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Abstract. For given graphs G and H, the Ramsey number R(G, H)
is the smallest natural number n such that for every graph F of order
n: either F contains G or the complement of F contains H. This paper
investigates the Ramsey number R(Sn, Wm) of stars versus wheels, where
n is smaller than or equal to m. We show that if m is odd and n + 1 ≤
m ≤ 2n− 4, then R(Sn, Wm) = 3n− 2. Furthermore, if n is odd, n ≥ 5
and m > n, then R(Sn, Wm) = 3n − µ, where µ = 4 if m = 2n − 4 and
µ = 6 if m = 2n− 8 or m = 2n− 6.
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1 Introduction

For given graphs G and H, the Ramsey number R(G,H) is de-
fined as the smallest positive integer n such that for any graph
F of order n, either F contains G or F contains H, where F is
the complement of F . Chvátal and Harary [4] established a useful
lower bound for finding the exact Ramsey numbers R(G,H), namely
R(G, H) ≥ (χ(G)− 1)(C(H)− 1) + 1, where χ(G) is the chromatic
number of G and C(H) is the number of vertices of the largest com-
ponent of H. Since then the Ramsey numbers R(G,H) for many
combinations of graphs G and H have been extensively studied by
various authours, see a nice survey paper [7]. In particular, the Ram-
sey numbers for combinations involving stars have also been investi-
gated. Let Sn be a star of n vertices and Wm a wheel with m spokes.
Surahmat et al. [8] proved that R(Sn,W4) = 2n − 1 for n ≥ 3 odd,
otherwise R(Sn,W4) = 2n+1. They also showed R(Sn,W5) = 3n−2
for n ≥ 3. Furthermore, it has been shown that if m is odd, m ≥ 5
and n ≥ 2m− 4, then R(Sn,Wm) = 3n− 2. This result is strength-
ened by Chen et al. [3] by showing that this Ramsey number remains
the same, even if m(≥ 5) is odd and n ≥ m−1 ≥ 2. Additionally, for
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even m, Zhang et al. [10] established R(Sn,W6) = 2n + 1 for n ≥ 3,
and R(Sn,W8) = 2n + µ for 5 ≤ n ≤ 10, where µ = 1 if n ≡ 1 (mod
2) and µ = 2 if n ≡ 0 (mod 2). Recently, Hasmawati showed that
for m ≥ 2n − 2 and n ≥ 4, we have R(Sn,Wm) = m + n − 2 if n is
odd and m is even, otherwise R(Sn,Wm) = m + n− 1 [6].

In this note, we determine the Ramsey numbers R(Sn,Wm) with
n is smaller than or equal to m. The main results of this note are
the following.

Theorem 1. If m is odd and n ≥ m+1
2

≥ 3, then R(Sn, Wm) =
3n− 2.

Theorem 2. If n is odd and n ≥ 5 , then R(Sn,Wm) = 3n − µ,
where µ = 4 if m = 2n− 4 and µ = 6 if m = 2n− 8 or m = 2n− 6.

Before proving the theorems let us present some notations used
in this note. Let G(V, E) be a graph. Let c(G) be the circumference
of G, that is, the length of a longest cycle, and g(G) be the girth,
that is, the length of a shortest cycle. For any vertex v ∈ V (G), the
neighborhood N(v) is the set of vertices adjacent to v in G, N [v] =
N(v) ∪ {v}. The degree of a vertex v in G is denoted by dG(v). The
minimum (maximum) degree in G is denoted by δ(G) (∆(G)). For
S ⊆ V (G), G[S] represents the subgraph induced by S in G. A graph
on n vertices is pancyclic if it contains all cycles of every length l,
3≤ l ≤ n. A graph is weakly pancyclic if it contains cycles of length
from the girth to the circumference. Given two graphs G1 and G2,
G1 + G2 denotes the graph with the vertex-set V = V (G1) ∪ (G2)
and the edge-set E = E(G1)∪E(G2)∪ {uv|u ∈ V (G1), v ∈ V (G2)}.

2 Some Lemmas

The following lemmas will be useful in proving our resuts.

Lemma 1. (Bondy [1]). Let G be a graph of order n. If δ(G) ≥ n
2
,

then either G is pancyclic or n is even , G = Kn
2

, n
2
.

Lemma 2. (Brandt et al. [2]). Every non-bipartite graph G with
δ(G) ≥ n+2

3
is weakly pancyclic and has girth 3 or 4.

Lemma 3. (Dirac [5]). Let G be a 2-connected graph of order n ≥ 3
with δ(G) = δ. Then c(G) ≥ min{2δ, n}.
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3 The Proofs of Theorems

Proof of Theorem 1. Let F be a graph of order 3n − 2. Suppose
F contains no Sn. Let x ∈ V (F ). Since F 6⊇ Sn, then dF (x) ≤ n− 2.
Let A = V (F )\N [x], and T = F [A]. So, |T | ≥ 2n− 1. Since for each

v ∈ T, dT (v) ≥ n− 2 then dT (v) ≥ |T |− (n− 1) ≥ |T |
2

. By Lemma 1,

T contains a cycle Cm, where 3 ≤ m ≤ 2n−1 ≤ |T |. With the center
x, we obtain a wheel Wm in F for all odd m and n+1 ≤ m ≤ 2n−4.
Hence, R(Sn,Wm) ≤ 3n − 2. On the other hand, the graph 3Kn−1

shows R(Sn,Wm) ≥ 3n− 2 and hence R(Sn,Wm) = 3n− 2. ut

Proof of Theorem 2. Let n be odd, n ≥ 5 and m = 2n− 4. Since
Kn−1 ∪ Kn−2,n−2 has no Sn and its complement contains no Wm,
for m = 2n − 4, then R(Sn, Wm) ≥ 3n − 4. On the other hand,
now, let F be a graph of order 3n − 4. Suppose F contains no Sn,
and so dF (v) ≤ n − 2, ∀v ∈ F . Since n is odd, not all vertices of
F has degree of n − 2 (odd). Let x0 ∈ F with dF (x0) ≤ n − 3. Let
A = V (F )\N [x0], and T = F [A]. Since for each v ∈ T, dT (v) ≤ n−2

and |T | ≥ 2n − 2, then dT (v) ≥ |T | − (n − 1) ≥ |T |
2

. This yields T

containing a C2n−4 (by Lemma 1). Hence, F contains a W2n−4, with
the center x0. Therefore, R(Sn,Wm) = 3n− 4 for this case.

Now, consider the case of n is odd and (m = 2n−8 or m = 2n−6).
Graph Kn−1 ∪ [(n−3

2
)K2 + (n−3

2
)K2] guaranties R(Sn,Wm) ≥ 3n− 6.

Now, let F be a graph of order 3n− 6 and suppose F 6⊇ Sn. Hence,
for each x ∈ F, dF (x) ≤ n − 2. Suppose to the contrary there exist
x0 ∈ F, dF (x0) ≤ n − 5. If A = V (F )\N [x0] and T = F [A] then

|T | ≥ 2n − 2 and δ(T ) ≥ |T | − (n − 1) ≥ |T |
2

. By Lemma 1, T

contains a Cm where m = 2n− 8 or m = 2n− 6, and so F contains
Wm with the center x0. Therefore, for each x ∈ F, n − 4 ≤ dF (v) ≤
n − 2. Since the order of F is odd, then not all its vertices has
odd degree. Hence, there exists v0 ∈ F with dF (v0) = n − 3. Let
A = V (F )\N [v0], T = F [A], and so |T | = 2n − 4. Since for each
v ∈ T, n− 4 ≤ dT (v) ≤ n− 2, then 2n− 5 ≥ dT (v) ≥ n− 3, which

implies δ(T ) ≥ |T |+2
3

, if n ≥ 7. Now, consider the following two cases.

Case 1. T is a bipartite.
Let V1, V2 be the partite sets of T . Since 2n − 5 ≥ dT (v) ≥ n − 3 ,
then |V1| = n− 3 and |V2| = n− 1, or |V1| = n− 2 and |V2| = n− 2.

If |V1| = n−3 and |V2| = n−1, then T is isomorphic to =Kn−1,n−3.
Hence, T contains a Cm, where m = 2n − 8 or m = 2n − 6. This
cycle together with v0 form a Wm in F .
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Let |V1| = n− 2 and |V2| = n− 2. Then, (T ) is not isomorphic to
Kn−2,n−2 since otherwise T ⊇ Wm, where m = 2n−8 or m = 2n−6.
Since δ(T ) ≥ 3, then we can order its vertices so that v1, v2, · · · , vr

(u1, u2, · · · , ur) are the vertices of V1 (V2) that have degree n − 3
each, where 1 ≤ r ≤ n− 2. But, now for j = 3, 4, · · · , n− 2 we have
a cycle C2j = (u1, vj, u2, v1, u3, v2, · · · , uj−1, vj−2, uj, vj−1, u1) in

(T ) and it implies that Wm ⊆ T .

Case 2. T is nonbipartite.

Since δ(T ) ≥ |T |+2
3

, then by Lemma 2 T is weakly pancyclic and

has girth 3 or 4. In other words, (T ) contains all cycles Cm, with
g(T ) ≤ m ≤ c(T ), where g(T ) = 3 or 4 and c(T ) is the length of its
largest cycle. Next, we will to findout c(T ).

Let κ(T ) = 0. Then, T is disconnected. The constraint of the
degree of each vertex in T forces T to be isomorphic to 2Kn−2. Since
∆(F ) = n − 2, then no vertices of T are adjacent to any vertex of
N [x0] in F . This means that every vertex in N [x0] is adjacent to all
vertices of T in F . Therefore, N [x0] together with the vertices of one
component Kn−2 of T form a wheel Wm with any vertex of Kn−2 as
the center, where m = 2n− 8 or m = 2n− 6.

Let κ(T ) = 1. Let G1 and G2 be the components of T − {u}, for
a cut vertex u ∈ T . Since 2n− 5 ≥ dT (v) ≥ n− 3, then |G1| = n− 2
and G2 must be isomorphic to Kn−3, where vertex u is adjacent to
all vertices of G2, and adjacent to at least one vertex in G1. Let
B =

{
x ∈ G1

∣∣(x, u) ∈ T
}
. Since δ(T ) ≥ n − 3, and |G1|=n-2, each

x ∈ G1 \ B must be adjacent to all other vertices of G1. As a
consequence, if there exist two vertices x, y of G1 not adjacent, then

x ∈ B and y ∈ B. Furthermore, for each x ∈ B can be not adjacent
to at most one vertex in B.

Next, if there exist vertex as ∈ B adjacent to all other vertices
of G1, then as has degree n − 3 in F . Since ∆(F ) = n − 2, then
vertex as can be adjacent to at most one vertex of N(v0) in F. Now,
if B ⊂ G1 then chose any vertex in x ∈ G1 \ B as the center and
N(v0) together with the vertices of G1 in F form a wheel Wm, where
m = 2n− 8 or m = 2n− 6.

Let B = G1, this means NT (u) ∩ G1 = G1. Since |G1| = n − 2
is odd, then there exist a0 ∈ G1 adjacent to all other vertices of G1.
Therefore, chose this a0 as the center and G1 \ {a0} together with
the vertices of N [v0] \ {w} , where (a0, w) ∈ F form a wheel Wm,
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for m = 2n− 8 or m = 2n− 6.

Let κ(T ) ≥ 2. Then T is 2-connected, By Lemma 3, c(T ) ≥
min{2(n− 3), 2n− 4}. Since T is weakly pancyclic then T contains
all cycles Cm, g(T ) ≤ m ≤ 2n − 6 ≤ c(T ), where g(T ) is 3 or 4.
Hence, F contains Wm, with the center v0 and for m = 2n − 8 or
m = 2n− 6. ut

4 Open Problems

To conclude this paper, let us present the following open problem to
work on.

Problem 1. Find the Ramsey number R(Sn,Wm for n ≥ 4 even
and all even m, n + 1 ≤ m ≤ 2n− 4.

Problem 2. Find the Ramsey number R(Sn, Wm for n ≥ 5 odd and
m even, n + 1 ≤ m ≤ 2n− 10.
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