brought to you by provided by Hasanuddin University Repos

ARTICLE IN PRESS

Available online at www.sciencedirect.com

SCIENCE

Discrete Mathematics III (IIII) III-III

www.elsevier.com/locate/disc

Note

The Ramsey numbers for disjoint unions of trees

E.T. Baskoro¹, Hasmawati², H. Assiyatun

Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung (ITB), Jalan Ganesa 10, Bandung 40132, Indonesia

Received 1 March 2006; received in revised form 30 May 2006; accepted 25 June 2006

Abstract

1

3

5

For given graphs G and H, the Ramsey number R(G, H) is the smallest natural number n such that for every graph F of order Q n: either F contains G or the complement of F contains H. In this paper, we investigate the Ramsey number $R(\cup G, H)$, where G is a tree and H is a wheel W_m or a complete graph K_m . We show that if $n \ge 3$, then $R(kS_n, W_4) = (k+1)n$ for $k \ge 2$, even n and

 $R(kS_n, W_4) = (k+1)n - 1$ for $k \ge 1$ and odd *n*. We also show that $R(\bigcup_{i=1}^k T_{n_i}, K_m) = R(T_{n_k}, K_m) + \sum_{i=1}^{k-1} n_i$. 11

© 2006 Published by Elsevier B.V.

13 Keywords: Ramsey number; Star; Wheel; Tree

1. Introduction

- For given graphs G and H, the Ramsey number R(G, H) is defined as the smallest positive integer n such that for 15 any graph F of order n, either F contains G or \overline{F} contains H, where \overline{F} is the complement of F.
- 17 In 1972, Chvátal and Harary [6] established a useful lower bound for finding the exact Ramsey numbers R(G, H), namely $R(G, H) \ge (\gamma(G) - 1)(c(H) - 1) + 1$, where $\gamma(G)$ is the chromatic number of G and c(H) is the number of
- 19 vertices of the largest component of H. Since then the Ramsey numbers R(G, H) for many combinations of graphs G and H have been extensively studied by various authors, see a nice survey paper [9].
- Let P_n be a path with n vertices and let W_m be a wheel of m + 1 vertices that consists of a cycle C_m with one 21 additional vertex being adjacent to all vertices of C_m . A star S_n is the graph on n vertices with one vertex of degree

n-1, called the *center*, and n-1 vertices of degree 1. T_n is a *tree* with *n* vertices and a *cocktail-party graph* H_s is the 23 graph which is obtained by removing s disjoint edges from K_{2s} .

- 25 Several results on Ramsey numbers have been obtained for wheels. For instance, Baskoro et al. [1] showed that for even $m \ge 4$ and $n \ge (m/2)(m-2)$, $R(P_n, W_m) = 2n - 1$. They also showed that $R(P_n, W_m) = 3n - 2$ for odd $m \ge 5$,
- 27 and $n \ge ((m-1)/2)(m-3)$.

¹ Supported by TWAS Research Grant 04-312 RG-MATHS-AS.

² Permanent address: Department of Mathematics FMIPA, Universitas Hasanuddin (UNHAS), Jl. Perintis Kemerdekaan Km.10, Makassar 90245, Indonesia.

E-mail addresses: ebaskoro@dns.math.itb.ac.id, ebaskoro@math.itb.ac.id (E.T. Baskoro), hasmawati@math.itb.ac.id (Hasmawati), hilda@math.itb.ac.id (H. Assiyatun).

⁰⁰¹²⁻³⁶⁵X/\$ - see front matter © 2006 Published by Elsevier B.V. doi:10.1016/j.disc.2006.06.011

2

ARTICLE IN PRESS

DISC6288

E.T. Baskoro et al. / Discrete Mathematics III (IIII) III-III

- 1 For a combination of stars with wheels, Surahmat et al. [10] investigated the Ramsey numbers for large stars versus small wheels. Their result is as follows.
- 3 **Theorem 1** (*Surahmat and Baskoro* [10]). For $n \ge 3$,

$$R(S_n, W_4) = \begin{cases} 2n+1 & \text{if } n \text{ is even,} \\ 2n-1 & \text{if } n \text{ is odd.} \end{cases}$$

- 5 For odd *m*, Chen et al. have shown in [4] that $R(S_n, W_m) = 3n 2$ for $m \ge 5$ and $n \ge m 1$. This result was strengthened by Hasmawati et al. in [8], by showing that this Ramsey number remains the same, as given in the following theorem.
- 7 **Theorem 2** (*Hasmawati et al.* [8]). If m is odd and $n \ge ((m+1)/2) \ge 3$, then $R(S_n, W_m) = 3n 2$.

If $n \leq (m+2)/2$, Hasmawati [7] gave $R(S_n, W_m) = n + m - 2$ for even *m* and odd *n*, or $R(S_n, W_m) = n + m - 1$, 9 otherwise.

Let *G* be a graph. The number of vertices in a maximum independent set of *G* denoted by $\alpha_0(G)$, and the union of *s* 11 *vertices-disjoint* copies of *G* denoted *sG*.

Burr et al. in [3], showed that if the graph G has n_1 vertices and the graph H has n_2 vertices, then

13
$$n_1s + n_2t - D \leqslant R(sG, tH) \leqslant n_1s + n_2t - D + k,$$

where $D = \min\{s\alpha_0(G), t\alpha_0(H)\}$ and k is a constant depending only on G and H.

15 In the following theorem Chvátal gave the Ramsey number for a tree versus a complete graph.

Theorem 3 (*Chvátal* [5]). For any natural number n and m, $R(T_n, K_m) = (n-1)(m-1) + 1$.

17 In this paper, we determine the Ramsey numbers $R(\cup G, H)$ of a disjoint union of a graph G versus a graph H, where G is either a star or a tree, and H is either a wheel or a complete graph.

19 The results are presented in the next three theorems.

Theorem 4. If *m* is odd and $n \ge (m + 1)/2 \ge 3$, then $R(kS_n, W_m) = 3n - 2 + (k - 1)n$.

21 **Theorem 5.** For $n \ge 3$,

$$R(kS_n, W_4) = \begin{cases} (k+1)n & \text{if } n \text{ is even and } k \ge 2, \\ (k+1)n-1 & \text{if } n \text{ is odd and } k \ge 1. \end{cases}$$

- 23 **Theorem 6.** Let $n_i \ge n_{i+1}$ for i = 1, 2, ..., k 1. If $n_i \ge (n_i n_{i+1})(m-1)$ for any *i*, then $R(\bigcup_{i=1}^k T_{n_i}, K_m) = R(T_{n_k}, K_m) + \sum_{i=1}^{k-1} n_i$ for an arbitrary *m*.
- Before proving the theorems, we present some notations used in this note. Let G(V, E) be a graph. For any vertex $v \in V(G)$, the *neighborhood* N(v) is the set of vertices adjacent to v in G. Furthermore, we define $N[v] = N(v) \cup \{v\}$.
- 27 The degree of a vertex v in G is denoted by $d_G(v)$. The order of G, |G| is the number of its vertices, and the minimum (maximum) degree of G is denoted by $\delta(G)(\Delta(G))$. For $S \subseteq V(G)$, G[S] represents the subgraph induced by S in G.
- 29 If *G* is a graph and *H* is a subgraph of *G*, then denote $V(G) \setminus V(H)$ by $G \setminus H$.
- Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$. The union $G = G_1 \cup G_2$ has the vertex set $V = V_1 \cup V_2$ and the edge set $E = E_1 \cup E_2$. 31 Their *join*, denoted $G_1 + G_2$, is the graph with the vertex set $V_1 \cup V_2$ and the edge set $E_1 \cup E_2 \cup \{uv : u \in V_1, v \in V_2\}$.

2. The proofs of theorems

33 Proof of Theorem 4. Let *m* be odd and n≥(m + 1)/2≥3. We shall use an induction on *k*. For k = 1, we have R(S_n, W_m)=3n-2 (by Theorem 2). Assume the theorem holds for any r < k, namely R(rS_n, W_m)=(3n-2)+(r-1)n.
35 We will show that R(kS_n, W_m) = (3n - 2) + (k - 1)n.

DISC6288 ARTICLE IN PRESS

E.T. Baskoro et al. / Discrete Mathematics III (IIII) III-III

Fig. 1. The illustration of the proof of $R(2S_n, W_4) \leq 3n$.

- 1 Let *F* be a graph with |F| = 3n 2 + (k 1)n. Suppose that \overline{F} contains no W_m . Since $|F| \ge R(rS_n, W_m)$, then $F \supset (k 1)S_n$. Let $A = F \setminus (k 1)S_n$ and T = F[A]. Thus, |T| = 3n 2. Since \overline{T} contains no W_m , then by Theorem 3 $2, T \supseteq S_n$. Thus, *F* contains kS_n . Hence, we have $R(kS_n, W_m) \le (3n 2) + (k 1)n$.
- On the other hand, it is not difficult to see that $F_1 = K_{kn-1} \cup 2K_{n-1}$ contains no kS_n and its complement contains 5 no W_m . Observe that F_1 has 3n - 3 + (k - 1)n vertices. Therefore, we have $R(kS_n, W_m) \ge (3n - 2) + (k - 1)n$, and
- the assertion follows. \Box
 - 7 Proof of Theorem 5. Let *n* be even, n≥4 and k≥2. Consider F = (H_{(kn-2)/2} + K₁) ∪ H_{n/2}. Clearly, graph F has (k + 1)n 1 vertices and contains no kS_n. Its complement contains no W₄. Hence, R(kS_n, W₄)≥(k + 1)n. We will
 9 prove that R(kS_n, W₄) = (k + 1)n for k≥2. First we will show that R(2S_n, W₄) = 3n.
- Let F_1 be a graph of order 3n. Suppose \overline{F}_1 contains no W_4 . By Theorem 1, we have $F_1 \supseteq S_n$. Let $V(S_n) = \{v_0, v_1, \dots, v_{n-1}\}$ with center $v_0, A = F_1 \setminus S_n$ and $T = F_1[A]$. Thus |T| = 2n.
- If there exists $u \in T$ with $d_T(u) \ge (n-1)$, then T contains S_n . Hence F_1 contains $2S_n$. Therefore we assume that
- 13 for every vertex $u \in T$, $d_T(u) \leq (n-2)$. Let $u, w \in T$ where $(u, w) \notin E(T)$. Consider $H = N[u] \cup N[w]$, $Q = T \setminus H$, $Z = N(u) \cap N(w)$, and $X = H \setminus \{u, w\}$ (see Fig. 1).
- 15 By contradiction suppose $d(u) \le n-3$. Then $0 \le |Z| \le n-3$, $2 \le |H| \le 2n-3$ and $2n-2 \ge |Q| \ge 3+|Z|$. Observe that every $q \in Q$ is adjacent to at least |Q| - 2 other vertices of Q. (Otherwise, there exists $q \in Q$ which
- 17 is not adjacent to at least two other vertices of Q, say q_1 and q_2 . Then \overline{T} will contain a $W_4 = \{q_1, u, q_2, q, w\}$ with w as a hub, a contradiction). Then, for all $q \in Q$, $d_Q(q) \ge |Q| 2$.
- 19 Let $E(X \setminus Z, Q) = \{uv : u \in X \setminus Z, v \in Q\}$. If there exists $x \in X \setminus Z$ not adjacent to at least two vertices of Q, say q_1 and q_2 , then \overline{T} will contain $W_4 = \{q_1, x, q_2, u, w\}$ with w or u as a hub, a contradiction. Hence every $x \in X \setminus Z$ is
- adjacent to at least |Q| 1 vertices in Q. Therefore, we have $|E(X \setminus Z, Q)| \ge |X \setminus Z| \cdot (|Q| 1)$. On the other hand, every vertex $q \in Q$ is incident with at most $(n - 2) - d_Q(q) \le (n - 2) - (|Q| - 2) = n - |Q|$ edges from $X \setminus Z$. Thus $|E(X \setminus Z, Q)| \le |Q| \cdot (n - |Q|)$.
- Now, we will show that $|X \setminus Z| \cdot (|Q| 1) > |Q| \cdot (n |Q|)$, which leads to a contradiction.
- 25 Writing $|X \setminus Z| \cdot (|Q| 1) = |X \setminus Z| \cdot |Q| |X \setminus Z|$ and substituting $|X \setminus Z| = 2n 2 |Q| |Z|$, we obtain $|X \setminus Z| \cdot (|Q| 1) = |Q| \cdot (n |Q|) + |Q| \cdot (n 2 |Z|) + |Q| n (n 2 |Z|)$. Noting $|Q| \ge 3 + |Z|$, it can
- 27 be verified that $|Q| \cdot (n 2 |Z|) + |Q| n (n 2 |Z|) > 0$. Thus $|X \setminus Z| \cdot (|Q| 1) > |Q| \cdot (n |Q|)$. Hence there is no $u \in T$ such that $d(u) \leq n 3$.

DISC6288 ARTICLE IN PRESS

E.T. Baskoro et al. / Discrete Mathematics III (IIII) III-III

Fig. 2. The illustration of the proof of $R(kS_n, W_4) \leq (k+1)n$.

- 1 Therefore every vertex $u \in T$, $d_T(u) = n 2$. This implies |Q| = 2 + |Z|. Next, suppose $F_1[Q]$ is a complete graph. Then for every $q \in Q$, $d_Q(q) = |Q| - 1$. Consequently, every vertex in Q is incident with $(n-2) - d_Q(q) = n - 1 - |Q|$ 3 edges from $X \setminus Z$. Similarly as in the previous argument, this implies that $|X \setminus Z| \cdot (|Q| - 1) > |Q| \cdot (n - 1 - |Q|)$,
- which is impossible. Hence $F_1[Q]$ is not a complete graph. Now, choose two vertices in Q which are not adjacent, call q_1 and q_2 . Let $Y = \{q_1, q_2\} \cup \{u, w\}$, it is clear that Y is an independent set.
- If there exists a vertex $v \in V(S_n)$ adjacent to at most one vertex in Y say q_1 , then $\{v, u, q_1, q_2, w\}$ will induce a W_4 in \overline{F}_1 , with a hub w, a contradiction. Therefore, every vertex $v \in V(S_n)$ is adjacent to at least two vertices in Y.
- Suppose v_0 and v_j in $V(S_n)$ are adjacent to y_1 , y_2 and to y_3 , y_4 in *Y*, respectively. Note that at least two y'_is are distinct. 9 Without loss of generality, assume $y_1 \neq y_3$. Since *Y* is independent, then we have two new stars, namely S'_n and S''_n , where $V(S'_n) = S_n \setminus \{v_j\} \cup \{y_1\}$ with v_0 as the center and $V(S''_n) = N[y_3] \cup \{v_j\}$ with y_3 as the center (see Fig. 1). So,
- 11 we have $F_1 \supseteq 2S_n$. Hence, $R(2S_n, W_4) = 3n$.
- Now, assume the theorem holds for every r < k. We will show that $R(kS_n, W_4) = (k+1)n$. Let F_2 be a graph of order (k+1)n. Suppose \overline{F}_2 contains no W_4 . We will show that $F_2 \supseteq kS_n$. By induction, $F_2 \supseteq (k-1)S_n$. Denote the $(k-1)S_n$
- as $S_n^1, S_n^2, \dots, S_n^{k-1}$ with the center v_1, v_2, \dots, v_{k-1} , respectively. Writing $A' = F_2 \setminus (k-1)S_n$ and $T' = F_2[A']$. Thus |T'| = 2n.
- Similarly, as in the case k=2, every vertex $u \in T'$, must have degree n-2. Next, let $u', w' \in T$ where $(u', w') \notin E(T')$, 17 $H' = N[u'] \cup N[w'], Q' = T' \setminus H'$, and $Y' = \{q_1, q_2\} \cup \{u', w'\}$, where $q_1, q_2 \in Q'$ and $(q_1, q_2) \notin E(T')$ (see Fig. 2). If the vertex $v \in V((k-1)S_n)$ is adjacent to at most one vertex in Y', say u', then \overline{F}_2 will contain $W_4 = V(k-1)S_n$
- 19 $\{u', q_1, v, q_2, w'\}$ with w' as a hub, a contradiction. Therefore, every vertex $v \in V((k-1)S_n)$ is adjacent to at least two vertices in Y'. Suppose v_1 and s in $V(S_{n_1})$ are
- 21 adjacent to u', q_1 and to u', w', respectively (see Fig. 2). Then, we will alter S_n^1 into $S_n^{1'}$ with $V(S_n^{1'}) = (S_n^1 \setminus \{s\}) \cup \{q_1\}$ and create a new star S_n^k where $V(S_n^k) = N[u'] \cup \{s\}$ with the center u'. Hence, we now have k disjoint stars, namely
- 23 $S_n^{1'}, S_n^2, S_n^3, \dots, S_n^{k-1}$ and S_n^k . Therefore, we have $R(kS_n, W_4) = (k+1)n$.
- Let *n* be odd. Consider $F_3 = K_{kn-1} \cup K_{n-1}$. Clearly, the graph F_3 has order (k+1)n-2, without containing kS_n and $\overline{F_3}$ contains no W_4 . Hence, $R(kS_n, W_4) \ge (k+1)n - 1$. To obtain the Ramsey number we use an induction on *k*. For k=1, we have $R(S_n, W_4)=2n-1$. Suppose the theorem holds for every r < k. We show that $R(kS_n, W_4)=(k+1)n-1$.
- 27 Let F_4 be a graph of order (k+1)n-1. Suppose $\overline{F_4}$ contains no W_4 . By the assumption, F_4 contains $(k-1)S_n$. Let

DISC6288

ARTICLE IN PRESS

E.T. Baskoro et al. / Discrete Mathematics III (IIII) III-III

- $B = F_4 \setminus (k-1)S_n$ and $L = F_4[B]$. Thus |L| = 2n 1. Since \overline{L} contains no W_4 , then by Theorem 1, $L \supset S_n$. Therefore, 1 F_4 contains kS_n . The proof is now complete. \Box
- **Proof of Theorem 6.** Let $n_i \ge n_{i+1}$ and $n_i \ge (n_i n_{i+1})(m-1)$ for any *i*. Since $F = (m-2)K_{n_k-1} \cup K_{\sum_{i=1}^k n_i-1}$ has 3 no $\bigcup_{i=1}^{k} T_{n_i}$ and its complement contains no K_m , then $R(\bigcup_{i=1}^{k} T_{n_i}, K_m) \ge (m-1)(n_k-1) + \sum_{i=1}^{k-1} n_i + 1$. We fix m and apply an induction on k. For k = 2, we show that $R(T_{n_1} \cup T_{n_2}, K_m) = (m-1)(n_2-1) + n_1 + 1$. 5
 - Let F_1 be a graph with $|F_1| = (m-1)(n_2-1) + 1 + n_1$. Suppose $\overline{F_1}$ contains no K_m . Since $n_1 \ge n_2$, then we can write
- $n_1 n_2 = q \ge 0$. Substitute $n_2 = n_1 q$, then we obtain $|F_1| = (m-1)(n_1 q 1) + n_1 + 1 = (m-1)(n_1 1) q(m-1) + n_1 + 1$ 7 or $|F_1| = (m-1)(n_1-1) + 1 + [n_1 - (n_1 - n_2)(m-1)]$. Noting $n_1 - (n_1 - n_2)(m-1) \ge 0$, it can be verified that
- $|F_1| \ge (m-1)(n_1-1) + 1$ i.e. $|F_1| \ge R(T_{n_1}, K_m)$. Hence, $F_1 \supseteq T_{n_1}$. Now, let $A = F_1 \setminus T_{n_1}$, and $H = F_1[A]$. Then $|H| = (m-1)(n_2-1) + 1$. Since \overline{H} contains no K_m , then by Theorem 3, $H \supseteq T_{n_2}$. Therefore, F_1 contains a subgraph 9
- 11 $T_{n_1} \cup T_{n_2}$.
 - Next, assume the theorem holds for all r < k, namely $R(\bigcup_{i=1}^{r} T_{n_i}, K_m) = (m-1)(n_r-1) + \sum_{i=1}^{r-1} n_i + 1$. We shall show that $R(\bigcup_{i=1}^{k} T_{n_i}, K_m) = (m-1)(n_k-1) + \sum_{i=1}^{k-1} n_i + 1$. Take an arbitrary graph F_2 with order $(m-1)(n_k-1) + \sum_{i=1}^{k-1} n_i + 1$. 13
 - Suppose $\overline{F_2}$ contains no K_m . By induction, F_2 contains $\bigcup_{i=1}^{k-1} T_{n_i}$. Writing $B = F_2 \setminus \bigcup_{i=1}^{k-1} T_{n_i}$, and $Q = F_2[B]$. Then $|Q| = (m-1)(n_k 1) + 1$. Since \overline{Q} contains no K_m , then Q contains T_{n_k} . Hence F_2 contains $\bigcup_{i=1}^{k} T_{n_i}$. Therefore, we have $R(\bigcup_{i=1}^{k} T_{n_i}, K_m) = (m-1)(n_k 1) + \sum_{i=1}^{k-1} n_i + 1$. 15
 - 17 The proof is now complete. \Box

3. Uncited reference

19 [2].

References

- 21 [1] E.T. Baskoro, Surahmat, The Ramsey numbers of path with respect to wheels, Discrete Math. 294 (2005) 275–277.
- [2] S.A. Burr, On Ramsey numbers for large disjoint unions of graphs, Discrete Math. 70 (1988) 277-293.
- 23 [3] S.A. Burr, P. Erdös, J.H. Spencer, Ramsey theorem for multiple copies of graphs, Trans. Amer. Math. Soc. 209 (1975) 87-89.
- [4] Y.J. Chen, Y.Q. Zhang, K.M. Zhang, The Ramsey numbers of stars versus wheels, European J. Combin. 25 (2004) 1067–1075.
- 25 [5] V. Chvátal, Tree-complete graph Ramsey number, J. Graph Theory 1 (1977) 93.
- [6] V. Chvátal, F. Harary, Generalized Ramsey theory for graphs, III: small off-diagonal numbers, Pacific. J. Math. 41 (1972) 335-345.
- 27 [7] Hasmawati, Bilangan Ramsey untuk graf bintang terhadap graf roda, Tesis Magister, Departemen Matematika ITB Indonesia, 2004.
- [8] Hasmawati, E.T. Baskoro, H. Assiyatun, Star-wheel Ramsey numbers, J. Combin. Math. Conbin. Comput. 55 (2005) 123-128.
- 29 [9] S.P. Radziszowski, Small Ramsey numbers, Electron. J. Combin. July (2004) #DS1.9 (http://www.combinatorics.org/).
- [10] Surahmat, E.T. Baskoro, On the Ramsey number of a path or a star versus W4 or W5, in: Proceedings of the 12th Australasian Workshop on 31
- Combinatorial Algorithms, Bandung, Indonesia, July 14-17 2001, pp. 165-170.