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Abstract
7

For given graphs G and H, the Ramsey number R(G, H) is the smallest natural number n such that for every graph F of order
n: either F contains G or the complement of F contains H. In this paper, we investigate the Ramsey number R(∪G, H), where G9
is a tree and H is a wheel Wm or a complete graph Km. We show that if n�3, then R(kSn, W4) = (k + 1)n for k�2, even n and
R(kSn, W4) = (k + 1)n − 1 for k�1 and odd n. We also show that R(

⋃k
i=1Tni , Km) = R(Tnk , Km) + ∑k−1

i=1 ni .11
© 2006 Published by Elsevier B.V.
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1. Introduction

For given graphs G and H, the Ramsey number R(G, H) is defined as the smallest positive integer n such that for15
any graph F of order n, either F contains G or F contains H , where F is the complement of F.

In 1972, Chvátal and Harary [6] established a useful lower bound for finding the exact Ramsey numbers R(G, H),17
namely R(G, H)�(�(G) − 1)(c(H) − 1) + 1, where �(G) is the chromatic number of G and c(H) is the number of
vertices of the largest component of H. Since then the Ramsey numbers R(G, H) for many combinations of graphs G19
and H have been extensively studied by various authors, see a nice survey paper [9].

Let Pn be a path with n vertices and let Wm be a wheel of m + 1 vertices that consists of a cycle Cm with one21
additional vertex being adjacent to all vertices of Cm. A star Sn is the graph on n vertices with one vertex of degree
n − 1, called the center, and n − 1 vertices of degree 1. Tn is a tree with n vertices and a cocktail-party graph Hs is the23
graph which is obtained by removing s disjoint edges from K2s .

Several results on Ramsey numbers have been obtained for wheels. For instance, Baskoro et al. [1] showed that for25
even m�4 and n�(m/2)(m − 2), R(Pn, Wm) = 2n − 1. They also showed that R(Pn, Wm) = 3n − 2 for odd m�5,
and n�((m − 1)/2)(m − 3).27

1 Supported by TWAS Research Grant 04-312 RG-MATHS-AS.
2 Permanent address: Department of Mathematics FMIPA, Universitas Hasanuddin (UNHAS), Jl. Perintis Kemerdekaan Km.10, Makassar 90245,

Indonesia.
E-mail addresses: ebaskoro@dns.math.itb.ac.id, ebaskoro@math.itb.ac.id (E.T. Baskoro), hasmawati@math.itb.ac.id (Hasmawati),

hilda@math.itb.ac.id (H. Assiyatun).

0012-365X/$ - see front matter © 2006 Published by Elsevier B.V.
doi:10.1016/j.disc.2006.06.011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hasanuddin University Repository

https://core.ac.uk/display/25488566?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/disc
mailto:ebaskoro@dns.math.itb.ac.id
mailto:ebaskoro@math.itb.ac.id
mailto:hasmawati@math.itb.ac.id
mailto:hilda@math.itb.ac.id


UNCORRECTED P
ROOF

2 E.T. Baskoro et al. / Discrete Mathematics ( ) –

DISC6288
ARTICLE IN PRESS

For a combination of stars with wheels, Surahmat et al. [10] investigated the Ramsey numbers for large stars versus1
small wheels. Their result is as follows.

Theorem 1 (Surahmat and Baskoro [10]). For n�3,3

R(Sn, W4) =
{

2n + 1 if n is even,

2n − 1 if n is odd.

For odd m, Chen et al. have shown in [4] that R(Sn, Wm)=3n−2 for m�5 and n�m−1. This result was strengthened5
by Hasmawati et al. in [8], by showing that this Ramsey number remains the same, as given in the following theorem.

Theorem 2 (Hasmawati et al. [8]). If m is odd and n�((m + 1)/2)�3, then R(Sn, Wm) = 3n − 2.7

If n�(m + 2)/2, Hasmawati [7] gave R(Sn, Wm) = n + m − 2 for even m and odd n, or R(Sn, Wm) = n + m − 1,
otherwise.9

Let G be a graph. The number of vertices in a maximum independent set of G denoted by �0(G), and the union of s
vertices-disjoint copies of G denoted sG.11

Burr et al. in [3], showed that if the graph G has n1 vertices and the graph H has n2 vertices, then

n1s + n2t − D�R(sG, tH)�n1s + n2t − D + k,13

where D = min{s�0(G), t�0(H)} and k is a constant depending only on G and H.
In the following theorem Chvátal gave the Ramsey number for a tree versus a complete graph.15

Theorem 3 (Chvátal [5]). For any natural number n and m, R(Tn, Km) = (n − 1)(m − 1) + 1.

In this paper, we determine the Ramsey numbers R(∪G, H) of a disjoint union of a graph G versus a graph H, where17
G is either a star or a tree, and H is either a wheel or a complete graph.

The results are presented in the next three theorems.19

Theorem 4. If m is odd and n�(m + 1)/2�3, then R(kSn, Wm) = 3n − 2 + (k − 1)n.

Theorem 5. For n�3,21

R(kSn, W4) =
{

(k + 1)n if n is even and k�2,

(k + 1)n − 1 if n is odd and k�1.

Theorem 6. Let ni �ni+1 for i = 1, 2, . . . , k − 1. If ni �(ni − ni+1)(m − 1) for any i, then R(
⋃k

i=1 Tni
, Km) =23

R(Tnk
, Km) + ∑k−1

i=1 ni for an arbitrary m.

Before proving the theorems, we present some notations used in this note. Let G(V, E) be a graph. For any vertex25
v ∈ V (G), the neighborhood N(v) is the set of vertices adjacent to v in G. Furthermore, we define N [v]=N(v)∪{v}.
The degree of a vertex v in G is denoted by dG(v). The order of G, |G| is the number of its vertices, and the minimum27
(maximum) degree of G is denoted by �(G)(�(G)). For S ⊆ V (G), G[S] represents the subgraph induced by S in G.
If G is a graph and H is a subgraph of G, then denote V (G)\V (H) by G\H .29

Let G1=(V1, E1) and G2=(V2, E2). The union G=G1∪G2 has the vertex set V =V1∪V2 and the edge set E=E1∪E2.
Their join, denoted G1 +G2, is the graph with the vertex set V1 ∪V2 and the edge set E1 ∪E2 ∪{uv : u ∈ V1, v ∈ V2}.31

2. The proofs of theorems

Proof of Theorem 4. Let m be odd and n�(m + 1)/2�3. We shall use an induction on k. For k = 1, we have33
R(Sn, Wm)=3n−2 (by Theorem 2).Assume the theorem holds for any r < k, namely R(rSn, Wm)=(3n−2)+(r−1)n.
We will show that R(kSn, Wm) = (3n − 2) + (k − 1)n.35
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Fig. 1. The illustration of the proof of R(2Sn, W4)�3n.

Let F be a graph with |F | = 3n − 2 + (k − 1)n. Suppose that F contains no Wm. Since |F |�R(rSn, Wm), then1
F ⊃ (k − 1)Sn. Let A = F\(k − 1)Sn and T = F [A]. Thus, |T | = 3n − 2. Since T contains no Wm, then by Theorem
2, T ⊇ Sn. Thus, F contains kSn. Hence, we have R(kSn, Wm)�(3n − 2) + (k − 1)n.3

On the other hand, it is not difficult to see that F1 = Kkn−1 ∪ 2Kn−1 contains no kSn and its complement contains
no Wm. Observe that F1 has 3n − 3 + (k − 1)n vertices. Therefore, we have R(kSn, Wm)�(3n − 2) + (k − 1)n, and5
the assertion follows. �

Proof of Theorem 5. Let n be even, n�4 and k�2. Consider F = (H(kn−2)/2 + K1) ∪ Hn/2. Clearly, graph F has7
(k + 1)n − 1 vertices and contains no kSn. Its complement contains no W4. Hence, R(kSn, W4)�(k + 1)n. We will
prove that R(kSn, W4) = (k + 1)n for k�2. First we will show that R(2Sn, W4) = 3n.9

Let F1 be a graph of order 3n. Suppose F 1 contains no W4. By Theorem 1, we have F1 ⊇ Sn. Let V (Sn) =
{v0, v1, . . . , vn−1} with center v0, A = F1\Sn and T = F1[A]. Thus |T | = 2n.11

If there exists u ∈ T with dT (u)�(n − 1), then T contains Sn. Hence F1 contains 2Sn. Therefore we assume that
for every vertex u ∈ T , dT (u)�(n − 2). Let u, w ∈ T where (u, w) /∈ E(T ). Consider H = N [u] ∪ N [w], Q = T \H ,13
Z = N(u) ∩ N(w), and X = H\{u, w} (see Fig. 1).

By contradiction suppose d(u)�n − 3. Then 0� |Z|�n − 3, 2� |H |�2n − 3 and 2n − 2� |Q|�3 + |Z|.15
Observe that every q ∈ Q is adjacent to at least |Q| − 2 other vertices of Q. (Otherwise, there exists q ∈ Q which

is not adjacent to at least two other vertices of Q, say q1 and q2. Then T will contain a W4 = {q1, u, q2, q, w} with w17
as a hub, a contradiction). Then, for all q ∈ Q, dQ(q)� |Q| − 2.

Let E(X\Z, Q) = {uv : u ∈ X\Z, v ∈ Q}. If there exists x ∈ X\Z not adjacent to at least two vertices of Q, say19
q1 and q2, then T will contain W4 = {q1, x, q2, u, w} with w or u as a hub, a contradiction. Hence every x ∈ X\Z is
adjacent to at least |Q| − 1 vertices in Q. Therefore, we have |E(X\Z, Q)|� |X\Z| · (|Q| − 1).21

On the other hand, every vertex q ∈ Q is incident with at most (n − 2) − dQ(q)�(n − 2) − (|Q| − 2) = n − |Q|
edges from X\Z. Thus |E(X\Z, Q)|� |Q| · (n − |Q|).23

Now, we will show that |X\Z| · (|Q| − 1) > |Q| · (n − |Q|), which leads to a contradiction.
Writing |X\Z| · (|Q| − 1) = |X\Z| · |Q| − |X\Z| and substituting |X\Z| = 2n − 2 − |Q| − |Z|, we obtain25

|X\Z| · (|Q| − 1) = |Q| · (n − |Q|) + |Q| · (n − 2 − |Z|) + |Q| − n − (n − 2 − |Z|). Noting |Q|�3 + |Z|, it can
be verified that |Q| · (n − 2 − |Z|) + |Q| − n − (n − 2 − |Z|) > 0. Thus |X\Z| · (|Q| − 1) > |Q| · (n − |Q|). Hence27
there is no u ∈ T such that d(u)�n − 3.
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Fig. 2. The illustration of the proof of R(kSn, W4)� (k + 1)n.

Therefore every vertex u ∈ T , dT (u)=n− 2. This implies |Q|= 2 +|Z|. Next, suppose F1[Q] is a complete graph.1
Then for every q ∈ Q, dQ(q)=|Q|−1. Consequently, every vertex in Q is incident with (n−2)−dQ(q)=n−1−|Q|
edges from X\Z. Similarly as in the previous argument, this implies that |X\Z| · (|Q| − 1) > |Q| · (n − 1 − |Q|),3
which is impossible. Hence F1[Q] is not a complete graph. Now, choose two vertices in Q which are not adjacent, call
q1 and q2. Let Y = {q1, q2} ∪ {u, w}, it is clear that Y is an independent set.5

If there exists a vertex v ∈ V (Sn) adjacent to at most one vertex in Y say q1, then {v, u, q1, q2, w} will induce a
W4 in F 1, with a hub w, a contradiction. Therefore, every vertex v ∈ V (Sn) is adjacent to at least two vertices in Y.7
Suppose v0 and vj in V (Sn) are adjacent to y1, y2 and to y3, y4 in Y, respectively. Note that at least two y′

i s are distinct.
Without loss of generality, assume y1 �= y3. Since Y is independent, then we have two new stars, namely S′

n and S′′
n ,9

where V (S′
n) = Sn\{vj } ∪ {y1} with v0 as the center and V (S′′

n) = N [y3] ∪ {vj } with y3 as the center (see Fig. 1). So,
we have F1 ⊇ 2Sn. Hence, R(2Sn, W4) = 3n.11

Now, assume the theorem holds for every r < k. We will show that R(kSn, W4)=(k+1)n. Let F2 be a graph of order
(k+1)n. Suppose F 2 contains no W4. We will show that F2 ⊇ kSn. By induction, F2 ⊇ (k−1)Sn. Denote the (k−1)Sn13
as S1

n, S2
n, . . . , Sk−1

n with the center v1, v2, . . . , vk−1, respectively. Writing A′ = F2\(k − 1)Sn and T ′ = F2[A′]. Thus
|T ′| = 2n.15

Similarly, as in the case k=2, every vertex u ∈ T ′, must have degree n−2. Next, let u′, w′ ∈ T where (u′, w′) /∈ E(T ′),
H ′ = N [u′] ∪ N [w′], Q′ = T ′\H ′, and Y ′ = {q1, q2} ∪ {u′, w′}, where q1, q2 ∈ Q′ and (q1, q2) /∈ E(T ′) (see Fig. 2).17

If the vertex v ∈ V ((k − 1)Sn) is adjacent to at most one vertex in Y ′, say u′, then F 2 will contain W4 =
{u′, q1, v, q2, w

′} with w′ as a hub, a contradiction.19
Therefore, every vertex v ∈ V ((k − 1)Sn) is adjacent to at least two vertices in Y ′. Suppose v1 and s in V (Sn1) are

adjacent to u′, q1 and to u′, w′, respectively (see Fig. 2). Then, we will alter S1
n into S1′

n with V (S1′
n ) = (S1

n\{s}) ∪ {q1}21
and create a new star Sk

n where V (Sk
n) = N [u′] ∪ {s} with the center u′. Hence, we now have k disjoint stars, namely

S1′
n , S2

n, S3
n, . . . , Sk−1

n and Sk
n . Therefore, we have R(kSn, W4) = (k + 1)n.23

Let n be odd. Consider F3 =Kkn−1 ∪Kn−1. Clearly, the graph F3 has order (k+1)n−2, without containing kSn and
F3 contains no W4. Hence, R(kSn, W4)�(k + 1)n − 1. To obtain the Ramsey number we use an induction on k. For25
k=1, we have R(Sn, W4)=2n−1. Suppose the theorem holds for every r < k. We show that R(kSn, W4)=(k+1)n−1.
Let F4 be a graph of order (k + 1)n − 1. Suppose F4 contains no W4. By the assumption, F4 contains (k − 1)Sn. Let27
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B =F4\(k − 1)Sn and L=F4[B]. Thus |L|= 2n− 1. Since L contains no W4, then by Theorem 1, L ⊃ Sn. Therefore,1
F4 contains kSn. The proof is now complete. �

Proof of Theorem 6. Let ni �ni+1 and ni �(ni − ni+1)(m − 1) for any i. Since F = (m − 2)Knk−1 ∪ K∑k
i=1ni−1 has3

no
⋃k

i=1Tni
and its complement contains no Km, then R(

⋃k
i=1Tni

, Km)�(m − 1)(nk − 1) + ∑k−1
i=1 ni + 1. We fix m

and apply an induction on k. For k = 2, we show that R(Tn1 ∪ Tn2 , Km) = (m − 1)(n2 − 1) + n1 + 1.5
Let F1 be a graph with |F1|=(m−1)(n2 −1)+1+n1. Suppose F1 contains no Km. Since n1 �n2, then we can write

n1−n2=q �0. Substituten2=n1−q, then we obtain |F1|=(m−1)(n1−q−1)+n1+1=(m−1)(n1−1)−q(m−1)+n1+17
or |F1| = (m − 1)(n1 − 1) + 1 + [n1 − (n1 − n2)(m − 1)]. Noting n1 − (n1 − n2)(m − 1)�0, it can be verified that
|F1|�(m − 1)(n1 − 1) + 1 i.e. |F1|�R(Tn1 , Km). Hence, F1 ⊇ Tn1 . Now, let A = F1\Tn1 , and H = F1[A]. Then9
|H | = (m− 1)(n2 − 1)+ 1. Since H contains no Km, then by Theorem 3, H ⊇ Tn2 . Therefore, F1 contains a subgraph
Tn1 ∪ Tn2 .11

Next, assume the theorem holds for all r < k, namely R(
⋃r

i=1Tni
, Km)=(m−1)(nr−1)+∑r−1

i=1ni+1.We shall show
thatR(

⋃k
i=1Tni

, Km)=(m−1)(nk−1)+∑k−1
i=1 ni+1.Take an arbitrary graphF2 with order (m−1)(nk−1)+∑k−1

i=1 ni+1.13
Suppose F2 contains no Km. By induction, F2 contains

⋃k−1
i=1 Tni

.
Writing B = F2\⋃k−1

i=1 Tni
, and Q = F2[B]. Then |Q| = (m − 1)(nk − 1) + 1. Since Q contains no Km, then Q15

contains Tnk
. Hence F2 contains

⋃k
i=1Tni

. Therefore, we have R(
⋃k

i=1Tni
, Km) = (m − 1)(nk − 1) + ∑k−1

i=1 ni + 1.
The proof is now complete. �17
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