The Ramsey numbers for disjoint union of trees versus W_{4}

Hasmawati
Department of Mathematics
Faculty of Mathematics and Natural Sciences
Hasanuddin Universitas (UNHAS), Jln. Perintis Kemerdekaan KM. 10 Makassar 90245, Indonesia
hasmawati@math.itb.ac.id

Abstract

The Ramsey number for a graph G versus a graph H, denoted by $R(G, H)$, is the smallest positive integer n such that for any graph F of order n, either F contains G as a subgraph or \bar{F} contains H as a subgraph. In this paper, we investigate the Ramsey numbers for union of stars versus small cycle and small wheel. We show that if n_{i} is odd and $2 n_{i+1} \geq n_{i}$ for every i, then $R\left(\bigcup_{i=1}^{k} T_{n_{i}}, W_{4}\right)=R\left(T_{n_{k}}, W_{4}\right)+\sum_{i=1}^{k-1} n_{i}$ for $k \geq 1$.. Furthermore, we show that 1. If n_{i} is even and $2 n_{i+1} \geq n_{i}+1$ for every i, then $R\left(\bigcup_{i=1}^{k} S_{n_{i}}, W_{4}\right)=$ $2 n_{k}+\sum_{i=1}^{k-1} n_{i}$ for $k \geq 2$, 2. If n_{i} is odd and $2 n_{i+1} \geq n_{i}$ for every i, then $R\left(\bigcup_{i=1}^{k} S_{n_{i}}, W_{4}\right)=$ $R\left(S_{n_{k}}, W_{4}\right)+\sum_{i=1}^{k-1} n_{i}$ for $k \geq 1$.

Keywords : Ramsey number, Cycle, Wheel

1 Introduction

For given graphs G and H, the Ramsey number $R(G, H)$ is defined as the smallest positive integer n such that for any graph F of order n, either F contains G or \bar{F} contains H, where \bar{F} is the complement of F. Chvátal and Harary [6] established a useful lower bound for finding the exact Ramsey numbers $R(G, H)$, namely $R(G, H) \geq(\chi(G)-1)(C(H)-1)+1$, where $\chi(G)$ is the chromatic number of G and $C(H)$ is the number of vertices of the largest component of H. Since then the Ramsey numbers $R(G, H)$ for many combinations of graphs G and H have been extensively studied by various authours, see a nice survey paper [9]. In particular, the Ramsey numbers for combinations involving union of stars have also been investigated. Let S_{n} be a star of n vertices and W_{m} a wheel with m spokes.

For a combination of stars with wheels, Surahmat et al. [10] determined the Ramsey numbers for large stars versus small wheels. Their result is as follows.

Theorem A.(Surahmat and E. T. Baskoro, [10]) For $n \geq 3$,
$R\left(S_{n}, W_{4}\right)=\left\{\begin{array}{l}2 n+1, \text { if } n \text { is even, } \\ 2 n-1, \text { if } n \text { is odd. }\end{array}\right.$
Parsons in [?] considered about the Ramsey numbers for stars versus cycles as presented in Theorem .

Theorem B. (Parsons's upper bound, [?]) For $p \geq 2, R\left(S_{1+p}, C_{4}\right) \leq$ $p+\sqrt{p}+1$.

Hasmawati et al. in [?] and [?] proved that $R\left(S_{6}, C_{4}\right)=8$, and $R\left(S_{6}, K_{2, m}\right)=13$ for $m=5$ or 6 respectively.
Let G be a graph. The number of vertices in a maximum independent set of G denoted by $\alpha_{0}(G)$, and the union of s vertices-disjoint copies of G denoted $s G$. S. A. Burr et al. in [3], showed that if the graph G has n_{1} vertices and the graph H has n_{2} vertices, then

$$
n_{1} s+n_{2} t-D \leq R(s G, t H) \leq n_{1} s+n_{2} t-D+k,
$$

where $D=\min \left\{s \alpha_{0}(G), t \alpha_{0}(H)\right\}$ and k is a constant depending only on G and H. Recently, Baskoro et al. in [2] determined the Ramsey numbers for multiple copies of a star versus a wheel. Their results are given in the next theorem.

Theorem C. [2] For $n \geq 3$,
$R\left(k S_{n}, W_{4}\right)=\left\{\begin{array}{l}(k+1) n \text { if } n \text { is even and } k \geq 2, \\ (k+1) n-1 \text { if } n \text { is odd and } k \geq 1 .\end{array}\right.$
In this paper, we study the Ramsey numbers for disjoint union of stars versus small cycle and small wheel. The results are presented in the next two theorems.

Theorem 1. Let n_{i} is natural number for $i=1,2, \ldots, k$ and $n_{i} \geq$ $n_{i+1} \geq 3$ for every i. If n_{i} is odd and $2 n_{i+1} \geq n_{i}$ for every i, then $R\left(\bigcup_{i=1}^{k} T_{n_{i}}, W_{4}\right)=R\left(T_{n_{k}}, W_{4}\right)+\sum_{i=1}^{k-1} n_{i}$ for $k \geq 1$.

Theorem 2. Let n_{i} is natural number for $i=1,2, \ldots, k$ and $n_{i} \geq$ $n_{i+1} \geq 3$ for every i.

1. If n_{i} is even and $2 n_{i+1} \geq n_{i}+1$ for every i, then $R\left(\bigcup_{i=1}^{k} S_{n_{i}}, W_{4}\right)=$ $2 n_{k}+\sum_{i=1}^{k-1} n_{i}$ for $k \geq 2$,
2. If n_{i} is odd and $2 n_{i+1} \geq n_{i}$ for every i, then $R\left(\bigcup_{i=1}^{k} S_{n_{i}}, W_{4}\right)=$ $R\left(S_{n_{k}}, W_{4}\right)+\sum_{i=1}^{k-1} n_{i}$ for $k \geq 1$.

Before proving the theorems let us present some notations used in this note. Let G be any graph with the vertex set $V(G)$ and the edge set $E(G)$. The order of G, denoted by $|G|$, is the number of its vertices. The graph \bar{G}, the complement of G, is obtained from the complete graph on $|V(G)|$ vertices by deleting the edges of G. A graph $F=\left(V^{\prime}, E^{\prime}\right)$ is a subgraph of G if $V^{\prime} \subseteq V(G)$ and $E^{\prime} \subseteq E(G)$. For $S \subseteq V(G), G[S]$ represents the subgraph induced by S in G. If G is a graph and H is a subgraph of G, then denote $G[V(G) \backslash V(H)]$ by $G \backslash H$. For $v \in V(G)$ and $S \subset V(G)$, the neighborhood $N_{S}(v)$ is the set of vertices in S which are adjacent to v. Furthermore, we define $N_{S}[v]=N_{S}(v) \cup\{v\}$. If $S=V(G)$, then we use $N(v)$ and $N[v]$ instead of $N_{V(G)}(v)$ and $N_{V(G)}[v]$, respectively. The degree of a vertex v in G is denoted by $d_{G}(v)$. Let S_{n} be a star on n vertices and C_{m} be a cycle on m vertices. We denote the complete bipartite whose partite sets are of order n and p by $K_{n, p}$.

Proof of Theorem 1

Let n_{i} be odd and $2 n_{i+1} \geq n_{i}$ for every i. Consider $F=K_{-1+\sum_{i=1}^{k} n_{i}} \cup$ $K_{n_{k}-1}$. Clearly, the graph F has order $-2+2 n_{k}+\sum_{i=1}^{k-1} n_{i}$, without containing $\sum_{i=1}^{k} T_{n_{i}}$ and \bar{F} contains no W_{4}. Hence,

$$
\begin{equation*}
R\left(\bigcup_{i=1}^{k} T_{n_{i}}, W_{4}\right) \geq-1+2 n_{k}+\sum_{i=1}^{k-1} n_{i}=R\left(T_{n_{k}}, W_{4}\right)+\sum_{i=1}^{k-1} n_{i} . \tag{1}
\end{equation*}
$$

To obtain the Ramsey number we use an induction on k. For $k=1$, we have $R\left(T_{n_{1}}, W_{4}\right)=2 n_{1}-1$ (by Theorem 1). For $k=2$, we show that $R\left(T_{n_{1}} \cup T_{n_{2}}, W_{4}\right)=2 n_{2}-1+n_{1}=R\left(T_{n_{2}}, W_{4}\right)+n_{1}$.
Let F^{\prime} be a graph with $\left|F^{\prime}\right|=2 n_{2}-1+n_{1}=2 n_{1}-1+2 n_{2}-n_{1}$. Assume that \bar{F}^{\prime} contains no W_{4}. We show that F^{\prime} contains $T_{n_{1}} \cup S_{n_{2}}$. Since $2 n_{2} \geq n_{1}$, then $\left|F^{\prime}\right| \geq 2 n_{1}-1$. By Theorem ?? and Theorem $1, F^{\prime}$ contains $T_{n_{1}}$. Write $L=F^{\prime} \backslash T_{n_{1}}$. Thus $|L|=2 n_{2}-1$, such that L contains $T_{n_{2}}$. Hence, F^{\prime} contains $T_{n_{1}} \cup T_{n_{2}}$. Therefore, $R\left(T_{n_{1}} \cup T_{n_{2}}, W_{4}\right) \leq 2 n_{2}-1+n_{1}$.

Suppose the theorem holds for every $r<k$. Let F_{1} be a graph of order $-1+2 n_{k}+\sum_{i=1}^{k-1} n_{i}$. Suppose $\overline{F_{1}}$ contains no W_{4}. By the assumption, F_{1} contains $\sum_{i=1}^{k-1} T_{n_{i}}$. Let $L^{\prime}=F_{1} \backslash \sum_{i=1}^{k-1} T_{n_{i}}$. Thus $\left|L^{\prime}\right|=2 n_{k}-1$. Since $\overline{L^{\prime}}$ contains no W_{4}, then by Theorem ?? and $1, L^{\prime} \supset T_{n_{k}}$.

Hence, F_{1} contains $\sum_{i=1}^{k} T_{n_{i}}$. Therefore, we have

$$
\begin{equation*}
R\left(\bigcup_{i=1}^{k} T_{n_{i}}, W_{4}\right) \leq-1+2 n_{k}+\sum_{i=1}^{k-1} n_{i}=R\left(T_{n_{k}}, W_{4}\right)+\sum_{i=1}^{k-1} n_{i} \tag{2}
\end{equation*}
$$

Proof of Theorem 2

We only prove the Theorem 2.2.
Let n_{i} be odd and $2 n_{i+1} \geq n_{i}$ for every i. Consider $F \simeq K_{-1+\sum_{i=1}^{k} n_{i}} \cup$ $K_{n_{k}-1}$. Clearly, the graph F has order $-2+2 n_{k}+\sum_{i=1}^{k-1} n_{i}$, without containing $\sum_{i=1}^{k} S_{n_{i}}$ and \bar{F} contains no W_{4}. Hence,

$$
\begin{equation*}
R\left(\bigcup_{i=1}^{k} S_{n_{i}}, W_{4}\right) \geq-1+2 n_{k}+\sum_{i=1}^{k-1} n_{i} . \tag{3}
\end{equation*}
$$

To obtain the Ramsey number we use an induction on k. For $k=1$, we have $R\left(S_{n_{1}}, W_{4}\right)=2 n_{1}-1$ (by Theorem 1). For $k=2$, we show that $R\left(S_{n_{1}} \cup S_{n_{2}}, W_{4}\right)=2 n_{2}-1+n_{1}=R\left(S_{n_{2}}, W_{4}\right)+n_{1}$.
Let F_{1} be a graph with $\left|F_{1}\right|=2 n_{2}-1+n_{1}=2 n_{1}-1+2 n_{2}-n_{1}$. Assume that \bar{F}_{1} contains no W_{4}. We show that F_{1} contains $S_{n_{1}} \cup S_{n_{2}}$. Since $2 n_{2} \geq n_{1}$, then $\left|F_{1}\right| \geq 2 n_{1}-1$. By Theorem $1, F_{1}$ contains $S_{n_{1}}$. Write $L=F_{1} \backslash S_{n_{1}}$. Thus $|L|=2 n_{2}-1$, such that L contains $S_{n_{2}}$. Hence, F_{1} contains $S_{n_{1}} \cup S_{n_{2}}$. Therefore, $R\left(S_{n_{1}} \cup S_{n_{2}}, W_{4}\right) \leq 2 n_{2}-1+n_{1}$.

Suppose the theorem holds for every $r<k$. Let F_{2} be a graph of order $-1+2 n_{k}+\sum_{i=1}^{k-1} n_{i}$. Suppose $\overline{F_{2}}$ contains no W_{4}. By the assumption, F_{2} contains $\bigcup_{i=1}^{k-1} S_{n_{i}}$. Let $L^{\prime}=F_{2} \backslash \bigcup_{i=1}^{k-1} S_{n_{i}}$. Thus $\left|L^{\prime}\right|=2 n_{k}-1$. Since $\overline{L^{\prime}}$ contains no W_{4}, then by Theorem $1, L^{\prime} \supset S_{n_{k}}$. Hence, F_{2} contains $\bigcup_{i=1}^{k} S_{n_{i}}$. Therefore, we have

$$
\begin{equation*}
R\left(\bigcup_{i=1}^{k} S_{n_{i}}, W_{4}\right)=-1+2 n_{k}+\sum_{i=1}^{k-1} n_{i}=R\left(S_{n_{k}}, W_{4}\right)+\sum_{i=1}^{k-1} n_{i} . \tag{4}
\end{equation*}
$$

References

1. E. T. Baskoro, Surahmat, S. M. Nababan and M. Miller, On Ramsey numbers for tree versus wheels of five or six vertices, Graph Combin., 18 (2002), 717-721.
2. E. T. Baskoro, Hasmawati, H. Assiyatun, The Ramsey numbers for disjoint unions of trees, Discrete Math., 306 (2006), 3297-3301.
3. S. A. Burr, P. Erdös and J. H. Spencer, Ramsey theorem for multiple copies of graphs, Trans. Amer. Math. Soc., 209 (1975), 87-89.
4. Y. J. Chen, Y. Q. Zhang and K. M. Zhang, The Ramsey numbers of stars versus wheels, European J. Combin., 25 (2004), 1067-1075.
5. V. Chvátal, Tree-complete graph Ramsey number, J. Graph Theory, 1 (1977), 93.
6. V. Chvátal and F. Harary, Generalized Ramsey theory for graphs, III: Small offdiagonal numbers, Pacific. J. Math., 41 (1972), 335-345.
7. Hasmawati, E. T. Baskoro and H. Assiyatun, Star-wheel Ramsey numbers, J. Combin. Math. Conbin. Comput., 55 (2005), 123-128.
8. S. L. Lawrence, Cycle-star Ramsey numbers, Notices Amer. math. Soc., 20 (1973), Abstract A-420.
9. S. P. Radziszowski, Small Ramsey numbers, Electron. J. Combin., July (2004) \#DS1.9, http://www.combinatorics.org/
10. Surahmat and E. T. Baskoro, On The Ramsey number of a path or a star versus W_{4} or W_{5}, Proceedings of the 12-th Australasian Workshop on Combinatorial Algorithms, Bandung, Indonesia, July 14-17 (2001), 165-170.
11. Surahmat, E. T. Baskoro, and Ioan Tomescu, The Ramsey number of large cycle versus odd wheels. Accepted in Discrete Mathematics (2006).
12. Y. Q. Zhang and K. M. Zhang, On Ramsey numbers $R\left(S_{n}, W_{8}\right)$ for small n. Preprint.
