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ABSTRACT 

 

The effect of sonication on the adsorption of Pb
2+

 and Cu
2+

 ions on rice husk activated carbon has been 

conducted. This study was aimed to removal of Pb
2+

 and Cu
2+

 ions from aqueous solution by activated carbon 

under the influence of sonication. Surface characteristics of activated carbon showed that rice husk based 

activated carbon prepared at 400C and treated with ZnCl2 10% has better properties compared to the others 

prepared with difference conditions. The value of Langmuir model constant, b, for Cu
2+

 ion adsorption is -

0.0362 (absence of sonication) and 0.1105 (presence of sonication), and for Pb
2+

 ion adsorption is -5.1508 

(absence of sonication) and 1.0745 (presence of sonication). Those values suggest that ultrasonic irradiation 

positively affects the affinity of Pb
2+

 and Cu
2+

 ions towards the adsorbent. Maximum adsorption capacities 

increase in the presence of sonication. This can be seen on the value of am, Langmuir constant which represents 

the maximum adsorption capacity of adsorbent. The values of am for Cu
2+

 and Pb
2+

 adsorption changed from 

1.0464 mg/g (absence) to 6.2775 mg/g (presence) and from 9.7561 mg/g (absence) to 16.5017 mg/g (presence), 

respectively. Those values suggest an increase in the adsorption capacity of activated carbon under sonication. 
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1. INTRODUCTION 
 

Environmental pollution due to the disposal of heavy metals and organic pollutants has been causing serious 

concern for the last few years [1-2]. Heavy metals are non-degradable to harmless end products, unlike organic 

pollutants, the majority of which are probably biodegradable. Heavy metals are toxic to aquatic ecosystems even 

in relatively low concentrations. Heavy metals, which are toxic to human beings and ecological environments, 

include chromium (Cr), copper (Cu), lead (Pb), and mercury (Hg), etc. These metals might be assimilated, 

stored and concentrated by human body, causing erythrocyte destruction, nausea, salivation, diarrhea, muscular 

cramps, renal degradation, chronic pulmonary problems and skeletal deformity [3-7].  

 

Lead, which has been used by man for years, can be regarded as an important environmental contaminant. All 

compounds containing lead are considered as cumulative poisons that affect the gastrointestinal track, nervous 

system and sometimes both. The sources of lead in water are the effluents of processing industries, storage 

batteries, insecticides, plastic water pipes, food, beverages, ointments and medicinal concoctions for flavoring 

and sweetening. Environmental pollution due to copper is originated from mining, printed circuits, 

metallurgical, fiber production, pipe corrosion and metal plating industries. The other sources of copper 

pollution are industries of paper and pulp, petroleum refining and wood preserving. Agricultural activities such 

as fertilizers, fungicidal sprays and animal wastes can cause also copper pollution in water resources [3-7]. 

 

Removal of toxic or heavy metals from aqueous solutions can be carried out through several methods, such as 

chemical precipitation, membrane filtration, ion exchange, biosorption and adsorption [4]. Among those 

removal techniques of toxic or heavy metals, adsorption is the preferred method and gives the best results as it 

can be used to remove various types of toxic materials [1-7]. Commercial Activated Carbon (CAC) is the most 

widely employed adsorbent for the removal of toxic metals due to its effectiveness and high adsorption capacity; 

however, its use is still limited because of high operating costs. The need for regeneration and difficulty of 

separation from the wastewater after use are also major concerns associated with CAC. Many researchers have 

focused on finding non-conventional alternative adsorbents to reduce the cost of pollution treatment. Low-cost 

adsorbents are generally referred to non-hazardous waste produced from industry, agriculture, and biosorbents. 

Several lists and reviews of these types of adsorbent for pollutant removal have been made [1–2, 4]. In addition, 
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the use of agricultural waste as adsorbent has attracted some researchers because: (1) it is available abundantly; 

(2) most of the types of agriculture waste are readily to be utilized and do not need a complex pretreatment step 

or activation process before applications; (3) regeneration of these adsorbents may not be necessary (unlike 

CAC, where regeneration is essential); and (4) less maintenance and supervision are required for the operation 

of the adsorption process [8-15]. However, use of these cheap alternatives for pollutant treatment is still limited 

because both insufficient documentation in real wastewater systems and the necessity of post-usage disposal. 

The employment of rice husk waste for the treatment of wastewater is a win–win strategy because it does not 

only convert the waste into a helpful material but it also prevents on-site burning of the waste, saves on disposal 

costs, and reduce CO2 emission [1-4, 8-9]. Disadvantage of biosorbents, that is often found, is the relatively low 

adsorbing capacity. However, in some cases, the adsorption capacity can be improved by activation, surface 

modification, and sonication. The use of activated carbons from plant materials is also often suffered from the 

low adsorption rate because of their microporous structures and long diffusion path through solid particles of 

adsorbents [16-18]. 

 

The effect of sonication has been studied to exhibit several effects in solid–liquid systems such as the increase 

of mass transfer rate, the enhancement of the surface area by many micro-cracks formation on the surface of 

solid and the clean-up of solid particle surfaces [19-28]. The effect of ultrasound on the adsorption/desorption 

processes has been previously studied and some controversial effects have been found [16, 20-23]. Nevertheless, 

there is less information in the literature about the removal of heavy metal ions from aqueous solution by 

adsorption under the influence of ultrasonic irradiation [20-23]. 

 

The objectives of the current study was aimed to removal of Cu(II) and Pb(II) ions from an aqueous solution by 

adsorption onto the activated carbon obtained from rice husk under the influence of sonication. The models of 

Cu(II) and Pb(II) adsorption will be evaluated to observe the effects of ultrasound on the adsorption of both 

metals onto the rice husk based activated carbon, and finally to choose optimal adsorption condition. 

 

2. MATERIALS AND METHODS 
 

Materials: Rice husk (Oryza satyfum L.) was supplied from the south part of South Sulawesi (Bontomaero, 

Kecamatan Bajeng, Kabupaten Gowa). Fresh rice husk were washed several times with distilled water for the 

removal of surface impurities, dried at 100C overnight (6h), crushed by a hammer mill and simultaneously 

carbonized in a muffle furnace at 300 and 400 C for 2h. Carbonized rice husk was then immersed into  ZnCl2 

(10%w/v) for 24h. Afterwards, the granular activated carbon was washed three times with distilled water, dried 

at 110 C for 24h and stored in desiccators. Copper(II) acetate and lead(II)acetate, analytical reagent grade, were 

purchased from Merck Co. Distilled water was used to prepare aqueous solutions of copper(II) acetate and 

lead(II)acetate. 

 

Material characterization: Surface characteristics of adsorbents were determined by Scanning Electron 

Microscope (SEM) (JEOL, JSM6510). Cristallinity analysis was carried out through X-Ray Diffraction method 

(XRD) (Shimadzu, XRD6000). Specific surface area, total pores volume, and pores size distribution were 

determined by N2 adsorption method in a Gas Sorption Analyzer (Quantachrome, Autosorb iQ-MP). 

 

Experimental set-up of sonication: The set-up consisted of an ultrasonic cleaner (Elmasonic S40H; total nominal 

power: 250 W; and internal dimensions: 300 x 220 x 155 mm), operating at 40 kHz frequency. The cleaner was 

filled with distilled water up to 1/3 of its volume (about 3.5 l). The temperature was controlled and maintained 

by water circulating from a thermostated bath by means of a pump. An Erlenmeyer flask (250 ml) used as 

adsorption vessel was fixed on a swinger (90 oscillations per minute). The copper(II) acetate and lead(II)acetate 

solutions (100 ml) and the adsorbent (1.0 g) were put into the flask fixed on the swinger. 

 

Adsorption experiments: In these experiments, the initial copper(II) acetate and lead(II)acetate concentrations 

were in the range between 2 and 50 mg/l. In a preliminary equilibrium test under silent conditions applying the 

smallest (2 mg/l) and the highest (50 mol/l) copper(II) acetate and lead(II) acetate concentrations, it was 

established that the equilibrium was reached after 2 h. For sure, all equilibrium experiments lasted 3 h. After 

establishing equilibrium, a sample was taken from the flask and was centrifuged (1500 rpm for 5 min) for the 

removal of adsorbent particles. The Cu(II) and Pb(II) concentrations in the supernatant were measured by 

Atomic Absorption Spectrophotometer (AAS) Bulk Scientific Model 205VGP. The amount of Cu(II) and Pb(II) 

ions adsorbed was calculated from the mass balance equation (Equation 1). 

 

𝑞 =
 𝐶0−𝐶 𝑉

𝑚𝑎
     (1) 
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Where q is the amount of ions adsorbed at time t; C0 and C are the initial ions concentration and the ions 

concentration at time t, respectively; V is the volume of solution (=100 ml); and ma is the amount of adsorbent 

(=1.0 g). For each sample, the ion concentrations were measured in triplicate and the mean value was used as 

the equilibrium one. 

 

3. RESULTS AND DISCUSSION 
 

Characterization of rice husk based activated carbon (RHAC): The activated carbon prepared from rice husk by 

carbonization at elevated temperature (300C and 400C) and salt impregnation (ZnCl2; 10% w/v) for 24 h was 

characterized by standard methods (Table 1 and Figure 1). The highest specific surface area of RHAC was 

obtained at carbonization at 400C i.e. 284,963 m
2
/g, and the total pore volume was 4,670E-01 cc/g. The active 

groups were formed due to the dissolution of many chemical bonds initially present in the rice husk through 

prolonged carbonization at elevated temperature. Immersion of RHAC into ZnCl2 10% solution for 24h has 

increased the specific surface area and total pore volume. Based on the SEM results, the surface structure of 

RHAC (carbonization at 400C and activation with ZnCl2; 10% w/v) has a layered structure and pieces of pores 

compared to the other RHAC (Fig. 2). Activation can increase the number of pores as can be seen from Fig. 2(a) 

and 2(b), respectively. The number of pores is avalaible more in Fig. 2(a) than 2(b). This explanation can also be 

connected to information from the specific surface area and total pore volume, where RHAC produced and 

activated at 400 C has the highest value of both parameters. Activation can also increase the values of specific 

surface area from 38,248 m
2
/g  to 115,282 m

2
/g , and from 55,074 m

2
/g to 284,963 m

2
/g at 300 C and 400 C of 

activation, respectively. 

 

 

 
Table 1 Specific surface area, pores radius and total pores volume of activated carbon. 300 A and 400 A 

                             were activated by ZnCl2 (10% w/v) at 300C and 400C, respectively. 300 TA and 400 TA means  

                             without activation at the same temperature. 

 

No Sample name 
Specific surface area 

(m²/g) 

Pore radius 

( Å ) 

Total pore volume 

(cc/g) 

1 300 TA 38,248 1,735E+01 3,318E-02 

2 300 A 115,282 1,821E+01 1,050E-01 

3 400 TA 55,074 8,040E+01 2,214E-01 

4 400 A 284,963 3,278E+01 4,670E-01 

 

 

 
Table 2 Parameters of adsorption isotherms and linear correlation coefficient of both presence and absence of 

                         ultrasonic irradiation experiments. 

 

Isotherm Parameter  Absence (Cu
2+

) Presence (Cu
2+

) Absence (Pb
2+

) Presence (Pb
2+

) 

Langmuir am (qmax) 1,0464 6,2775 9,7561 16,5017 

  b (adsorption affinity) -0,0362 0,1105 -5,1508 1,0745 

  R 0,7612 0,9906 0,9988 0,9927 

Freundlich kF (adsorption capacity) 10,4372 2,0086 7,1717 9,4595 

  n (adsorption intensity) -2,6385 4,3497 13,1926 8,4459 

  R 0,5614 0,9054 0,7864 0,7972 
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(a) 400 A        (b) 400 TA 

 

 
(c) 300 A      (d) 300 TA 

Figure 1. Surface characteristics of adsorbent determined by Scanning Electron Microscope (SEM). 300 A and 

                400 A were activated by ZnCl2 (10% w/v) at 300C and 400C, respectively. 300 TA and 400 TA   

                means without activation at the same temperatue. 

 

In addition, as seen from Fig. 2, both adsorption isotherms for both metals are non-linear and seem to approach 

to the maximum values, except Pb(II) adsorption under sonication. Indication from the shape of the curves can 

be understood that several well-known models reported in the literature could be employed to explain the 

adsorption isotherms. Both Langmuir and Freundlich models are the most frequently used isotherms for 

adsorption studies [3-7, 10-16]. The Langmuir model can be applied to homogeneous sorption, where the 

sorption of each molecule is carried out onto monolayer surface and has equal sorption activation energy. The 

Freundlich model is an empiric isotherm model in nature. In this study, both adsorption isotherms were used to 

model the relationships between the amount of Cu(II)and Pb(II) ions adsorbed onto RHAC and its equilibrium 

concentration in solution in the absence and the presence of ultrasonic irradiation. Table 2 shows parameters of 

both adsorption isotherm models that were obtained in the presence and absence of ultrasonic irradiation. 

Nevertheless, when the Langmuir isotherm model was utilized in our experimental data, this model better fits 

both in the presence of ultrasound and its absence than with the Freundlich isotherm model. This can be seen in 

Table 2 when the corresponding linear correlation coefficients (R) are compared. The higher R-value for the 

Langmuir isotherm model than for the Freundlich isotherm model might be caused by homogeneous distribution 

of active sites of RHAC surface as it was explained in the case of Cu(II) ions removal by activated carbon from 

hazelnut shells under sonication [16]. 

 

The Langmuir constants am and b as well as the Freundlich constants kF and n are also shown in Table 2. The 

Langmuir adsorption constant b defines the ratio of adsorption and desorption rate constants and is related to the 

free energy of adsorption. Its value represents the affinity of Cu(II) and Pb(II) ions to the adsorbent. When both 

values are compared, the values of b for the silent and the ultrasound-assisted adsorption, it can be concluded 

that ultrasound positively affected the affinity of Cu(II) and Pb(II) ions to the granular activated carbon as it was 

previously found for the adsorption of Cu(II) ions by activated carbon of hazelnut shell under sonication [16].  
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              Figure 2.  Adsorption isotherms of (upper) Cu
2+

 ions and (lower) Pb
2+

 ions on  rice husk based  

                              activated carbon  ( = presence of sonication,  = absence of sonication). 

 

The difference conclusion was withdrawn from values of the Freundlich constant kF, related to the adsorption 

capacity.  The increase of kF was only observed in adsorption of Pb(II) ions under sonication, while in the case 

of Cu(II) ions adsorption, sonication was decreasing the adsorption capacity of RHAC. The corresponding linear 

correlation coefficients (R) of Cu(II) adsorption in the absence of sonication, however, is lower than the 

presence of sonication. The adsorption capacity of Cu(II) ions by activated carbon of hazelnut shell was also 

greater in the presence of ultrasound than in the silent conditions [16]. This can be attributed to the cavitation 

effects which can increase the capability of the porous particle structure for Cu(II) and Pb(II) ions adsorption 

and/or the appearance of new sites of sorption by disruption of sorbent particles [16-28]. 

 

Maximum adsorption capacities for removal of Cu(II) and Pb(II) ions from aqueous solution by the granular 

activated carbon achieved in silent and ultrasound-assisted adsorption are 1.0464, 6.2775, 9.7561 and 16.5017 

mg/g (calculated from the Langmuir isotherm model), respectively. Those values are much higher than that 

reported for the activated carbon obtained by steam activation of hazelnut shells under sonication [16]. This 

might be attributed to the specific surface area of the granular activated carbon of rice husk used in the present 

experiment. 
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5. CONCLUSION 
 

Surface characteristics of RHAC prepared at 400C then impregnated with ZnCl2 10% are better than the other 

activated carbon prepared with the other conditions. When the values of b for the silent and the ultrasound-

assisted adsorption are compared, it can be concluded that ultrasound positively affected the affinity of Cu(II) 

and Pb(II) ions to the surface of RHAC. The values for Cu
2+

 adsorption are 1.0464 mg/g and 6.2775 mg/g for 

the absence and presence of sonication, respectively, which suggests an increase (83%) in the adsorption 

capacity of activated carbon due to the ultrasonic irradiation. The values for Pb
2+

 adsorption are 9.7561 mg/g 

and 16.5017 mg/g for the absence and presence of sonication, respectively, which also suggests an increase 

(41%) in the adsorption capacity of activated carbon due to the ultrasonic irradiation. Langmuir adsorption 

isotherm model is better fits than the Freundlich model based on the values of corresponding linear correlation 

coefficients (R), both in the presence and absence of ultrasonic irradiation. 
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