Star-Wheel Ramsey Numbers

Hasmawati^{*}, Edy Tri Baskoro and Hilda Assiyatun

Department of Mathematics Institut Teknologi Bandung (ITB), Jalan Ganesa 10 Bandung 40132, Indonesia {hasmawati, ebaskoro, hilda}@dns.math.itb.ac.id

Abstract. For given graphs G and H, the Ramsey number R(G, H) is the smallest natural number n such that for every graph F of order n: either F contains G or the complement of F contains H. This paper investigates the Ramsey number $R(S_n, W_m)$ of stars versus wheels, where n is smaller than or equal to m. We show that if m is odd and $n + 1 \le m \le 2n - 4$, then $R(S_n, W_m) = 3n - 2$. Furthermore, if n is odd, $n \ge 5$ and m > n, then $R(S_n, W_m) = 3n - \mu$, where $\mu = 4$ if m = 2n - 4 and $\mu = 6$ if m = 2n - 8 or m = 2n - 6.

Keywords : Ramsey numbers, stars, wheels

1 Introduction

For given graphs G and H, the Ramsey number R(G, H) is defined as the smallest positive integer n such that for any graph F of order n, either F contains G or \overline{F} contains H, where \overline{F} is the complement of F. Chvátal and Harary [4] established a useful lower bound for finding the exact Ramsey numbers R(G, H), namely $R(G,H) \geq (\chi(G)-1)(C(H)-1)+1$, where $\chi(G)$ is the chromatic number of G and C(H) is the number of vertices of the largest component of H. Since then the Ramsey numbers R(G, H) for many combinations of graphs G and H have been extensively studied by various authours, see a nice survey paper [7]. In particular, the Ramsey numbers for combinations involving stars have also been investigated. Let S_n be a star of *n* vertices and W_m a wheel with *m* spokes. Surahmat et al. [8] proved that $R(S_n, W_4) = 2n - 1$ for $n \ge 3$ odd, otherwise $R(S_n, W_4) = 2n+1$. They also showed $R(S_n, W_5) = 3n-2$ for $n \geq 3$. Furthermore, it has been shown that if m is odd, $m \geq 5$ and $n \geq 2m-4$, then $R(S_n, W_m) = 3n-2$. This result is strengthened by Chen et al. [3] by showing that this Ramsey number remains the same, even if $m \geq 5$ is odd and $n \geq m - 1 \geq 2$. Additionally, for

^{*} Permanent address: Jurusan Matematika FMIPA, Universitas Hasanuddin (UN-HAS), Jalan Perintis Kemerdekaan KM.10 Makassar 90245, Indonesia

even m, Zhang et al. [10] established $R(S_n, W_6) = 2n + 1$ for $n \ge 3$, and $R(S_n, W_8) = 2n + \mu$ for $5 \le n \le 10$, where $\mu = 1$ if $n \equiv 1 \pmod{2}$ and $\mu = 2$ if $n \equiv 0 \pmod{2}$. Recently, Hasmawati showed that for $m \ge 2n - 2$ and $n \ge 4$, we have $R(S_n, W_m) = m + n - 2$ if n is odd and m is even, otherwise $R(S_n, W_m) = m + n - 1$ [6].

In this note, we determine the Ramsey numbers $R(S_n, W_m)$ with n is smaller than or equal to m. The main results of this note are the following.

Theorem 1. If m is odd and $n \ge \frac{m+1}{2} \ge 3$, then $R(S_n, W_m) = 3n-2$.

Theorem 2. If *n* is odd and $n \ge 5$, then $R(S_n, W_m) = 3n - \mu$, where $\mu = 4$ if m = 2n - 4 and $\mu = 6$ if m = 2n - 8 or m = 2n - 6.

Before proving the theorems let us present some notations used in this note. Let G(V, E) be a graph. Let c(G) be the *circumference* of G, that is, the length of a longest cycle, and g(G) be the *girth*, that is, the length of a shortest cycle. For any vertex $v \in V(G)$, the *neighborhood* N(v) is the set of vertices adjacent to v in G, N[v] = $N(v) \cup \{v\}$. The degree of a vertex v in G is denoted by $d_G(v)$. The minimum (maximum) degree in G is denoted by $\delta(G)$ ($\Delta(G)$). For $S \subseteq V(G), G[S]$ represents the subgraph induced by S in G. A graph on n vertices is *pancyclic* if it contains all cycles of every length l, $3 \leq l \leq n$. A graph is *weakly pancyclic* if it contains cycles of length from the girth to the circumference. Given two graphs G_1 and G_2 , $G_1 + G_2$ denotes the graph with the vertex-set $V = V(G_1) \cup (G_2)$ and the edge-set $E = E(G_1) \cup E(G_2) \cup \{uv | u \in V(G_1), v \in V(G_2)\}$.

2 Some Lemmas

The following lemmas will be useful in proving our resuts.

Lemma 1. (Bondy [1]). Let G be a graph of order n. If $\delta(G) \geq \frac{n}{2}$, then either G is pancyclic or n is even, $G = K_{\frac{n}{2},\frac{n}{2}}$.

Lemma 2. (Brandt et al. [2]). Every non-bipartite graph G with $\delta(G) \geq \frac{n+2}{3}$ is weakly pancyclic and has girth 3 or 4.

Lemma 3. (Dirac [5]). Let G be a 2-connected graph of order $n \ge 3$ with $\delta(G) = \delta$. Then $c(G) \ge \min\{2\delta, n\}$.

3

3 The Proofs of Theorems

Proof of Theorem 1. Let F be a graph of order 3n - 2. Suppose F contains no S_n . Let $x \in V(F)$. Since $F \not\supseteq S_n$, then $d_F(x) \le n-2$. Let $A = V(F) \setminus N[x]$, and T = F[A]. So, $|T| \ge 2n - 1$. Since for each $v \in T$, $d_T(v) \ge n-2$ then $d_{\overline{T}}(v) \ge |T| - (n-1) \ge \frac{|\overline{T}|}{2}$. By Lemma 1, \overline{T} contains a cycle C_m , where $3 \le m \le 2n - 1 \le |\overline{T}|$. With the center x, we obtain a wheel W_m in \overline{F} for all odd m and $n+1 \le m \le 2n-4$. Hence, $R(S_n, W_m) \le 3n - 2$ and hence $R(S_n, W_m) = 3n - 2$. \Box

Proof of Theorem 2. Let *n* be odd, $n \ge 5$ and m = 2n - 4. Since $K_{n-1} \cup K_{n-2,n-2}$ has no S_n and its complement contains no W_m , for m = 2n - 4, then $R(S_n, W_m) \ge 3n - 4$. On the other hand, now, let *F* be a graph of order 3n - 4. Suppose *F* contains no S_n , and so $d_F(v) \le n - 2$, $\forall v \in F$. Since *n* is odd, not all vertices of *F* has degree of n - 2 (odd). Let $x_0 \in F$ with $d_F(x_0) \le n - 3$. Let $A = V(F) \setminus N[x_0]$, and T = F[A]. Since for each $v \in T$, $d_T(v) \le n - 2$ and $|T| \ge 2n - 2$, then $d_{\overline{T}}(v) \ge |T| - (n - 1) \ge \frac{|\overline{T}|}{2}$. This yields \overline{T} containing a C_{2n-4} (by Lemma 1). Hence, \overline{F} contains a W_{2n-4} , with the center x_0 . Therefore, $R(S_n, W_m) = 3n - 4$ for this case.

Now, consider the case of n is odd and (m = 2n-8 or m = 2n-6). Graph $K_{n-1} \cup [(\frac{n-3}{2})K_2 + (\frac{n-3}{2})K_2]$ guaranties $R(S_n, W_m) \ge 3n - 6$. Now, let F be a graph of order 3n - 6 and suppose $F \not\supseteq S_n$. Hence, for each $x \in F, d_F(x) \le n-2$. Suppose to the contrary there exist $x_0 \in F, d_F(x_0) \le n-5$. If $A = V(F) \setminus N[x_0]$ and T = F[A] then $|T| \ge 2n-2$ and $\delta(\overline{T}) \ge |T| - (n-1) \ge \frac{|\overline{T}|}{2}$. By Lemma 1, \overline{T} contains a C_m where m = 2n-8 or m = 2n-6, and so \overline{F} contains W_m with the center x_0 . Therefore, for each $x \in F, n-4 \le d_F(v) \le n-2$. Since the order of F is odd, then not all its vertices has odd degree. Hence, there exists $v_0 \in F$ with $d_F(v_0) = n-3$. Let $A = V(F) \setminus N[v_0], T = F[A]$, and so |T| = 2n-4. Since for each $v \in T, n-4 \le d_T(v) \le n-2$, then $2n-5 \ge d_{\overline{T}}(v) \ge n-3$, which implies $\delta(\overline{T}) \ge \frac{|\overline{T}|+2}{3}$, if $n \ge 7$. Now, consider the following two cases.

Case 1. \overline{T} is a bipartite.

Let V_1, V_2 be the partite sets of T. Since $2n - 5 \ge d_{\overline{T}}(v) \ge n - 3$, then $|V_1| = n - 3$ and $|V_2| = n - 1$, or $|V_1| = n - 2$ and $|V_2| = n - 2$.

If $|V_1| = n-3$ and $|V_2| = n-1$, then \overline{T} is isomorphic to $=K_{n-1,n-3}$. Hence, \overline{T} contains a C_m , where m = 2n-8 or m = 2n-6. This cycle together with v_0 form a W_m in \overline{F} . 4 Hasmawati, E.T. Baskoro, H. Assiyatun

Let $|V_1| = n - 2$ and $|V_2| = n - 2$. Then, $\overline{(T)}$ is not isomorphic to $K_{n-2,n-2}$ since otherwise $\overline{T} \supseteq W_m$, where m = 2n - 8 or m = 2n - 6. Since $\delta(\overline{T}) \ge 3$, then we can order its vertices so that v_1, v_2, \cdots, v_r (u_1, u_2, \cdots, u_r) are the vertices of V_1 (V_2) that have degree n - 3 each, where $1 \le r \le n - 2$. But, now for $j = 3, 4, \cdots, n - 2$ we have a cycle $C_{2j} = (u_1, v_j, u_2, v_1, u_3, v_2, \cdots, u_{j-1}, v_{j-2}, u_j, v_{j-1}, u_1)$ in $\overline{(T)}$ and it implies that $W_m \subseteq \overline{T}$.

Case 2. \overline{T} is nonbipartite.

Since $\delta(\overline{T}) \geq \frac{|\overline{T}|+2}{3}$, then by Lemma 2 \overline{T} is weakly *pancyclic* and has girth 3 or 4. In other words, (T) contains all cycles C_m , with $g(\overline{T}) \leq m \leq c(\overline{T})$, where $g(\overline{T}) = 3$ or 4 and $c(\overline{T})$ is the length of its largest cycle. Next, we will to findout $c(\overline{T})$.

Let $\kappa(\overline{T}) = 0$. Then, \overline{T} is disconnected. The constraint of the degree of each vertex in \overline{T} forces \overline{T} to be isomorphic to $2K_{n-2}$. Since $\Delta(F) = n - 2$, then no vertices of T are adjacent to any vertex of $N[x_0]$ in F. This means that every vertex in $N[x_0]$ is adjacent to all vertices of \overline{T} in \overline{F} . Therefore, $N[x_0]$ together with the vertices of one component K_{n-2} of \overline{T} form a wheel W_m with any vertex of K_{n-2} as the center, where m = 2n - 8 or m = 2n - 6.

Let $\kappa(\overline{T}) = 1$. Let G_1 and G_2 be the components of $\overline{T} - \{u\}$, for a cut vertex $u \in \overline{T}$. Since $2n - 5 \ge d_{\overline{T}}(v) \ge n - 3$, then $|G_1| = n - 2$ and G_2 must be isomorphic to K_{n-3} , where vertex u is adjacent to all vertices of G_2 , and adjacent to at least one vertex in G_1 . Let $B = \{x \in G_1 \mid (x, u) \in \overline{T}\}$. Since $\delta(\overline{T}) \ge n - 3$, and $|G_1| = n-2$, each $x \in G_1 \setminus B$ must be adjacent to all other vertices of G_1 . As a consequence, if there exist two vertices x, y of G_1 not adjacent, then

 $x \in B$ and $y \in B$. Furthermore, for each $x \in B$ can be not adjacent to at most one vertex in B.

Next, if there exist vertex $a_s \in B$ adjacent to all other vertices of G_1 , then a_s has degree n-3 in F. Since $\Delta(F) = n-2$, then vertex a_s can be adjacent to at most one vertex of $N(v_0)$ in F. Now, if $B \subset G_1$ then chose any vertex in $x \in G_1 \setminus B$ as the center and $N(v_0)$ together with the vertices of G_1 in \overline{F} form a wheel W_m , where m = 2n - 8 or m = 2n - 6.

Let $B = G_1$, this means $N_{\overline{T}}(u) \cap G_1 = G_1$. Since $|G_1| = n - 2$ is odd, then there exist $a_0 \in G_1$ adjacent to all other vertices of G_1 . Therefore, chose this a_0 as the center and $G_1 \setminus \{a_0\}$ together with the vertices of $N[v_0] \setminus \{w\}$, where $(a_0, w) \in F$ form a wheel W_m ,

5

for m = 2n - 8 or m = 2n - 6.

Let $\kappa(\overline{T}) \geq 2$. Then \overline{T} is 2-connected, By Lemma 3, $c(\overline{T}) \geq \min\{2(n-3), 2n-4\}$. Since \overline{T} is weakly pancyclic then \overline{T} contains all cycles $C_m, g(\overline{T}) \leq m \leq 2n-6 \leq c(\overline{T})$, where $g(\overline{T})$ is 3 or 4. Hence, \overline{F} contains W_m , with the center v_0 and for m = 2n-8 or m = 2n-6.

4 Open Problems

To conclude this paper, let us present the following open problem to work on.

Problem 1. Find the Ramsey number $R(S_n, W_m \text{ for } n \ge 4 \text{ even}$ and all even $m, n+1 \le m \le 2n-4$.

Problem 2. Find the Ramsey number $R(S_n, W_m \text{ for } n \ge 5 \text{ odd and} m \text{ even}, n + 1 \le m \le 2n - 10.$

References

- 1. J.A. Bondy, Pancyclic graph, J. Combin. Theory Ser.B, 11 (1971), 80-84.
- S. Brandt, R.J. Faudree and W. Goddard, Weakly pancyclic graph, J. Graph Theory, 27(1998), 141-176.
- Y.J. Chen, Y.Q. Zhang and K.M. Zhang, The Ramsey Numbers of Stars versus Wheels, *Euro. J. Combinatorics.*, (2004).
- V. Chvátal and F. Harary, Generalized Ramsey Theory for Graphs, III: Small off-Diagonal Numbers, *Pac. J. Math.*, 41(1972) 335-345.
- G.A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952), 69-81.
- 6. Hasmawati, Tesis Magister, Departemen Matematika ITB Indonesia, (2004).
- S. P. Radziszowski, Small Ramsey Numbers, The Electronic Journal of Combinatorics, July (2004) #DS1.9, http://www.combinatorics.org/
- Surahmat and E. T. Baskoro, On The Ramsey Number of a Path or a Star versus W₄ or W₅, Proceedings of the 12-th Australasian Workshop on Combinatorial Algorithms, Bandung, Indonesia, July 14-17 (2001) 165-170.
- Surahmat, E.T. Baskoro dan H.J. Broersma, The Ramsey numbers of large starlike trees versus large odd wheels, *Technical Report* #1621, Faculty of Mathematical Sciences, University of Twente, the Netherlands, (2002).
- 10. Y.Q. Zhang and K.M. Zhang, On Ramsey Numbers $R(S_n, W_8)$ for small n, J. Combin. ???? to appear.