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Abstract 

Let [ ]δσ= ,;xDR  be an Ore extension over a commutative Dedekind 

domain D, where σ is an automorphism of D and δ is a left σ-derivation of 
D. In [1], minimal prime ideals of R were described, but the description 
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carried a flaw in the proof and it did not describe all minimal prime ideals 
as pointed out by one of the authors in this paper. In this corrigendum, we 
provide a corrected proof and an application to the group of fractional R-
ideals. 

In this corrigendum, D denotes a commutative Dedekind domain except for 
Lemma 1 and Remark, and [ ]δσ= ,;xDR  denotes an Ore extension over D, where 

σ is an automorphism of D, and δ is a left σ-derivation of D. 

In [1, Theorem 4], it was shown that: 

Let P be a prime ideal of R and ( ).0≠= pDP ∩  Then P is a minimal prime 

ideal of R if and only if either [ ],,; δσ= xP p  where p  is a minimal ( )δσ, -prime 

ideal of D or ( )0  is the largest ( )δσ, -ideal of D in .p  This result is not correct as it 

fails to describe all minimal prime ideals. 

We now give a complete description of all minimal prime ideals of R as follows: 

Lemma 1 [5, Proposition 3.5]. Let P be a prime ideal of [ ],,; δσ= xDR  where 

D is a commutative Noetherian domain and let .DP ∩=p  If p  is a prime ideal of 

D with ( ) ,pp ≠σ  Then P is not a minimal prime ideal of R. 

Proof. This implicitly follows from the proof of [5, Proposition 3.5]. However, 
we give the outline of the proof for reader’s convenience by using Goodearl’s 

notation: Let y be an indeterminate and [ ] [ ]( ).yY yD pσ= C  Set [ ] 1−= YyDD  and 

[ ] .1−= YyRR  Goodearl showed that [ ] [ ] [ ],;,;1 σ=δσ= − xDxYyDR  where 

bxx −=  for some Db ∈  and RxDP += p  is a prime ideal of R  such 

that PR  is a commutative domain. Hence RP ∩  is a prime ideal with =p  

DP ∩  and so, by uniqueness, .RPP ∩=  Put ,1 RxP =  a completely prime 

ideal of R  with 1PP  and thus RPP ∩11 =  is also a completely prime ideal 

of R, since .11 PRPR ⊂  If ,1 PP =  then p⊇1P  and so 

PRxDP =+⊇ p1  which is a contradiction. Hence P is not a minimal prime 

ideal.  
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Let S be a ring with quotient ring Q and let ( )JI  be a right (left) R-ideal of Q. 

We use the following notation: 

( ) { } ( ) { },:,: SJqQqJSSqIQqIS rl ⊆|∈=⊆|∈=  

and ( ( ) )rlv ISSI ::=  is again a right S-ideal containing I. If ,vII =  then it is 

called a right v-ideal. Similarly ( ( ) ) ,:: lrv ISSJ =  and J is called left v-ideal if 

.JJ v=  An R-ideal A is said a v-ideal if .AAA vv ==  We denote by ( )SSpec  the 

set of prime ideals of S. 

Since ,2gl.dim ≤R  each v-ideal A is an invertible ideal by [4, p. 324]. We 

denote by ( ) ( ) ( ){ }.0SpecSpec0 =|∈= DPRPR ∩  

Proposition 1. Let [ ]δσ= ,;xDR  be the Ore extension over a commutative 

Dedekind domain D. Then { [ ] pp |δσ Px ,,;  is a non-zero ( )δσ, -prime ideal of D 

and ( )RSpecP 0∈  with ( )}0≠P  is the set of minimal prime ideals of R. 

Proof. Let [ ],,; δσ= xKT  where K is the quotient ring of D which is a field, 

and let { }.0−= DC  Then C is a regular Ore set of R such that .CRT =  Hence 

there is a one-to-one correspondence between ( )R0Spec  and ( )TSpec  (cf. [6, 

Theorem 9.22]) given by PTPP =′→  and ,RPP ∩′→′  where ( )RP 0Spec∈  

and ( ).Spec TP ∈′  Let ( )RP 0Spec∈  with ( ).0≠P  Then since R is Noetherian 

and T is a principal ideal ring, we have 

( ( ) ) ( ( ) ) ( ( ) ) TPTPRRPRTTPTTPP vrlrlrlv ===′=′=′ ::::::  

and so vPP =  follows. Similarly, we have PP v=  and hence P is a minimal prime 

ideal (cf. [7, Proposition 5.1.9]). Let P be a prime ideal of R with ( ).0≠= DP ∩p  

According to Goodearl’s classification, there are two cases: either p  is a ( )δσ, -

prime ideal or p  is a prime ideal with ( ) .pp ≠σ  In the second case, P is not a 

minimal prime ideal by Lemma 1. In the first case, by [5, Proposition 3.3], 
[ ]δσ,;xp  is a prime ideal. Thus if P is a minimal prime ideal, then [ ].,; δσ= xP p  

Conversely, let p  be a ( )δσ, -prime ideal of D. Then [ ]δσ,;xp  is a prime ideal and 

invertible, because p  is invertible. Hence [ ]δσ,;xp  is a v-ideal and so it is a 

minimal prime ideal. This completes the proof.  
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As an application of Proposition 1, we have the following: we denote by 
( ) { }.ideal-invertibleanis RAARG |=  It is well known that ( )RG  is an abelian 

group generated by prime invertible ideals, i.e., P and [ ].,; δσxp  Hence any 

invertible R-ideal is of the form: 

( [ ] [ ]) ( ),,;,; 11
11

lk n
l

ne
k

e PPxx δσδσ pp  

where ie  and in  are integers, ip  are ( )δσ, -prime ideals, and ( )RPi 0Spec∈  with 

.0≠iP  

Similarly, let ( ) { aa |=δσ DG ,  is an invertible D-ideal which is ( ) }.ideal-, δσ  

Then it is an abelian group generated by ( )δσ, -prime ideals. Hence, we have the 

following: 

Proposition 2. ( ) ( ) ( ).~
, TDDGRG ⊕= δσ  The correspondence is given by 

( [ ] [ ]) ( ) ( ) (( ) ( ) ),,;,; 1111
1111

lklk n
l

ne
k

en
l

ne
k

e PPPPxx ′′⊕→δσδσ pppp  

where TPP ii =′  for any i, .1 li ≤≤  

Remark. Let D be a Krull ring in the sense of [2] and [ ].,; δσ= xDR  In [3], 

the structure of v-ideals has been studied in the case either 1=σ  or .0=δ  
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