E.T. Baskoro ${ }^{1}$, Hasmawati ${ }^{2}$, H. Assiyatun
Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung (ITB), Jalan Ganesa 10, Bandung 40132, Indonesia

Received 1 March 2006; received in revised form 30 May 2006; accepted 25 June 2006

Abstract

For given graphs G and H, the Ramsey number $R(G, H)$ is the smallest natural number n such that for every graph F of order n : either F contains G or the complement of F contains H. In this paper, we investigate the Ramsey number $R(\cup G, H)$, where G is a tree and H is a wheel W_{m} or a complete graph K_{m}. We show that if $n \geqslant 3$, then $R\left(k S_{n}, W_{4}\right)=(k+1) n$ for $k \geqslant 2$, even n and $R\left(k S_{n}, W_{4}\right)=(k+1) n-1$ for $k \geqslant 1$ and odd n. We also show that $R\left(\bigcup_{i=1}^{k} T_{n_{i}}, K_{m}\right)=R\left(T_{n_{k}}, K_{m}\right)+\sum_{i=1}^{k-1} n_{i}$.

© 2006 Published by Elsevier B.V.
Keywords: Ramsey number; Star; Wheel; Tree

1. Introduction

For given graphs G and H, the Ramsey number $R(G, H)$ is defined as the smallest positive integer n such that for any graph F of order n, either F contains G or \bar{F} contains H, where \bar{F} is the complement of F.

In 1972, Chvátal and Harary [6] established a useful lower bound for finding the exact Ramsey numbers $R(G, H)$, namely $R(G, H) \geqslant(\chi(G)-1)(c(H)-1)+1$, where $\chi(G)$ is the chromatic number of G and $c(H)$ is the number of vertices of the largest component of H. Since then the Ramsey numbers $R(G, H)$ for many combinations of graphs G and H have been extensively studied by various authors, see a nice survey paper [9].

Let P_{n} be a path with n vertices and let W_{m} be a wheel of $m+1$ vertices that consists of a cycle C_{m} with one additional vertex being adjacent to all vertices of C_{m}. A star S_{n} is the graph on n vertices with one vertex of degree $n-1$, called the center, and $n-1$ vertices of degree $1 . T_{n}$ is a tree with n vertices and a cocktail-party graph H_{s} is the graph which is obtained by removing s disjoint edges from $K_{2 s}$.

Several results on Ramsey numbers have been obtained for wheels. For instance, Baskoro et al. [1] showed that for even $m \geqslant 4$ and $n \geqslant(m / 2)(m-2), R\left(P_{n}, W_{m}\right)=2 n-1$. They also showed that $R\left(P_{n}, W_{m}\right)=3 n-2$ for odd $m \geqslant 5$, and $n \geqslant((m-1) / 2)(m-3)$.

[^0]3 Theorem 1 (Surahmat and Baskoro [10]). For $n \geqslant 3$,

$$
R\left(S_{n}, W_{4}\right)= \begin{cases}2 n+1 & \text { if } n \text { is even } \\ 2 n-1 & \text { if } n \text { is odd }\end{cases}
$$ small wheels. Their result is as follows. otherwise. vertices-disjoint copies of G denoted $s G$.

$$
n_{1} s+n_{2} t-D \leqslant R(s G, t H) \leqslant n_{1} s+n_{2} t-D+k
$$

where $D=\min \left\{s \alpha_{0}(G), t \alpha_{0}(H)\right\}$ and k is a constant depending only on G and H. G is either a star or a tree, and H is either a wheel or a complete graph.

The results are presented in the next three theorems.

Theorem 5. For $n \geqslant 3$,

$$
R\left(k S_{n}, W_{4}\right)= \begin{cases}(k+1) n & \text { if } n \text { is even and } k \geqslant 2 \\ (k+1) n-1 & \text { if } n \text { is odd and } k \geqslant 1\end{cases}
$$ $R\left(T_{n_{k}}, K_{m}\right)+\sum_{i=1}^{k-1} n_{i}$ for an arbitrary m. If G is a graph and H is a subgraph of G, then denote $V(G) \backslash V(H)$ by $G \backslash H$.

2. The proofs of theorems

 We will show that $R\left(k S_{n}, W_{m}\right)=(3 n-2)+(k-1) n$.For a combination of stars with wheels, Surahmat et al. [10] investigated the Ramsey numbers for large stars versus

For odd m, Chen et al. have shown in [4] that $R\left(S_{n}, W_{m}\right)=3 n-2$ for $m \geqslant 5$ and $n \geqslant m-1$. This result was strengthened by Hasmawati et al. in [8], by showing that this Ramsey number remains the same, as given in the following theorem.

7 Theorem 2 (Hasmawati et al. [8]). If m is odd and $n \geqslant((m+1) / 2) \geqslant 3$, then $R\left(S_{n}, W_{m}\right)=3 n-2$.
If $n \leqslant(m+2) / 2$, Hasmawati [7] gave $R\left(S_{n}, W_{m}\right)=n+m-2$ for even m and odd n, or $R\left(S_{n}, W_{m}\right)=n+m-1$,
Let G be a graph. The number of vertices in a maximum independent set of G denoted by $\alpha_{0}(G)$, and the union of s
Burr et al. in [3], showed that if the graph G has n_{1} vertices and the graph H has n_{2} vertices, then

In the following theorem Chvátal gave the Ramsey number for a tree versus a complete graph.
Theorem 3 (Chvátal [5]). For any natural number n and $m, R\left(T_{n}, K_{m}\right)=(n-1)(m-1)+1$.
In this paper, we determine the Ramsey numbers $R(\cup G, H)$ of a disjoint union of a graph G versus a graph H, where

Theorem 4. If m is odd and $n \geqslant(m+1) / 2 \geqslant 3$, then $R\left(k S_{n}, W_{m}\right)=3 n-2+(k-1) n$.

Theorem 6. Let $n_{i} \geqslant n_{i+1}$ for $i=1,2, \ldots, k-1$. If $n_{i} \geqslant\left(n_{i}-n_{i+1}\right)(m-1)$ for any i, then $R\left(\bigcup_{i=1}^{k} T_{n_{i}}, K_{m}\right)=$

Before proving the theorems, we present some notations used in this note. Let $G(V, E)$ be a graph. For any vertex $v \in V(G)$, the neighborhood $N(v)$ is the set of vertices adjacent to v in G. Furthermore, we define $N[v]=N(v) \cup\{v\}$. The degree of a vertex v in G is denoted by $d_{G}(v)$. The order of $G,|G|$ is the number of its vertices, and the minimum (maximum) degree of G is denoted by $\delta(G)(\Delta(G))$. For $S \subseteq V(G), G[S]$ represents the subgraph induced by S in G.

Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$. The union $G=G_{1} \cup G_{2}$ has the vertex set $V=V_{1} \cup V_{2}$ and the edge set $E=E_{1} \cup E_{2}$. Their join, denoted $G_{1}+G_{2}$, is the graph with the vertex set $V_{1} \cup V_{2}$ and the edge set $E_{1} \cup E_{2} \cup\left\{u v: u \in V_{1}, v \in V_{2}\right\}$.

Proof of Theorem 4. Let m be odd and $n \geqslant(m+1) / 2 \geqslant 3$. We shall use an induction on k. For $k=1$, we have $R\left(S_{n}, W_{m}\right)=3 n-2$ (by Theorem 2). Assume the theorem holds for any $r<k$, namely $R\left(r S_{n}, W_{m}\right)=(3 n-2)+(r-1) n$.

Fig. 1. The illustration of the proof of $R\left(2 S_{n}, W_{4}\right) \leqslant 3 n$.

Let F be a graph with $|F|=3 n-2+(k-1) n$. Suppose that \bar{F} contains no W_{m}. Since $|F| \geqslant R\left(r S_{n}, W_{m}\right)$, then $F \supset(k-1) S_{n}$. Let $A=F \backslash(k-1) S_{n}$ and $T=F[A]$. Thus, $|T|=3 n-2$. Since \bar{T} contains no W_{m}, then by Theorem $2, T \supseteq S_{n}$. Thus, F contains $k S_{n}$. Hence, we have $R\left(k S_{n}, W_{m}\right) \leqslant(3 n-2)+(k-1) n$.

On the other hand, it is not difficult to see that $F_{1}=K_{k n-1} \cup 2 K_{n-1}$ contains no $k S_{n}$ and its complement contains no W_{m}. Observe that F_{1} has $3 n-3+(k-1) n$ vertices. Therefore, we have $R\left(k S_{n}, W_{m}\right) \geqslant(3 n-2)+(k-1) n$, and the assertion follows.

Proof of Theorem 5. Let n be even, $n \geqslant 4$ and $k \geqslant 2$. Consider $F=\left(H_{(k n-2) / 2}+K_{1}\right) \cup H_{n / 2}$. Clearly, graph F has $(k+1) n-1$ vertices and contains no $k S_{n}$. Its complement contains no W_{4}. Hence, $R\left(k S_{n}, W_{4}\right) \geqslant(k+1) n$. We will prove that $R\left(k S_{n}, W_{4}\right)=(k+1) n$ for $k \geqslant 2$. First we will show that $R\left(2 S_{n}, W_{4}\right)=3 n$.
Let F_{1} be a graph of order $3 n$. Suppose \bar{F}_{1} contains no W_{4}. By Theorem 1, we have $F_{1} \supseteq S_{n}$. Let $V\left(S_{n}\right)=$ $\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$ with center $v_{0}, A=F_{1} \backslash S_{n}$ and $T=F_{1}[A]$. Thus $|T|=2 n$.

If there exists $u \in T$ with $d_{T}(u) \geqslant(n-1)$, then T contains S_{n}. Hence F_{1} contains $2 S_{n}$. Therefore we assume that for every vertex $u \in T, d_{T}(u) \leqslant(n-2)$. Let $u, w \in T$ where $(u, w) \notin E(T)$. Consider $H=N[u] \cup N[w], Q=T \backslash H$, $Z=N(u) \cap N(w)$, and $X=H \backslash\{u, w\}$ (see Fig. 1).

By contradiction suppose $d(u) \leqslant n-3$. Then $0 \leqslant|Z| \leqslant n-3,2 \leqslant|H| \leqslant 2 n-3$ and $2 n-2 \geqslant|Q| \geqslant 3+|Z|$.
Observe that every $q \in Q$ is adjacent to at least $|Q|-2$ other vertices of Q. (Otherwise, there exists $q \in Q$ which is not adjacent to at least two other vertices of Q, say q_{1} and q_{2}. Then \bar{T} will contain a $W_{4}=\left\{q_{1}, u, q_{2}, q, w\right\}$ with w as a hub, a contradiction). Then, for all $q \in Q, d_{Q}(q) \geqslant|Q|-2$.

Let $E(X \backslash Z, Q)=\{u v: u \in X \backslash Z, v \in Q\}$. If there exists $x \in X \backslash Z$ not adjacent to at least two vertices of Q, say q_{1} and q_{2}, then \bar{T} will contain $W_{4}=\left\{q_{1}, x, q_{2}, u, w\right\}$ with w or u as a hub, a contradiction. Hence every $x \in X \backslash Z$ is adjacent to at least $|Q|-1$ vertices in Q. Therefore, we have $|E(X \backslash Z, Q)| \geqslant|X \backslash Z| \cdot(|Q|-1)$.

On the other hand, every vertex $q \in Q$ is incident with at most $(n-2)-d_{Q}(q) \leqslant(n-2)-(|Q|-2)=n-|Q|$ edges from $X \backslash Z$. Thus $|E(X \backslash Z, Q)| \leqslant|Q| \cdot(n-|Q|)$.
Now, we will show that $|X \backslash Z| \cdot(|Q|-1)>|Q| \cdot(n-|Q|)$, which leads to a contradiction.
Writing $|X \backslash Z| \cdot(|Q|-1)=|X \backslash Z| \cdot|Q|-|X \backslash Z|$ and substituting $|X \backslash Z|=2 n-2-|Q|-|Z|$, we obtain $|X \backslash Z| \cdot(|Q|-1)=|Q| \cdot(n-|Q|)+|Q| \cdot(n-2-|Z|)+|Q|-n-(n-2-|Z|)$. Noting $|Q| \geqslant 3+|Z|$, it can
be verified that $|Q| \cdot(n-2-|Z|)+|Q|-n-(n-2-|Z|)>0$. Thus $|X \backslash Z| \cdot(|Q|-1)>|Q| \cdot(n-|Q|)$. Hence there is no $u \in T$ such that $d(u) \leqslant n-3$.

Fig. 2. The illustration of the proof of $R\left(k S_{n}, W_{4}\right) \leqslant(k+1) n$.

1 Therefore every vertex $u \in T, d_{T}(u)=n-2$. This implies $|Q|=2+|Z|$. Next, suppose $F_{1}[Q]$ is a complete graph. Then for every $q \in Q, d_{Q}(q)=|Q|-1$. Consequently, every vertex in Q is incident with $(n-2)-d_{Q}(q)=n-1-|Q|$ edges from $X \backslash Z$. Similarly as in the previous argument, this implies that $|X \backslash Z| \cdot(|Q|-1)>|Q| \cdot(n-1-|Q|)$, which is impossible. Hence $F_{1}[Q]$ is not a complete graph. Now, choose two vertices in Q which are not adjacent, call q_{1} and q_{2}. Let $Y=\left\{q_{1}, q_{2}\right\} \cup\{u, w\}$, it is clear that Y is an independent set.
If there exists a vertex $v \in V\left(S_{n}\right)$ adjacent to at most one vertex in Y say q_{1}, then $\left\{v, u, q_{1}, q_{2}, w\right\}$ will induce a W_{4} in \bar{F}_{1}, with a hub w, a contradiction. Therefore, every vertex $v \in V\left(S_{n}\right)$ is adjacent to at least two vertices in Y. Suppose v_{0} and v_{j} in $V\left(S_{n}\right)$ are adjacent to y_{1}, y_{2} and to y_{3}, y_{4} in Y, respectively. Note that at least two $y_{i}^{\prime} s$ are distinct. Without loss of generality, assume $y_{1} \neq y_{3}$. Since Y is independent, then we have two new stars, namely S_{n}^{\prime} and $S_{n}^{\prime \prime}$, where $V\left(S_{n}^{\prime}\right)=S_{n} \backslash\left\{v_{j}\right\} \cup\left\{y_{1}\right\}$ with v_{0} as the center and $V\left(S_{n}^{\prime \prime}\right)=N\left[y_{3}\right] \cup\left\{v_{j}\right\}$ with y_{3} as the center (see Fig. 1). So, we have $F_{1} \supseteq 2 S_{n}$. Hence, $R\left(2 S_{n}, W_{4}\right)=3 n$.

Now, assume the theorem holds for every $r<k$. We will show that $R\left(k S_{n}, W_{4}\right)=(k+1) n$. Let F_{2} be a graph of order $(k+1) n$. Suppose \bar{F}_{2} contains no W_{4}. We will show that $F_{2} \supseteq k S_{n}$. By induction, $F_{2} \supseteq(k-1) S_{n}$. Denote the $(k-1) S_{n}$ as $S_{n}^{1}, S_{n}^{2}, \ldots, S_{n}^{k-1}$ with the center $v_{1}, v_{2}, \ldots, v_{k-1}$, respectively. Writing $A^{\prime}=F_{2} \backslash(k-1) S_{n}$ and $T^{\prime}=F_{2}\left[A^{\prime}\right]$. Thus $\left|T^{\prime}\right|=2 n$.

Similarly, as in the case $k=2$, every vertex $u \in T^{\prime}$, must have degree $n-2$. Next, let $u^{\prime}, w^{\prime} \in T$ where $\left(u^{\prime}, w^{\prime}\right) \notin E\left(T^{\prime}\right)$, $H^{\prime}=N\left[u^{\prime}\right] \cup N\left[w^{\prime}\right], Q^{\prime}=T^{\prime} \backslash H^{\prime}$, and $Y^{\prime}=\left\{q_{1}, q_{2}\right\} \cup\left\{u^{\prime}, w^{\prime}\right\}$, where $q_{1}, q_{2} \in Q^{\prime}$ and $\left(q_{1}, q_{2}\right) \notin E\left(T^{\prime}\right)$ (see Fig. 2).
If the vertex $v \in V\left((k-1) S_{n}\right)$ is adjacent to at most one vertex in Y^{\prime}, say u^{\prime}, then \bar{F}_{2} will contain $W_{4}=$ $\left\{u^{\prime}, q_{1}, v, q_{2}, w^{\prime}\right\}$ with w^{\prime} as a hub, a contradiction.
Therefore, every vertex $v \in V\left((k-1) S_{n}\right)$ is adjacent to at least two vertices in Y^{\prime}. Suppose v_{1} and s in $V\left(S_{n_{1}}\right)$ are adjacent to u^{\prime}, q_{1} and to u^{\prime}, w^{\prime}, respectively (see Fig. 2). Then, we will alter S_{n}^{1} into $S_{n}^{1^{\prime}}$ with $V\left(S_{n}^{1^{\prime}}\right)=\left(S_{n}^{1} \backslash\{s\}\right) \cup\left\{q_{1}\right\}$ and create a new star S_{n}^{k} where $V\left(S_{n}^{k}\right)=N\left[u^{\prime}\right] \cup\{s\}$ with the center u^{\prime}. Hence, we now have k disjoint stars, namely $S_{n}^{1^{\prime}}, S_{n}^{2}, S_{n}^{3}, \ldots, S_{n}^{k-1}$ and S_{n}^{k}. Therefore, we have $R\left(k S_{n}, W_{4}\right)=(k+1) n$.

Let n be odd. Consider $F_{3}=K_{k n-1} \cup K_{n-1}$. Clearly, the graph F_{3} has order $(k+1) n-2$, without containing $k S_{n}$ and $\overline{F_{3}}$ contains no W_{4}. Hence, $R\left(k S_{n}, W_{4}\right) \geqslant(k+1) n-1$. To obtain the Ramsey number we use an induction on k. For $k=1$, we have $R\left(S_{n}, W_{4}\right)=2 n-1$. Suppose the theorem holds for every $r<k$. We show that $R\left(k S_{n}, W_{4}\right)=(k+1) n-1$. Let F_{4} be a graph of order $(k+1) n-1$. Suppose $\overline{F_{4}}$ contains no W_{4}. By the assumption, F_{4} contains $(k-1) S_{n}$. Let
$1 \quad B=F_{4} \backslash(k-1) S_{n}$ and $L=F_{4}[B]$. Thus $|L|=2 n-1$. Since \bar{L} contains no W_{4}, then by Theorem $1, L \supset S_{n}$. Therefore, F_{4} contains $k S_{n}$. The proof is now complete.

3 Proof of Theorem 6. Let $n_{i} \geqslant n_{i+1}$ and $n_{i} \geqslant\left(n_{i}-n_{i+1}\right)(m-1)$ for any i. Since $F=(m-2) K_{n_{k}-1} \cup K_{\sum_{i=1}^{k} n_{i}-1}$ has no $\bigcup_{i=1}^{k} T_{n_{i}}$ and its complement contains no K_{m}, then $R\left(\bigcup_{i=1}^{k} T_{n_{i}}, K_{m}\right) \geqslant(m-1)\left(n_{k}-1\right)+\sum_{i=1}^{k-1} n_{i}+1$. We fix m and apply an induction on k. For $k=2$, we show that $R\left(T_{n_{1}} \cup T_{n_{2}}, K_{m}\right)=(m-1)\left(n_{2}-1\right)+n_{1}+1$.

Let F_{1} be a graph with $\left|F_{1}\right|=(m-1)\left(n_{2}-1\right)+1+n_{1}$. Suppose $\overline{F_{1}}$ contains no K_{m}. Since $n_{1} \geqslant n_{2}$, then we can write $n_{1}-n_{2}=q \geqslant 0$. Substitute $n_{2}=n_{1}-q$, then we obtain $\left|F_{1}\right|=(m-1)\left(n_{1}-q-1\right)+n_{1}+1=(m-1)\left(n_{1}-1\right)-q(m-1)+n_{1}+1$ or $\left|F_{1}\right|=(m-1)\left(n_{1}-1\right)+1+\left[n_{1}-\left(n_{1}-n_{2}\right)(m-1)\right]$. Noting $n_{1}-\left(n_{1}-n_{2}\right)(m-1) \geqslant 0$, it can be verified that $9\left|F_{1}\right| \geqslant(m-1)\left(n_{1}-1\right)+1$ i.e. $\left|F_{1}\right| \geqslant R\left(T_{n_{1}}, K_{m}\right)$. Hence, $F_{1} \supseteq T_{n_{1}}$. Now, let $A=F_{1} \backslash T_{n_{1}}$, and $H=F_{1}[A]$. Then $|H|=(m-1)\left(n_{2}-1\right)+1$. Since \bar{H} contains no K_{m}, then by Theorem 3, $H \supseteq T_{n_{2}}$. Therefore, F_{1} contains a subgraph $T_{n_{1}} \cup T_{n_{2}}$.

Next, assume the theorem holds for all $r<k$, namely $R\left(\bigcup_{i=1}^{r} T_{n_{i}}, K_{m}\right)=(m-1)\left(n_{r}-1\right)+\sum_{i=1}^{r-1} n_{i}+1$. We shall show that $R\left(\bigcup_{i=1}^{k} T_{n_{i}}, K_{m}\right)=(m-1)\left(n_{k}-1\right)+\sum_{i=1}^{k-1} n_{i}+1$. Take an arbitrary graph F_{2} with order $(m-1)\left(n_{k}-1\right)+\sum_{i=1}^{k-1} n_{i}+1$. Suppose $\overline{F_{2}}$ contains no K_{m}. By induction, F_{2} contains $\bigcup_{i=1}^{k-1} T_{n_{i}}$.

Writing $B=F_{2} \backslash \bigcup_{i=1}^{k-1} T_{n_{i}}$, and $Q=F_{2}[B]$. Then $|Q|=(m-1)\left(n_{k}-1\right)+1$. Since \bar{Q} contains no K_{m}, then Q contains $T_{n_{k}}$. Hence F_{2} contains $\bigcup_{i=1}^{k} T_{n_{i}}$. Therefore, we have $R\left(\bigcup_{i=1}^{k} T_{n_{i}}, K_{m}\right)=(m-1)\left(n_{k}-1\right)+\sum_{i=1}^{k-1} n_{i}+1$. The proof is now complete.

3. Uncited reference

[2].

References

1 [1] E.T. Baskoro, Surahmat, The Ramsey numbers of path with respect to wheels, Discrete Math. 294 (2005) $275-277$.
[2] S.A. Burr, On Ramsey numbers for large disjoint unions of graphs, Discrete Math. 70 (1988) 277-293.
[3] S.A. Burr, P. Erdös, J.H. Spencer, Ramsey theorem for multiple copies of graphs, Trans. Amer. Math. Soc. 209 (1975) 87-89.
[4] Y.J. Chen, Y.Q. Zhang, K.M. Zhang, The Ramsey numbers of stars versus wheels, European J. Combin. 25 (2004) $1067-1075$.
[5] V. Chvátal, Tree-complete graph Ramsey number, J. Graph Theory 1 (1977) 93.
[6] V. Chvátal, F. Harary, Generalized Ramsey theory for graphs, III: small off-diagonal numbers, Pacific. J. Math. 41 (1972) $335-345$.
[7] Hasmawati, Bilangan Ramsey untuk graf bintang terhadap graf roda, Tesis Magister, Departemen Matematika ITB Indonesia, 2004.
[8] Hasmawati, E.T. Baskoro, H. Assiyatun, Star-wheel Ramsey numbers, J. Combin. Math. Conbin. Comput. 55 (2005) $123-128$.
[9] S.P. Radziszowski, Small Ramsey numbers, Electron. J. Combin. July (2004) \#DS1.9 〈http://www.combinatorics.org/〉.
[10] Surahmat, E.T. Baskoro, On the Ramsey number of a path or a star versus W_{4} or W_{5}, in: Proceedings of the 12 th Australasian Workshop on Combinatorial Algorithms, Bandung, Indonesia, July 14-17 2001, pp. 165-170.

[^0]: ${ }^{1}$ Supported by TWAS Research Grant 04-312 RG-MATHS-AS.
 ${ }^{2}$ Permanent address: Department of Mathematics FMIPA, Universitas Hasanuddin (UNHAS), Jl. Perintis Kemerdekaan Km. 10, Makassar 90245, Indonesia.

 E-mail addresses: ebaskoro@dns.math.itb.ac.id, ebaskoro@math.itb.ac.id (E.T. Baskoro), hasmawati @math.itb.ac.id (Hasmawati), hilda@math.itb.ac.id (H. Assiyatun).

