Star-Wheel Ramsey Numbers

Hasmawati ${ }^{\star}$, Edy Tri Baskoro and Hilda Assiyatun
Department of Mathematics Institut Teknologi Bandung (ITB), Jalan Ganesa 10 Bandung 40132, Indonesia
\{hasmawati, ebaskoro, hilda\}@dns.math.itb.ac.id

Abstract

For given graphs G and H, the Ramsey number $R(G, H)$ is the smallest natural number n such that for every graph F of order n : either F contains G or the complement of F contains H. This paper investigates the Ramsey number $R\left(S_{n}, W_{m}\right)$ of stars versus wheels, where n is smaller than or equal to m. We show that if m is odd and $n+1 \leq$ $m \leq 2 n-4$, then $R\left(S_{n}, W_{m}\right)=3 n-2$. Furthermore, if n is odd, $n \geq 5$ and $m>n$, then $R\left(S_{n}, W_{m}\right)=3 n-\mu$, where $\mu=4$ if $m=2 n-4$ and $\mu=6$ if $m=2 n-8$ or $m=2 n-6$.

Keywords : Ramsey numbers, stars, wheels

1 Introduction

For given graphs G and H, the Ramsey number $R(G, H)$ is defined as the smallest positive integer n such that for any graph F of order n, either F contains G or \bar{F} contains H, where \bar{F} is the complement of F. Chvátal and Harary [4] established a useful lower bound for finding the exact Ramsey numbers $R(G, H)$, namely $R(G, H) \geq(\chi(G)-1)(C(H)-1)+1$, where $\chi(G)$ is the chromatic number of G and $C(H)$ is the number of vertices of the largest component of H. Since then the Ramsey numbers $R(G, H)$ for many combinations of graphs G and H have been extensively studied by various authours, see a nice survey paper [7]. In particular, the Ramsey numbers for combinations involving stars have also been investigated. Let S_{n} be a star of n vertices and W_{m} a wheel with m spokes. Surahmat et al. [8] proved that $R\left(S_{n}, W_{4}\right)=2 n-1$ for $n \geq 3$ odd, otherwise $R\left(S_{n}, W_{4}\right)=2 n+1$. They also showed $R\left(S_{n}, W_{5}\right)=3 n-2$ for $n \geq 3$. Furthermore, it has been shown that if m is odd, $m \geq 5$ and $n \geq 2 m-4$, then $R\left(S_{n}, W_{m}\right)=3 n-2$. This result is strengthened by Chen et al. [3] by showing that this Ramsey number remains the same, even if $m(\geq 5)$ is odd and $n \geq m-1 \geq 2$. Additionally, for

[^0]even m, Zhang et al. [10] established $R\left(S_{n}, W_{6}\right)=2 n+1$ for $n \geq 3$, and $R\left(S_{n}, W_{8}\right)=2 n+\mu$ for $5 \leq n \leq 10$, where $\mu=1$ if $n \equiv 1(\bmod$ 2) and $\mu=2$ if $n \equiv 0(\bmod 2)$. Recently, Hasmawati showed that for $m \geq 2 n-2$ and $n \geq 4$, we have $R\left(S_{n}, W_{m}\right)=m+n-2$ if n is odd and m is even, otherwise $R\left(S_{n}, W_{m}\right)=m+n-1$ [6].

In this note, we determine the Ramsey numbers $R\left(S_{n}, W_{m}\right)$ with n is smaller than or equal to m. The main results of this note are the following.

Theorem 1. If m is odd and $n \geq \frac{m+1}{2} \geq 3$, then $R\left(S_{n}, W_{m}\right)=$ $3 n-2$.

Theorem 2. If n is odd and $n \geq 5$, then $R\left(S_{n}, W_{m}\right)=3 n-\mu$, where $\mu=4$ if $m=2 n-4$ and $\mu=6$ if $m=2 n-8$ or $m=2 n-6$.

Before proving the theorems let us present some notations used in this note. Let $G(V, E)$ be a graph. Let $c(G)$ be the circumference of G, that is, the length of a longest cycle, and $g(G)$ be the girth, that is, the length of a shortest cycle. For any vertex $v \in V(G)$, the neighborhood $N(v)$ is the set of vertices adjacent to v in $G, N[v]=$ $N(v) \cup\{v\}$. The degree of a vertex v in G is denoted by $d_{G}(v)$. The minimum (maximum) degree in G is denoted by $\delta(G)(\Delta(G))$. For $S \subseteq V(G), G[S]$ represents the subgraph induced by S in G. A graph on n vertices is pancyclic if it contains all cycles of every length l, $3 \leq l \leq n$. A graph is weakly pancyclic if it contains cycles of length from the girth to the circumference. Given two graphs G_{1} and G_{2}, $G_{1}+G_{2}$ denotes the graph with the vertex-set $V=V\left(G_{1}\right) \cup\left(G_{2}\right)$ and the edge-set $E=E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup\left\{u v \mid u \in V\left(G_{1}\right), v \in V\left(G_{2}\right)\right\}$.

2 Some Lemmas

The following lemmas will be useful in proving our resuts.

Lemma 1. (Bondy [1]). Let G be a graph of order n. If $\delta(G) \geq \frac{n}{2}$, then either G is pancyclic or n is even, $G=K_{\frac{n}{2}, \frac{n}{2}}$.

Lemma 2. (Brandt et al. [2]). Every non-bipartite graph G with $\delta(G) \geq \frac{n+2}{3}$ is weakly pancyclic and has girth 3 or 4.

Lemma 3. (Dirac [5]). Let G be a 2 -connected graph of order $n \geq 3$ with $\delta(G)=\delta$. Then $c(G) \geq \min \{2 \delta, n\}$.

3 The Proofs of Theorems

Proof of Theorem 1. Let F be a graph of order $3 n-2$. Suppose F contains no S_{n}. Let $x \in V(F)$. Since $F \nsupseteq S_{n}$, then $d_{F}(x) \leq n-2$. Let $A=V(F) \backslash N[x]$, and $T=F[A]$. So, $|T| \geq 2 n-1$. Since for each $v \in T, d_{T}(v) \geq n-2$ then $d_{\bar{T}}(v) \geq|T|-(n-1) \geq \frac{|\bar{T}|}{2}$. By Lemma 1 , \bar{T} contains a cycle C_{m}, where $3 \leq m \leq 2 n-1 \leq|\bar{T}|$. With the center x, we obtain a wheel W_{m} in \bar{F} for all odd m and $n+1 \leq m \leq 2 n-4$. Hence, $R\left(S_{n}, W_{m}\right) \leq 3 n-2$. On the other hand, the graph $3 K_{n-1}$ shows $R\left(S_{n}, W_{m}\right) \geq 3 n-2$ and hence $R\left(S_{n}, W_{m}\right)=3 n-2$.

Proof of Theorem 2. Let n be odd, $n \geq 5$ and $m=2 n-4$. Since $K_{n-1} \cup K_{n-2, n-2}$ has no S_{n} and its complement contains no W_{m}, for $m=2 n-4$, then $R\left(S_{n}, W_{m}\right) \geq 3 n-4$. On the other hand, now, let F be a graph of order $3 n-4$. Suppose F contains no S_{n}, and so $d_{F}(v) \leq n-2, \forall v \in F$. Since n is odd, not all vertices of F has degree of $n-2$ (odd). Let $x_{0} \in F$ with $d_{F}\left(x_{0}\right) \leq n-3$. Let $A=V(F) \backslash N\left[x_{0}\right]$, and $T=F[A]$. Since for each $v \in T, d_{T}(v) \leq n-2$ and $|T| \geq 2 n-2$, then $d_{\bar{T}}(v) \geq|T|-(n-1) \geq \frac{|\bar{T}|}{2}$. This yields \bar{T} containing a $C_{2 n-4}$ (by Lemma 1). Hence, \bar{F} contains a $W_{2 n-4}$, with the center x_{0}. Therefore, $R\left(S_{n}, W_{m}\right)=3 n-4$ for this case.

Now, consider the case of n is odd and ($m=2 n-8$ or $m=2 n-6$). Graph $K_{n-1} \cup\left[\left(\frac{n-3}{2}\right) K_{2}+\left(\frac{n-3}{2}\right) K_{2}\right]$ guaranties $R\left(S_{n}, W_{m}\right) \geq 3 n-6$. Now, let F be a graph of order $3 n-6$ and suppose $F \nsupseteq S_{n}$. Hence, for each $x \in F, d_{F}(x) \leq n-2$. Suppose to the contrary there exist $x_{0} \in F, d_{F}\left(x_{0}\right) \leq n-5$. If $A=V(F) \backslash N\left[x_{0}\right]$ and $T=F[A]$ then $|T| \geq 2 n-2$ and $\delta(\bar{T}) \geq|T|-(n-1) \geq \frac{|\bar{T}|}{2}$. By Lemma $1, \bar{T}$ contains a C_{m} where $m=2 n-8$ or $m=2 n-6$, and so \bar{F} contains W_{m} with the center x_{0}. Therefore, for each $x \in F, n-4 \leq d_{F}(v) \leq$ $n-2$. Since the order of F is odd, then not all its vertices has odd degree. Hence, there exists $v_{0} \in F$ with $d_{F}\left(v_{0}\right)=n-3$. Let $A=V(F) \backslash N\left[v_{0}\right], T=F[A]$, and so $|T|=2 n-4$. Since for each $v \in T, n-4 \leq d_{T}(v) \leq n-2$, then $2 n-5 \geq d_{\bar{T}}(v) \geq n-3$, which implies $\delta(\bar{T}) \geq \frac{|\bar{T}|+2}{3}$, if $n \geq 7$. Now, consider the following two cases.

Case 1. \bar{T} is a bipartite.
Let V_{1}, V_{2} be the partite sets of T. Since $2 n-5 \geq d_{\bar{T}}(v) \geq n-3$, then $\left|V_{1}\right|=n-3$ and $\left|V_{2}\right|=n-1$, or $\left|V_{1}\right|=n-2$ and $\left|V_{2}\right|=n-2$.

If $\left|V_{1}\right|=n-3$ and $\left|V_{2}\right|=n-1$, then \bar{T} is isomorphic to $=K_{n-1, n-3}$. Hence, \bar{T} contains a C_{m}, where $m=2 n-8$ or $m=2 n-6$. This cycle together with v_{0} form a W_{m} in \bar{F}.

Let $\left|V_{1}\right|=n-2$ and $\left|\underline{V_{2}}\right|=n-2$. Then, $\left.\overline{(} T\right)$ is not isomorphic to $K_{n-2, n-2}$ since otherwise $\bar{T} \supseteq W_{m}$, where $m=2 n-8$ or $m=2 n-6$. Since $\delta(\bar{T}) \geq 3$, then we can order its vertices so that $v_{1}, v_{2}, \cdots, v_{r}$ $\left(u_{1}, u_{2}, \cdots, u_{r}\right)$ are the vertices of $V_{1}\left(V_{2}\right)$ that have degree $n-3$ each, where $1 \leq r \leq n-2$. But, now for $j=3,4, \cdots, n-2$ we have a cycle $C_{2 j}=\left(u_{1}, v_{j}, u_{2}, v_{1}, u_{3}, v_{2}, \cdots, u_{j-1}, v_{j-2}, u_{j}, v_{j-1}, u_{1}\right)$ in $\overline{(} T)$ and it implies that $W_{m} \subseteq \bar{T}$.

Case 2. \bar{T} is nonbipartite.
Since $\delta(\bar{T}) \geq \frac{|\bar{T}|+2}{3}$, then by Lemma $2 \bar{T}$ is weakly pancyclic and has girth 3 or 4 . In other words, $\overline{(} T)$ contains all cycles C_{m}, with $g(\bar{T}) \leq m \leq c(\bar{T})$, where $g(\bar{T})=3$ or 4 and $c(\bar{T})$ is the length of its largest cycle. Next, we will to findout $c(\bar{T})$.

Let $\kappa(\bar{T})=0$. Then, \bar{T} is disconnected. The constraint of the degree of each vertex in \bar{T} forces \bar{T} to be isomorphic to $2 K_{n-2}$. Since $\Delta(F)=n-2$, then no vertices of T are adjacent to any vertex of $N\left[x_{0}\right]$ in F. This means that every vertex in $N\left[x_{0}\right]$ is adjacent to all vertices of \bar{T} in \bar{F}. Therefore, $N\left[x_{0}\right]$ together with the vertices of one component K_{n-2} of \bar{T} form a wheel W_{m} with any vertex of K_{n-2} as the center, where $m=2 n-8$ or $m=2 n-6$.

Let $\kappa(\bar{T})=1$. Let G_{1} and G_{2} be the components of $\bar{T}-\{u\}$, for a cut vertex $u \in \bar{T}$. Since $2 n-5 \geq d_{\bar{T}}(v) \geq n-3$, then $\left|G_{1}\right|=n-2$ and G_{2} must be isomorphic to K_{n-3}, where vertex u is adjacent to all vertices of G_{2}, and adjacent to at least one vertex in G_{1}. Let $B=\left\{x \in G_{1} \mid(x, u) \in \bar{T}\right\}$. Since $\delta(\bar{T}) \geq n-3$, and $\left|G_{1}\right|=\mathrm{n}-2$, each $x \in G_{1} \backslash B$ must be adjacent to all other vertices of G_{1}. As a consequence, if there exist two vertices x, y of G_{1} not adjacent, then
$x \in B$ and $y \in B$. Furthermore, for each $x \in B$ can be not adjacent to at most one vertex in B.

Next, if there exist vertex $a_{s} \in B$ adjacent to all other vertices of G_{1}, then a_{s} has degree $n-3$ in F. Since $\Delta(F)=n-2$, then vertex a_{s} can be adjacent to at most one vertex of $N\left(v_{0}\right)$ in F. Now, if $B \subset G_{1}$ then chose any vertex in $x \in G_{1} \backslash B$ as the center and $N\left(v_{0}\right)$ together with the vertices of G_{1} in \bar{F} form a wheel W_{m}, where $m=2 n-8$ or $m=2 n-6$.

Let $B=G_{1}$, this means $N_{\bar{T}}(u) \cap G_{1}=G_{1}$. Since $\left|G_{1}\right|=n-2$ is odd, then there exist $a_{0} \in G_{1}$ adjacent to all other vertices of G_{1}. Therefore, chose this a_{0} as the center and $G_{1} \backslash\left\{a_{0}\right\}$ together with the vertices of $N\left[v_{0}\right] \backslash\{w\}$, where $\left(a_{0}, w\right) \in F$ form a wheel W_{m},
for $m=2 n-8$ or $m=2 n-6$.

Let $\kappa(\bar{T}) \geq 2$. Then \bar{T} is 2-connected, By Lemma 3, $c(\bar{T}) \geq$ $\min \{2(n-3), 2 n-4\}$. Since \bar{T} is weakly pancyclic then \bar{T} contains all cycles $C_{m}, g(\bar{T}) \leq m \leq 2 n-6 \leq c(\bar{T})$, where $g(\bar{T})$ is 3 or 4 . Hence, \bar{F} contains W_{m}, with the center v_{0} and for $m=2 n-8$ or $m=2 n-6$.

4 Open Problems

To conclude this paper, let us present the following open problem to work on.

Problem 1. Find the Ramsey number $R\left(S_{n}, W_{m}\right.$ for $n \geq 4$ even and all even $m, n+1 \leq m \leq 2 n-4$.

Problem 2. Find the Ramsey number $R\left(S_{n}, W_{m}\right.$ for $n \geq 5$ odd and m even, $n+1 \leq m \leq 2 n-10$.

References

1. J.A. Bondy, Pancyclic graph, J. Combin. Theory Ser.B, 11 (1971), 80-84.
2. S. Brandt, R.J. Faudree and W. Goddard, Weakly pancyclic graph, J. Graph Theory, 27(1998), 141-176.
3. Y.J. Chen, Y.Q. Zhang and K.M. Zhang, The Ramsey Numbers of Stars versus Wheels, Euro. J. Combinatorics., (2004).
4. V. Chvátal and F. Harary, Generalized Ramsey Theory for Graphs, III: Small off-Diagonal Numbers, Pac. J. Math., 41(1972) 335-345.
5. G.A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952), 69-81.
6. Hasmawati, Tesis Magister, Departemen Matematika ITB Indonesia, (2004).
7. S. P. Radziszowski, Small Ramsey Numbers, The Electronic Journal of Combinatorics, July (2004) \#DS1.9, http://www.combinatorics.org/
8. Surahmat and E. T. Baskoro, On The Ramsey Number of a Path or a Star versus W_{4} or W_{5}, Proceedings of the 12-th Australasian Workshop on Combinatorial Algorithms, Bandung, Indonesia, July 14-17 (2001) 165-170.
9. Surahmat, E.T. Baskoro dan H.J. Broersma, The Ramsey numbers of large starlike trees versus large odd wheels, Technical Report \#1621, Faculty of Mathematical Sciences, University of Twente, the Netherlands, (2002)
10. Y.Q. Zhang and K.M. Zhang, On Ramsey Numbers $R\left(S_{n}, W_{8}\right)$ for small n, J. Combin. ???? to appear.

[^0]: * Permanent address: Jurusan Matematika FMIPA, Universitas Hasanuddin (UNHAS),Jalan Perintis Kemerdekaan KM. 10 Makassar 90245, Indonesia

