25 copies of reprints are provided to the corresponding author ex-gratis)