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“All humans are dead except those who have knowledge. And all those who have

knowledge are asleep, except those who do good deeds.”

Imam Ash-Shaafi’ee



OSAKA UNIVERSITY

Abstract
Graduate School of Engineering

Department of Naval Architecture and Ocean Engineering

Doctor of Engineering

by Faisal MAHMUDDIN

In order to design an optimal floating breakwater with a high performance in

a wide range of frequencies, 2D and 3D analyses are performed in this study.

The design starts with seeking an optimal 2D model shape. For this purpose, an

optimization method called Genetic Algorithm (GA) combined with Boundary El-

ement Method (BEM) is employed as the main calculation method. The accuracy

of BEM analysis is confirmed using several relations such as Haskind-Newman and

energy conservation relations. Moreover, since the investigated model will be an

asymmetric shape, an experiment using a manufactured asymmetric model is also

conducted to confirm that the present analysis could treat asymmetric body case

correctly. From the experiment, a favorable agreement with numerical results can

be found for both fixed and free motions cases which strengthen our confidence on

the 2D analysis correctness.

However, because the optimal performance obtained in 2D analysis is expected

to be different for some extent from real application, the performance of the cor-

responding model in 3D case is also analyzed. Higher order boundary element

method (HOBEM) is employed for this purpose. 3D Wave effect and its effect to

the floating breakwater performance are analyzed and discussed. For considera-

tion of real model construction and installation, drift forces induced by waves are

also computed. It is shown from this study that the combination of GA and BEM

is effective in obtaining an optimal performance model. Moreover, by computing

its the corresponding 3D model, it can also be shown that the 3D wave effect is

small on motion amplitude while the wave elevation is found to be in 3D pattern

even for a longer body length.
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Chapter 1

Introduction

1.1 Background

It is known that near-shore area has become an increasingly important area for

people activities nowadays. It plays a significant role in supporting economic and

social growth. As a result, it is necessary to protect this area from wave attack

for people convenience. There are some choices of protection that can be installed

ranging from simple structures such as rubble mound breakwater to more complex

structures such as a caisson breakwater. Each type has its own advantages and

disadvantages. These fixed-type structures are usually very efficient in protecting

the shore but because of their high construction cost, they are usually installed

only in shallow water area. The installation becomes more difficult and expensive

as the water depth increases.

As a consequence, a free-floating-type breakwater becomes a more common choice

in deep water sea. Besides its flexibility, fresh water circulation feasibility, etc.,

a floating-type breakwater is also cheaper and easier to be manufactured. Even

though its performance is usually lower than fixed-type ones, the use of this type

breakwater is becoming more popular.

1
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However, even though the increase in practical demand of floating breakwater

which attracts more attention of many researchers to perform research about

floating breakwaters, the past research has shown that conventional-type floating

breakwaters which usually have only a simple shape such as rectangular shape,

could only attenuate waves in a limited range of frequency especially in short

wavelength region. Example of such attempts can be found in Kashiwagi et al.

[4] and Mahmuddin and Kashiwagi [5]. Consequently, it is needed to find a more

efficient and optimal shape design even if it would make the model shape more

complex.

For this purpose, a search optimization method called Genetic Algorithm (GA)

combined with Boundary Elemement Method (BEM), are used to obtain an op-

timal model. It is known that GA has ability to find an optimal result based on

defined fitness functions or criteria in a defined search space. Moreover, by choos-

ing appropriate genetic operators, GA can avoid terminating at local optimum,

which means the obtained result is the most optimal one globally. However, be-

cause GA is an undeterministic method, slightly different results might be obtained

for different runs.

In this dissertation, the reflection and transmission coefficents, which are defined

as the amount of incident wave which are reflected and transmitted, respectively,

are used to determine the performance of a floating breakwater. Hence these

parameters will be used as the fitness function. In order to obtain the reflection

and transmission coefficients of a floating breakwater, Boundary Element Method

(BEM) is employed. The BEM is based on the potential flow theory. It divides

the body surface into a large number of panels in which the velocity potentials are

to be determined. In 2D, the BEM is relatively an effective and fast numerical

computation method with good enough accuracy. Consequently, it is very ideal

and appropriate to combine it with GA which needs many iterations before an

optimal result can be obtained.
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After obtaining an optimal 2D model, the next step is to investigate the perfor-

mance of this shape in 3D case. It is expected that the performance will decrease

due to the so-called 3D wave effect. It is the effect due to the assumption that

the length of 2D body is infinite which is not the case for 3D analysis. For the 3D

analysis and computation, Higher Order Boundary Element Method (HOBEM)

will be used.

In HOBEM, the body surface is also divided into a large number of panels. Each

of these panels is represented by 9-node quadratic element. The velocity potentials

at nodal points are then obtained by solving integral equations. It is also assumed

that these velocity potentials are varied on these panels, so greater accuracy can be

obtained with less number of panels compared to direct constant panel method.

Using the velocity potentials and body motions, the wave elevation around the

body can be obtained and compared to 2D results. For practical consideration,

the analysis and computation of drift forces are also necessary. Moreover, a series

of numerical accuracy confirmation using the energy conservation and Haskind-

Newman relation is made to confirm the results.

1.2 Study Objectives and Organization

The main objective of this study is to obtain an optimal floating breakwater satis-

fying some criteria. In order to achieve this objective, the analysis will start with

2D case to simplify the problem. In 2D analysis, the optimization is performed by

using genetic algorithm (GA) combined with boundary elemenet method (BEM).

Even though accuracy of the computation is confirmed using several relations, it

is necessary also to confirm it by an experiment. Consequently, a real model is

manufactured and tested to check the real performance to be compared with com-

puted ones. The analysis and discussion will be separated in 2 cases which are

fixed and free-motion cases.
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After confirming the accuracy of both GA and BEM, the next step will be analysing

the performance of obtained model in 3D case. In this case, higher order boundary

element method (HOBEM) is used. The same relations are used to confirm the

accuracy of computations. The perfomance difference and 3D wave effect are pre-

sented and discussed. Moreover, drift forces are also computed for real installation

consideration especially for body mooring.

In order to achieve the objective, the problem and solution procedure in this

study needs to be arranged. The first chapter gives introduction and overview

of the problem, motivation and objectives. In chapter 2, theoretical background

of both GA and BEM are explained which is followed by presenting about the

experiment used to compare and confirm the numerical results of BEM in chapter

3. In chapter 4, a comprehensive analysis and optimization results in 2D case

will be explained, and then in chapter 5, the theoretical background of HOBEM

analysis and computation results are described including discussion on its results.

Finally, chapter 6 will summarize and conclude the results of the study.



Chapter 2

Theory of 2D Optimization

Method

As the first step of design process, a model shape with an optimal performance

should be obtained. For this purpose, Genetic Algorithm (GA) and Boundary

Element Method (BEM) will be used as the main calculation methods. This

chapter will explain the basic theory of these 2 main calculation methods.

2.1 Genetic Algorithm (GA)

2.1.1 Algorithm Principle

Genetic Algorithm is a general search and optimisation method based on the

nature principle which is survival of the fittest or also known as natural selection.

It is a part of evolutionary computing which has been widely studied and applied

in many fields in engineering because many of the engineering problems involve

finding optimal parameters, which might prove difficult for traditional methods

but ideal for GA.

5
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The main principle of GA is to mimic processes in the evolution theory. For a given

specific problem to solve, a set of initial possible solutions inside a certain domain

called search space, is randomly chosen. This set of solutions is called population

which consists of certain number of individuals. Each individual is encoded in

certain ways to construct a chromosome. A chromosome consists of certain number

of genes. A gene represents a particular characteristic of an individual. The length

and structures of a gene and chromosome depend on the type of encoding that is

chosen.

By chance, some individuals are chosen to be mated or modified by genetic op-

erators to obtain their offsprings. These offsprings are quantitatively evaluated

using a metric called fitness function. GA will choose candidates for the next

round based on the individual fitness using probabilistic function so that promis-

ing candidate will have higher probability to be chosen. Random changes are again

introduced using genetic operators to obtain offsprings. These offspring then go

on to the next generation, forming a new population to replace the old population.

Consequently, those individuals which were worsened, or made no better, by the

changes to their fitness will not be chosen by chance; but again, purely by chance,

the random variations introduced into the population may have improved some

individuals, making them into better, more complete or more efficient solutions to

the problem.

The expectation is that the average fitness of the population will increase each

round, and so by repeating this process for hundreds or thousands of rounds, very

good solutions to the problem can be discovered. This process can be seen in Fig.

2.1.
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Figure 2.1: Workflow of GA

2.1.2 Encoding and Decoding

Before starting applying genetic operators to the chromosome of each individual,

the representation of chromosome or genes of each individual needs to be encoded.

There are some types of encoding such as binary encoding, value encoding, per-

mutation encoding, and tree encoding. The type of encoding to be used depends

on type of the problem to solve. In this study, binary encoding will be used. This

encoding is the most common one to be used. In this encoding, each gene is rep-

resented by a string of 0s and 1s, where the digit at each position represents the

value of some characteristics of the solution. The length of the string depends on

the accuracy required. In general, we can say that if a variable is coded using m

bits, the accuracy is approximately given as

xU − xL

2m
(2.1)
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where xU and xL are the highest and lowest values of the variable. An example

of chromosomes with 4 genes where each gene is represented by 6 bits is shown in

Fig. 2.2.

Figure 2.2: Example of chromosomes and genes

In this study, the gene string length will be 8 bits (m = 8) which means that each

real number will be represented by 8 1s and/or 0s.

After encoding and modification by genetic operators, the chromosome will be

decoded using the formula

(decimal value)i =

mi−1
∑

j=0

2j�j (2.2)

where �j denotes the bit values of i−th gene and mi is the binary length of the

gene. Decoding will transform binary numbers to real numbers which can be

interpereted and computed by BEM.

2.1.3 Genetic Operators

Besides encoding, it is also necessary to define the genetic operators that will be

implemented. The following genetic operators are applied in this study.

∙ Selection (reproduction) is the process of choosing parents for mating. The

basic part of the selection process is to stochastically select from one popu-

lation to create the basis of the next population by requiring that the fittest

individuals have a greater chance of survival than weaker ones. There are
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some methods of choosing individual to be parents such as roulette wheel

selection, rank selection, steady state selection, etc. In this study, roulette

wheel selection method is used. In this method, a random number is thrown

and multipled by total fitness of all individuals in the population. The indi-

vidual fitnesses are added together until the sum is greater than or equal to

the product. The last individual to be added is the selected individual.

∙ Crossover is used to interchange limited parts of parents. The parents

will be decided to undergo crossover or not based on crossover probability

(Pc). Crossover method is separated into several types such as single point

crossover, two points crossover, uniform crossover and arithmetic crossover.

In this study, single point crossover will be used. In this crossover, only

one point in the choromosome is selected for crossover. Binary string from

beginning of chromosome to the crossover point is copied from one parent,

the rest is copied from another parent.

∙ Mutation is used to flip the value of each bits of an individual. It is decided

to apply mutation based on mutation probability (Pm). Mutation is used to

introduce new characters into search space. It could guarantee the diversity

of characteritics of population.

∙ Elitism is copying the fittest member of previous population if the maximum

fitness of the new population is lower than this fittest member. It could

guarantee the fittest individual is always copied to the next generation.

Besides some basic genetic operators above, there are still many more complex

genetic operators which can be implemented if necessary. More detail about basic

theory and application of GA can be found in for example Coley [6], Sivandam

and Deepa [7], and Renner and Ekart [8].
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2.1.4 Shape Parameterization

For easy remeshing and feasibility of a real model construction, the body surface

is divided into two parts which are left and right parts as shown in Fig. 2.3. The

bottom part will be just a straight line connecting these parts.

Figure 2.3: Body surface division

In each of divided body parts, the body surface will be represented by a Bezier

curve which means that a complete body shape will consist of 2 Bezier curves and

one straight line at the bottom. By using the Bezier curve, the boundary of body

surface can be controlled easily using control points because the curvature of Bezier

curve will never leave the bounding polygon formed by the control points. An

example of shape representation using a Bezier curve for optimization is performed

by Marco and Lanteri [9]. Fig. 2.4 shows an example of a bezier curve with 4

control points.

Figure 2.4: Bezier Curve
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A Bezier curve of order n is defined by the Bernstein polynomials Bn,j as follows:

B(t) =

n
∑

i=0

B(n,i)Pi (2.3)

with

B(n,i) = C i
nt

i(1− t)(n−1), C i
n =

n!

i!(n− i)!
(2.4)

where t ∈ [0, 1] and Pi = (xi, yi) are the coordinates of the control points. The

coordinates of the body surface can be defined as

x(t) =

n
∑

i=0

C i
nt

i(1− t)(n−i)xi , (2.5)

y(t) =

n
∑

i=0

C i
nt

i(1− t)(n−i)yi (2.6)

For each of left and right parts, a Bezier curve should be defined. On each part of

the body, the values of yi ∈ [0, 1] are fixed and the only parameters that vary are

the ordinates xi. Consequently, the chromosome is in the form

chromosome = (x1, ..., x8, x9, ..., x16) (2.7)

Each gene in this chromosome acts as a control point to draw the body surface.

In Eq. (2.7), the 8 first genes represent control points for the left side of the body

surface and the 8 last genes represent the control points for the right side of the

body surface. The drawn body surface is then discretized into a certain number

of panels, with which hydrodynamic computations can be performed using BEM

to obtain the fitness, known as perfomance index (PI) in the present study.
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2.1.5 Fitness Function

In order to evaluate the performance of a floating breakwater and convergence

of the calculation, the fitness measurement method needs to be defined. In the

present study, there are 2 criteria which are used as fitness parameters which are

Performance Index (PI) and Longest WaveLength (LWL). PI is defined as the

area above the transmission-wave coefficient curve. As seen in Fig. 2.5, higher PI

means low transmission, hence higher performance as a floating breakwater.

Figure 2.5: Definition of fitness

PI can be easily obtained by finding the area above the transmission coefficient

curve using Simpson’s integration method. Because the maximum nondimensional

value of the transmission coefficient is equal to 1.0, then the maximum value of PI

equals to Max wavelength - Min wavelength.

Another criterion or LWL is defined as the longest wavelength at which the body

could transmit only 40% of incident wave at maximum. As also can be seen in Fig

2.5, LWL is also can be computed from wave transmission curve.



Chapter 2. Theory of 2D Optimization Method 13

2.2 2D Boundary Element Method

This section will explain the Boundary Element Method (BEM) which is used to

compute the reflection and transmission coefficients or the fitness function. The

analysis will be in 2D case.

2.2.1 Boundary Conditions

In order to derive the boundary conditions, two coordinate systems are used which

are the space-fixed coordinate system (O − xy) and the body-fixed coordinate

system (Ō − x̄ȳ) as shown in the Fig. 2.6

Figure 2.6: 2D coordinate systems

The body-motion amplitudes are assumed to be small. Their amplitudes around

origin O expressed using complex amplitude notations can be written as

sway : Re[Xei!t] ≡ Re[X2e
i!t]

heave : Re[Y ei!t] ≡ Re[X3e
i!t]

roll : Re[Θei!t] ≡ Re[X4e
i!t]

⎫







⎬







⎭

(2.8)
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If we define the reference point r = (x, y) and r̄ = (x̄, ȳ), the relation between

these points are

r̄ = r −�ei!t

� = i(X2 −X4y) + j(X3 +X4x) = iX2 + jX3 + kX4 × r

⎫

⎬

⎭

(2.9)

By assuming the normal vector is positive facing outward the object, the body

surface in the body-fixed coordinate system is

F (x̄, ȳ) = ȳ − f(x̄) = 0 (2.10)

If we define Φ as a scalar satisfying the Laplace equation ∇2Φ = 0, which is known

as the velocity potential, we can implement the kinematic boundary condition

which states that the fluid and body-surface velocities in the direction normal to

the body surface should be identical or in other words, the substantial derivative

should be equal to zero. Using Eq. (2.10), we have

DF

Dt
=

(

∂

∂t
+∇Φ ⋅ ∇

)

F = 0

=
∂F

∂x̄

∂x̄

∂t
+

∂F

∂ȳ

∂ȳ

∂t

+∇Φ

[

i

(

∂F

∂x̄

∂x̄

∂x
+

∂F

∂ȳ

∂ȳ

∂x

)

+ j

(

∂F

∂x̄

∂x̄

∂y
+

∂F

∂ȳ

∂ȳ

∂y

)]

= 0(2.11)

Therefore

− i!�ei!t ⋅ ∇F +∇�ei!t
[

∇F − i
∂�

∂x
ei!t∇F − j

∂�

∂y
ei!t∇F

]

= 0 (2.12)

where ∇ is the operator of derivative with respect to (x̄, ȳ). Higher order terms

due to distinction between the space-fixed and body-fixed coordinate systems can

be eliminated in the linear theory so that (x, y) and (x, y) shall be considered the
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same. As a result, Eq. (2.12) can now be shown as

∇� ⋅ ∇F = i!� ⋅ ∇F (2.13)

We know the normal vector is defined by n =
∇F

∣∇F ∣
. Therefore, Eq. (2.13) will

be

∇� ⋅ n = i!� ⋅ n = i! {n2(X2 −X4y) + n3(X3 +X4x)} , (2.14)

which can be rewritten as

∂�

∂n
=

4
∑

j=2

i!Xjnj (2.15)

where

n2 = nx =
∂x

∂n
, n3 = ny =

∂y

∂n

n4 = n3x− n2y (x2 = x, x3 = y)

⎫

⎬

⎭

(2.16)

The body motions are caused by the incident wave, so in order to satisfy the

boundary condition as in Eq. (2.15), the velocity potentials can be separated as

� = �0 + �2 + �3 + �4 + �7 ≡
g�a
i!

('0 + '7) +

4
∑

j=2

i!Xj'j, (2.17)

where each component must satisfy the following body boundary conditions

∂

∂n
('0 + '7) = 0 (2.18)

∂

∂n
'j = nj (j = 2, 3, 4) (2.19)

Here �0 is the incident wave potential and �7 is called the scattered wave potential,

the sum of these �0 + �7 = �D is called the diffraction potential. Furthermore, �j

is called the radiation potential which is caused by oscillating body in still fluid

where j denotes the mode of motion (j = 2 is sway, j = 3 is heave, and j = 4 is
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roll) as written in Eq. (2.8) and nj (j = 2 ∼ 4) denotes the j-th component of the

normal vector as shown in Eq. (2.16).

2.2.2 Boundary Integral Equation and Green Function

Assuming an asymmetric body floating where the incident wave is coming from

positive x-axis as shown in Fig. 2.7. The water depth is assumed to be infinite.

Figure 2.7: Coordinate system for an asymmetric floating body

There are some numerical solutions available for this kind of problem, but the

present study will use boundary element method (BEM). The method will obtain

the velocity potentials by solving the following boundary integral equation (BIE)

C(P)�j(P) +

∫

SH

�j(Q)
∂

∂nQ

G(P;Q) ds(Q)

=

⎧





⎨





⎩

∫

SH

nj(Q)G(P;Q) ds(Q) (j = 2 ∼ 4)

�0(P) (j = D)

(2.20)

where P = (x, y) and Q = (�, �) denote the field and integration points, respec-

tively, located on the body surface SH and C(P) depends on the position of point

P. It is equal to 1/2 when P is on a smooth angle and 1 when P is in the fluid.

Furthermore, G(P;Q) represents the free-surface Green function in infinite water
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depth. Its form is written as

G(P;Q) =
1

2�
log

r

r1
−

1

�
lim
�→0

∫ ∞

0

e−ky cos kx

k − (K − i�)
dk

=
1

2�
log

r

r1
−

1

�
Re

[

e−KZE1(−KZ)
]

+ ie−KZ (2.21)

where

r

r1

⎫

⎬

⎭

=
√

(x− �)2 + (y ∓ �)2 Z = (y + �) + i∣x− �∣ (2.22)

and E1 should be interpreted as an integral exponential function with complex

variable. Derivation of Eq. (2.21) can be found in Wehausen and Laitone [10].

Here K is the wave number in infinite water depth of a progressive wave, satisfying

the following dispersion relation

K =
!2

g
(2.23)

For a floating body as shown in Fig. 2.7, the velocity potential has the following

form

�(x, y) =
g�a
i!

{

�D(x, y)−

4
∑

i=2

KXj�j(x, y)

}

≡
g�a
i!

'(x, y) (2.24)

where �a is the amplitude of incident wave and g is the acceleration of gravity.

Because we consider the case of infinite water depth and incident waves is coming

from positive x-axis, the incident wave potential takes the form

�0 =
g�a
i!

e−Ky+iKx (2.25)
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Substituting Eq. (2.21) into Eq. (2.20) with C(P) = 1 for the solid angle, the

asymptotic expression of the normalized velocity potential at x → ±∞ can be

obtained as follows

'(x, y) = �D(x, y)−KXj�j(x, y)

∼ e−Ky
[

eiKx + iH±
4 e

∓iKx − iKXjH
±
j e

∓iKx
]

(2.26)

Here the upper or lower sign in the double sign is taken according to whether

x → +∞ or −∞, respectively. H± is the Kochin function which has general form

as follow

H±(K) =

∫

SH

(

∂�

∂n
− �

∂

∂n

)

e−K�∓iK�ds(�, �) (2.27)

Separating the Kochin function into scattered (H±
7 ) and radiated (H±

j (j = 2 ∼ 4))

Kochin functions, their expressions can be defined explicitly as follows

H±
7 (K) = −

∫

SH

�D

∂

∂n
e−K�±iK�ds (2.28)

H±
j (K) =

∫

SH

(

∂�j

∂n
− �j

∂

∂n

)

e−K�±iK�ds for j = 2 ∼ 4 (2.29)

From the dynamic boundary condition, the free surface wave elevation can be

written as

� =
1

g

∂Φ

∂t
+O(Φ2) (2.30)

Rewriting (2.30) in terms of the Kochin function in (2.27) gives

�(x, t) ∼ Re[�(x)ei!t]

�(x) =
i!

g
�(x, 0) = −

!

g
H±(K)e∓iKx as x → ±∞ (2.31)
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The interaction between wave and body is actually a complex phenomenon. How-

ever, from linear-theory point of view, the real problem can be separated into the

radiation and diffraction problems which implies that the Kochin function can also

be separated into diffraction and radiation components. Substituting the velocity

potential in Eq. (2.17) into the Kochin function in Eq. (2.27) gives

H±(K) =
g�a
i!

H7(K)±+i!

4
∑

j=2

XjH
±
j (K) =

g�a
i!

{

H±
7 (K)−K

4
∑

j=2

(

Xj

�a

)

H±
j (K)

}

(2.32)

Substituting (2.32) into (2.31) to obtain the free surface elevation in terms of the

Kochin function, we have

�(x) ∼ −
!

g

{

g�a
i!

H±
7 (K) + i!

4
∑

j=2

XjH
±
j (K)

}

e∓iKx

= {i�aH
±
7 (K)− iK

4
∑

j=2

XjH
±
j (K)}e∓iKx as x → ±∞ (2.33)

which has a general form

�(x, t) = Re[�(x)ei!t] ≡ Re

[

4
∑

j=2

�±j e
i(!t∓Kx) + �±7 e

i(!t∓Kx)

]

(2.34)

where

�±j = −iKXjH
±
j (K) radiation wave (j = 2 ∼ 4) (2.35)

�±7 = i�aH
±
7 (K) scattered wave (2.36)

2.2.3 Hydrodynamics Forces

In order to determine the body motions, the hydrodynamic forces need to be

computed. Because the force is a result of integration of the pressure, the pressure
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equation taken from Bernoulli’s equation is firstly linearized as

P (x, y, t) = −�
∂�

∂t
+ �gy +O(�2) (2.37)

The pressure on an oscillating body in wave consists of 3 parts which are the

hydrostatic, radiation, and diffraction parts. Those parts are expressed as follows

:

P (x, y, t) = Re
[

p(x, y)ei!t
]

p(x, y) = ps(x, y) + pr(x, y) + pd(x, y)

⎫

⎬

⎭

(2.38)

where

ps(x, y) = �g(X3 +X4x) (2.39)

pr(x, y) = −�i!
4

∑

j=2

i!Xj'j(x, y) (2.40)

pd(x, y) = −�i!
g�a
i!

('0 + '7) = −�ga('0 + '7) (2.41)

In this case, the normal vector is defined to be positive when pointing into the

fluid as stated before. For the radiation case, the hydrodynamic force due to the

radiation part acting in the i-direction is computed by

Fi = −

∫

SH

pr(x, y)nids = �(i!)2
4

∑

j=2

Xj

∫

SH

'j(x, y)nids ≡

4
∑

j=2

fij (2.42)

where

fij = �(i!)2Xj

∫

SH

{'jc + i'js}nids

= −(i!)2Xj

[

−�

∫

SH

'jcnids

]

− i!Xj

[

�!

∫

SH

'jsnids

]

(2.43)
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The term in the first braces is Aij (added mass) and in the second braces is Bij

(damping force). Together with time dependent term ei!t for simplicity, added

mass Aij is proportional to the acceleration (i!)2Xje
i!t and the damping coeffi-

cient Bij is proportional to the velocity i!Xje
i!t. By extracting the body-motion

amplitude Xj from these quantities, we can obtain the transfer function Tij as

follows

fij = TijXj = −(i!)2
{

Aij +
1

i!
Bij

}

Xj (2.44)

where

Tij = (i!)2�

∫

SH

'jnids = (i!)2�

∫

SH

'j

∂'i

∂n
ds (2.45)

For the diffraction case, the hydrodynamic force to be computed from Eq. (2.41)

is given as follows

Ei = −

∫

SH

pd(x, y)nids = �g�a

∫

SH

{'0(x, y) + '7(x, y)}nids (2.46)

Eq. (2.46) is called the wave-exciting force, and particularly the force component

related to the incident wave is called Froude-Krylov force. However, practical

numerical computation is performed in nondimensional unit by using maximum

half breadth b = B/2 as the characteristic length. Therefore, the added mass and

damping coefficients from Eq. (2.43) and wave-excitating force from Eq. (2.46)

should be nondimensionalized as follows

A′
ij − iB′

ij =
Aij

�b2�i�j
− i

Bij

�!b2�i�j

E ′
i =

Ei

�g�ab�i

⎫





⎬





⎭

(2.47)

For �j , when j = 2 and 3 then �j = 1 and when j = 4 then �j = b.

For the hydrostatic part, we can get the final formulae using line integral of Eq.

(2.39) as before but for simplicity, Gauss’ theorem will be used here. As we know
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that the hydrostatic force acts only in the vertical direction which means that the

contribution only exists in heave and roll. The general formula of the force is

Si = −

∫

SH

psnids = −�g

∫

SH

{X3 + xX4}nids (2.48)

The hydrodynamic force and moment must also be evaluated about the center of

gravity G in considering the equations of body motion which will be described in

the next subsection.

2.2.4 Equation of Motions

After computing the hydrodynamic forces, we need to solve the equations of motion

of the floating body. In the subsection 2.2.1, we take the origin on the still water

surface, but we need to make the center of gravity G as the reference point. In

asymmetric body case as shown in Fig. 2.8 as an example, the position of center

of gravity G will not be in the centerline.

Figure 2.8: Coordinate system and notations of asymmetric body

Therefore, by denoting the distance of the center of gravity G in the positive y-axis

(perpendicular downward) as yg and in the positive x-axis as xg, the relation of
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motion amplitudes between these two origin points is shown as

X2 = XG
2 + ygX

G
4 , X3 = XG

3 − xgX
G
4 , X4 = XG

4 (2.49)

The body boundary condition in Eq. (2.19) and normal vectors about G are

∂�G
j

∂n
= nG

j (j = 2 ∼ 4) (2.50)

nG
j = nj for (j = 2, 3)

nG
4 = n4 − xgny + ygnx

⎫



⎬



⎭

(2.51)

Thus the velocity potentials about G can be written as follows

�G
j = �j for (j = 2, 3)

�G
4 = �4 − xg�3 + yg�2

⎫



⎬



⎭

(2.52)

Using Eq. (2.51) and Eq. (2.52), we can write the hydrodynamic forces acting on

the center of gravity using transform function Tij , which is already defined in Eq.

(2.45), as follows

∙ when i and j is 2 or 3

TG
ij = Tij (2.53)

∙ when j is 4 and i is 2 or 3

TG
i4 = Ti4 − xgTi3 + ygTi2 (2.54)

∙ when i is 4 and j is 2 or 3

TG
4j = T4j − xgT3j + ygT2j (2.55)
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∙ when i and j are 4

TG
44 = T44 − xgT43 + ygT42 − xgT34 + ygT24 (2.56)

Similarly, the conversion of the wave exciting force is as follows

∙ when i is 2 or 3

EG
i = Ei (2.57)

∙ when i is 4

EG
4 = E4 − xgE3 + ygE2 (2.58)

As stated before, the hydrostatic force and moment also need to be converted.

The general formula in Eq. (2.48) can be converted to be

SG
i = −�g

∫

SH

{

XG
3 + (x− xg)X

G
4

}

nG
i ds (2.59)

where in nondimensional form can be written as

SG
i = −�g�a�i

[

XG
3

�a

∫

SH

nG
i ds+

XG
4 b

�a

∫

SH

(x− xg)n
G
i ds

]

(2.60)

The restoring force in heave can be obtained as

SG
3 = −�g�ab

[

XG
3

�a

∫

SH

n3ds+
XG

4 b

�a

∫

SH

(x− xg)n3ds

]

(2.61)

and in roll as

SG
4 = −�g�ab

2

[

XG
3

�a

∫

SH

{(x− xg)ny − (y − yg)nx} ds

+
XG

4 b

�a

∫

SH

(x− xg) {(x− xgny − (y − yg)nx} ds

]

(2.62)
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Using restoring force term Cij, they can be shown as

SG
i = −�g�ab�i

[

XG
3

�a
Ci3 +

XG
4 b

�a
Ci4

]

(2.63)

where

C33 =

∫

SH

n3ds =

∫ xa

xb

dx = xa − xb = B (2.64)

C34 =

∫

SH

(x− xg)n3ds =

∫ xa

xb

(x− xg)dx

=
1

2
(x2

a − x2
b)− xg(xa − xb) = B(xF − xg) (2.65)

C43 =

∫

SH

{(x− xg)ny − (y − yg)nx} ds

=

∫ xa

xb

(x− xg)dx = B(xF − xg) = C34 (2.66)

C44 =

∫

SH

(x− xg) {(x− xg)ny − (y − yg)nx} ds

=

∫ xa

xb

(x− xg)
2dx−

∫ ∫

(y − yg)dxdy

=
1

3
(x3

a − x3
b)− xg(x

2
a − x2

b) + x2
g(xa − xb)− V yB + V yg

= ∇(yg − yB) +B

(

x2
g − 2xgxF +

1

3
(x2

a + xaxb + x2
b)

)

(2.67)

where B is the breadth of the body in the water plane, ∇ the displacement volume,

xa and xb the horisontal distances from the origin in the water plane to positive

and negative x-axes, respectively as shown in Fig. 2.8.

Summarizing the results above, we can write

Fi = −

∫

SH

(pd + pr + Ps)n
G
i ds ≡ �g�ab�iF

G
i (2.68)
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where

FG
i = EG

i +Kb
4

∑

j=2

XG
j �j

�a
TG
ij −

4
∑

j=3

XG
j �j

�a
Cij (2.69)

Using the hydrodynamic and the restoring forces above, we can establish the

equation of motions as follows

− !2
4

∑

j=2

XG
j mij�ij = Fi for (i = 2 ∼ 4) (2.70)

where �ij is the Kronecker’s delta and the mass is

mjj =

⎧

⎨

⎩

�∇ for (j = 2, 3)

�∇k2 for (j = 4)
(2.71)

where k is the gyrational radius. Substituting Eq. (2.68) into Eq. (2.70), we can

write

−!2

4
∑

j=2

XG
j mij�ij = �g�ab�iF

G
i (2.72)

−Kb

4
∑

j=2

XG
j �j

�a

(

mij

�b2�i�j

)

�ij = FG
i (2.73)

or in another form as

4
∑

j=2

XG
j �j

�a

{

−Kb
(

Mij�ij + TG
ij

)

+ Cij

}

= EG
i (i = 2 ∼ 4) (2.74)

where the nondimensionalized mass Mij is

Mij =
mij

�b2�i�j
(2.75)
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Other variables used in above equations are dimensionalized as follows

k′ =
k

b
, x′

g =
xg

b
, y′g =

yg
b
, Z ′

ij = A′
ij − iB′

ij ,

C ′
33 =

C33

�gb
=

B

b
, C ′

34 =
C34

�gb2
,

C ′
43 =

C43

�gb2
, C ′

44 =
C44

�gb3
= M

GM

b

⎫















⎬















⎭

(2.76)

Using Eq. (2.49), the reference of the body motion amplitudes obtained by solving

Eq. (2.74) are transformed to origin O and then will be used to compute the

reflection and transmission coefficients as will be explained in the next subsection.

2.2.5 Reflection and Transmission Coefficient

Following the assumption of an asymmetric floating body with the incident wave

coming from positive x-axis as shown in Fig. 2.7, the reflected wave will propagate

with opposite direction to the incident wave (x → +∞), so from Eq. (2.33)

�R = i�aH
+
7 (K)− iK

4
∑

j=2

XjH
+
j (K) (2.77)

Using the incident wave amplitude to nondimensionalize Eq. (2.77), we obtain

CR ≡
�R
�a

= R− iK

4
∑

j=2

(

Xj

�a

)

H+
j (K) (2.78)

where

R = iH+
7 (K) (2.79)

R is the reflection coefficient when the body is fixed and CR is the corresponding

cofficient when the body is free to oscillate. For transmitted wave, it will propagate
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to x → −∞ and is given as the sum of wave caused by the incident wave and body

oscillation as follows

�T = �a
{

1 + iH−
7 (K)

}

− iK
4

∑

j=2

XjH
−
j (K) (2.80)

The nondimensional form can be written as

CT ≡
�T
�a

= T − iK

4
∑

j=2

(

Xj

�a

)

H−
j (K) (2.81)

where T is the transmitted coefficient when the body is fixed and CT is when the

body is free to oscillate in response to incoming incident wave. T is given as

T = 1 + iH−
7 (K) (2.82)

2.2.6 Numerical Calculation of Velocity Potentials

In order to obtain the solution numerically, Eq. (2.20) is multiplied by 2�, so that

with constant panel collocation method, we can write the following discretization

formula

��j(Pm) +

N
∑

n=1

�j(Qn)Dmn =

⎧





⎨





⎩

N
∑

n=1

nj(Qn)Smn (j = 2 ∼ 4)

2��0(Pm) (j = D)

⎫





⎬





⎭

(2.83)

where m = 1 ∼ N and the matrix coefficients are

Dmn =

∫

SH

∂

∂nQ

{

log
r

r1
− 2FC(x− �, y + �)

}

ds(�, �) (2.84)

Smn =

∫

SH

{

log
r

r1
− 2FC(x− �, y + �)

}

ds(�, �) (2.85)
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where FC(x− �, y+ �) is the regular part of the Green function. This regular part

has the following form

FC(x− �, y + �) = Re

∫ ∞

0

e−k(y+�)−ik∣x−�∣

k −K
dk − �ie−K(y+�) cosK(x− �) (2.86)

Solving Eq. (2.86) will lead us to the following equation

FC(x− �, y + �) = Re
[

e−ZE1(−Z)
]

− �ie−Z (2.87)

where E1 has the same definition as used in Eq. (2.21). Derivation and more

detail about Eq. (2.87) can be found in Kashiwagi et al. [11].

In order to get rid of the irregular frequencies when solving Eq. (2.83), the method

developed by Haraguchi and Ohmatsu [12] will be used. By considering the field

point on the free surface inside the body, the first term of left side ��j(Pm) which

will vanish. At this time, if the right side of Eq. (2.83) is symbolically expressed as

Rjm, and if we express �j(Qn) ≡ �n
j , then it will yield the simultaneous equations

as follows:
N
∑

n=1

Dmn�
n
j = Rjm (m = 1 ∼ N,N + 1, . . .M) (2.88)

where

Dmn =

⎧

⎨

⎩

��mn +Dmn (m = 1 ∼ N)

Dmn (m = N + 1 ∼ M)
(2.89)

On the free surface inside the floating body, field points Pm are taken as number

m = N +1, . . .M . Because the number of equations M is larger than the number

of unknown N , this simultaneous equations will be solved using the least-square

method. For that purpose, we write the least-square method as

E =
M
∑

m=1

[

N
∑

n=1

Dmn�
n
j − Rjm

]2

(2.90)
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The condition for minimizing the error E defined above is ∂E/∂�k
j = 0 (k =

1, 2, ...N), thus we can obtain

N
∑

n=1

{

M
∑

m=1

DmnDmk

}

�n
j =

M
∑

m=1

RjmDmk for k = 1 ∼ N (2.91)

Now, there are N numbers of unknowns and N dimension of simultaneous equa-

tions. We can solve these equations using the general method such as the Gauss

elimination method so that we can obtain the final velocity potentials on the body

surface of floating body. Once the velocity potentials on the body surface are

determined, it is straightforward to compute the hydrodynamic forces using Eqs.

(2.43) and (2.46).



Chapter 3

Model Experiment

3.1 Introduction

In order to confirm correctness and accuracy of present analysis and numerical

results, an experiment is conducted at the 2D wave channel at Department of

Naval Architecture & Ocean Engineering, Osaka University. The tested model

used in experiment is an an asymmetric body which has a shape shown in Fig.

3.1 together with notations used in the analysis.

Figure 3.1: Shape, notations and coordinate system of tested model

31
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Since the experiment aims to validate the numerical analysis for general body

shapes especially for an asymmetric one, the shape of tested body was determined

as shown in Fig. 3.1. This shape represents an asymmetric case because the

submerged area in the right side is significantly larger than that in the left side,

which means the horizontal shift in the center of buoyancy is also significant. As

a result, the asymmetric effects could be realized with this shape.

The dimensions of the model based on the notations in Fig. 3.1 are shown in Table

3.1 including some of its geometrical parameters. Half of maximum breath (b) is

used as the representative length for nondimensionalization. The dimensions of

the model for manufacturing were determined by considering the dimensions of

the wave channel.

Table 3.1: Tested model dimensions

Parameters Dimensional (m) Nondimensional
Height (H) 0.34 1.36

Half of max breadth (b) 0.25 1.0
Draft (d) 0.25 1.0
Length (L) 0.297 1.188

Center of gravity (OG) 0.1166 0.4664
Roll of gyrational radius (KZZ) 0.1365 0.546
Center of buoyancy-x (OBx) 0.0415 0.166
Center of buoyancy-y (OBy) 0.128 0.512

3.2 Manufactured Model

The tested model is ordered and manufactured at a specific company to guaran-

tee its geometrical precision and wood is used as the material to acquire enough

strength. Photos of the model after manufacturing are shown in Fig. 3.2.
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(a) (b)

Figure 3.2: Manufactured model used in the experiment

In order to align the waterline with water surface at the water channel, some

weights are placed and adjusted inside the model. However, because of these

weights adjustment, the geometrical parameters which are needed in numerical

computation such as roll gyrational radius (KZZ) and metacentric height (GM)

will obviously change. As shown in Fig. 3.1, the space for weights is very limited

so it is quite difficult to freely adjust the weight to obtain desired KZZ and GM .

As a consequent, the results obtained from this experiment may not represent the

maximum performance of the model.

3.3 Experiment Preparation

Before conducting the experiment, the geometrical data of the model needs to

be known as input in numerical computation. These data are the roll gyrational

radius (KZZ) and metacentric height (GM). In order to obtain these data, an

oscillation table as shown in Fig. 3.3 is used to obtain the center of gravity (OG)

and the moment of inertia (I) of the model.
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Figure 3.3: Oscillation table

The value of KZZ and GM can be determined easily after obtaining OG and I.

The obtained data which are also used in numerical computation, are shown in

Table 3.1.

3.4 2D Water Channel

The wave channel at Osaka University is shown in Fig. 3.4(a). This wave channel

is equipped with piston type wave maker as shown in Fig. 3.4(b). The particular

dimension of the channel are shown in Table 3.2.

Table 3.2: Particular Dimension of Wave Channel

Parameters Value (m)
Length 14.00
Breadth 0.35
Height 0.70

The water depth used in the experiment is 0.53 m which would be appropriate to

satisfy the infinite water assumption used in the numerical analysis.
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(a) (b)

Figure 3.4: Wave channel

3.5 Experiment Setup

The main objective of the experiment is to measure the body motions and trans-

mitted wave amplitude. For measuring the wave amplitude, three capacitance-type

wave probes are used, while potentiometers installed inside the model to measure

the heave and roll motions. The sway motion is measured using laser-type distance

probe placed on the guide rail of wave channel near the body. The position of the

wave probes and other settings of the experiment are shown in Fig. 3.5.

Figure 3.5: Experiment setting

Following the assumption used in the mathematical formulation, the incident wave

is set to be coming from positive x-axis. The experiment is divided into two cases

which are :
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(1) the diffraction case : the body is fixed, no body motions are allowed.

(2) the motion-free case : the body oscillates freely in sway, heave and roll motions.

In this experiment, the important data that need to be measured are the trans-

mitted wave amplitude and body motions. The transmitted wave is measured at

wave probe 3 in Fig. 3.5 and body motion amplitudes are measured at the center

of the body. These data are nondimensionalized using incident-wave amplitude

measured at wave probe 1. The incident waves are measured at the beginning of

incoming waves before this wave is mixed with reflected wave coming back from

the body.

3.6 Results and Analysis

The obtained data are collected and analyzed. The obtained geometrical data are

used to produce the results of numerical analysis which will be used to compare

with the experimental ones. Following the numerical analysis, the experiment is

also conducted for two cases which are fixed-motion and free-motion cases.

a. Fixed-Motion Case

The results of the fixed-motion case are shown in Fig. 3.6 for the ampli-

tude of transmission wave. In this figure, an acceptable agreement can be

observed between measured and numerical results. Slight discrepancy may

be attributed to geometrical nonlinearity near the free surface. This result

can be considered as a preliminary validation of the analysis.
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Figure 3.6: Transmission coefficent in fixed-motion case

b. Free-Motion Case

For the second case, which is more important in this study, the body motions

are set free in sway, heave, and roll. The results of body motions are shown

in Fig. 3.7(a), (b), and (c) for sway, heave, and roll motions, respectively.

In these figures, the phase of each motion is also shown.
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Figure 3.7: Motions amplitude and phase

In Fig. 3.7, it can be seen that the numerical results overpredict measured

values especially near the peak of roll amplitude which corresponds to the

natural frequency in roll. This discrepancy may be attributed to the effect

of viscous damping. Since the present study is based on the potential flow

theory, the viscous damping is not considered. Since the present model is

asymmetric, all modes of body motion are coupled. Thus we can see rapid

variation near the roll natural frequency even in sway and heave, which can

be observed in measured results especially in the phase of heave. From these

results, we can say that the agreement of the numerical results with measured

ones for body motions is also relatively good.

The results for transmitted waves are shown in the following Fig. 3.8
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Figure 3.8: Transmission coefficent in free-motion case

From Fig. 3.8, even though some discrepancies can be found especially in

short wavelength region, the overall trend seems to be acceptable. As a

result, we can conclude that the analysis method is reasonable and can be

incorporated in the GA optimization to compute the fitness function.





Chapter 4

Optimization Results Analysis

4.1 Parameters and Constraints

As a preliminary stage of GA optimization process, it is needed to determine some

parameters such as mutation probability (Pm) and crossover probability (Pc). In

order to understand the effect of these parameters and confirm correctness of the

results, computations are performed by varying these values.

Following the dimension of tested body, the draft/breadth ratio is set equal to

1.0. Other parameters used in this computation are shown in Table 4.1. It is also

important to note that the vertical position of the center of gravity (OG) and the

roll gyrational radius (KZZ) are assumed and set to be constant in the entire

computation which are also shown in Table 4.1 as nondimensional values in terms

of half breadth (b). These values can be measured and adjusted later if necessary.

It is important to keep in mind that because GA is an undeterministic process,

there is always a possibility to find slightly different solutions for the same problem

with different run.

41
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Table 4.1: Parameters used in GA

Parameters Value

No. of population 30

Selection scheme Roulette wheel

Crossover scheme Single point

Other operator Ellitism

Minimum wavelength 0.2

Maximum wavelength 7.0

Maximum PI 6.8

Draft/Half breath ratio 1.0

OG/(B/2) 0.8

KZZ/(B/2) 0.6

An example of computed results is shown in Fig. 4.1 for the maximum fitness

(fmax) and average fitness (fave) of a GA computation when Pm =0 and Pc =0.5.

In this computation, the fitness function considered is only performance index

(PI).

Generation

P
I

50 100 150 200 250 300
2.5

3

3.5

4

4.5

fave

fmax

Figure 4.1: The average and maximum values of fitness (PI) in GA compu-
tation with Pm=0 and Pc=0.5
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From Fig. 4.1, we can observe that without mutation, the average fitness will

increase until the maximum fitness. This implies that in the GA computation, high

performance models will appear while poor performance models will decay. This

conclusion is consistent with the fundamental principle of GA which is survival of

the fittest. Furthermore, in order to know the effect of Pc, GA computations were

performed for different Pc with Pm=0.5 fixed. The computation results are shown

in Fig. 4.2.
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Figure 4.2: The average and maximum values of fitness (PI) in GA compu-
tation for Pm=0.5 and various values of Pc

From Fig. 4.2, we can see that setting higher Pc does not necessarily mean that

a high performance model can be obtained. This is because higher Pc would

also mean higher probability of losing some of the best individuals from previous

generation.

Another important thing to note from this figure is that fave will not increase

because the mutation is included in the computation. When the mutation is

included, the computation will mutate some individuals which could also include

mutating some good performance individuals to introduce new information or new

identities so that genetic diversity can be maintained in the population. Preserving
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the diversity can avoid the computation to terminate at a local optimum perfor-

mance. However, using a very large Pm can have disastrous effect on computed

results because mutating a large number of good performance models could make

the convergence slow. So the reasonable values of Pc and Pm will depend on the

encountered problem.

4.2 Results and Analysis

From the computation results in Figs. 4.1 and 4.2, we can see the consistency

of the results with the fundamental theory of GA. Consequently, we can say that

GA has been successfully implemented for the model shape optimization combined

with BEM. By considering preliminary results, a computation is performed with

Pc=0.6 and Pm=0.5. The number of population in each generation is also increased

to be 40 for a faster convergence. All other data used are the same as shown in

Table 4.1. Moreover, another criterion defined in Chapter 2 which is LWL, is also

imposed in this computation.
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Figure 4.3: fmax and LWL of simulation with additional criteria
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Computed results with these criteria are shown in Fig. 4.3. The computation

is judged to be converged when there is no further fitness improvement for more

than 100 generations. In Fig. 4.3, we can notice that even though the operator

elitism is used, the value of fmax reduces at certain points. This is because the

criterion of transmitting maximum 40% of incident wave at LWL is superior to

having higher performance index (PI). Besides that, we can also see that the

final fmax is slightly lower than that in the previous computation shown in Fig.

4.2 which is a consequence of implementation of the additional criteria. In order

to see the process of GA to obtain the optimal model, the fittest model and its

performance in some particular generations obtained in Fig. 4.3 are shown in Fig.

4.4 below.
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Figure 4.4: Fittest model and its performance in some particular generations

The generations shown in Fig. 4.4 are the ones where the performance improve-

ments are obtained based on the result in Fig. 4.3. We can see from Fig. 4.4

that as the number of computations increases, obtained LWL will also increase,

which shows the ability of GA to find other best shapes satisfying defined criteria

when the computation is continued for next generations until the computation

converges.

As shown in Fig. 4.4(d), the optimal model is obtained in the 256th generation.

However, at the bottom part of the obtained body, a sharp edge in left and right

sides can be seen. Considering the practical and construction requirements, this
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edge should be modified to be blunt. The shape of the model after modification

is shown in Fig. 4.5.

Figure 4.5: Modified final shape for the model

Since the modification of the body shape may affect the performance, it is needed

to adjust the resonant frequency of the model to keep the performance satisfying

the defined criteria by adjusting the center of gravity (OG) and the roll gyrational

radius (KZZ). For this purpose, OG is set equal to 0.82 and KZZ is set equal to

0.614 in nondimensional value.
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A comparison of the performance between the modified final and rectangular mod-

els can be seen in Fig. 4.6, from which an obvious improvement of the performance

can be seen except in a very long wavelength region. In this region, it needs a

larger draft over breadth ratio (deeper body dimension) to attenuate the trans-

mitted wave. The geometrical data used to compute for the rectangular shape are

the same as those used for the modified final shape.

Furthermore, it can also be noted from Fig. 4.6 that the performance of modified

final model in terms of PI and LWL slightly increases compared to the original

one. Moreover, high performance model could be obtained by adjusting nicely the

position of waveless frequencies (where the transmission wave becomes zero) to

maximize the results. For comparison to 3D computation results, the reflection

and transmission coefficients for fixed-motions case are shown in Fig. 4.7 and its

motion amplitudes are shown in Fig. 4.8
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Chapter 5

3D Performance Analysis

In order to investigate the actual performance of an optimized 2D floating breakwa-

ter model which is previously obtained by genetic algorithm (GA) in the previous

section, the performance and characteristics in terms of reflection and transmis-

sion coefficients of the corresponding 3D model of this shape are computed and

analyzed. Different assumption used in formulation of 2D and 3D analysis will

obviously lead to different computation results. However, by extending the length

of model in 3D analysis, the similar trend of performance to 2D analysis can be

obtained and the effect of the so-called 3D wave effect can be realized in both of

fixed and free-motion cases. For consideration of real construction of the model,

the drift force of the model is also computed. Higher order boundary element

method (HOBEM), which is based on the potential flow theory and uses quadri-

lateral panels, is used as the main computation method. The accuracy of the

computation is confirmed by a series of numerical check using several relations

such as Haskind-Newman and energy relations.

51
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5.1 Solution Method

5.1.1 Mathematical Formulations

The present study is concerned with the development of floating breakwaters of

arbitrary shape with high performance in the wave reflection. However, consid-

ering realistic situations, the body shapes are assumed to be symmetric in the

longitudinal direction but can be asymmetric in general in the transverse direc-

tion. The coordinate system adopted is shown in Fig. 5.1, where the body shape

in the plane can be arbitrary but is assumed symmetric with respect to the x-axis.

Figure 5.1: Coordinate system in the 3D analysis

The origin of the coordinate system is placed at the center of the body and on

the undisturbed free surface, and the z-axis is taken positive vertically downward.

The water depth is assumed to be infinite. The regular wave is considered to be

incoming with incident angle � with respect to the x-axis as shown in Fig. 5.1.

Thus � = −90 degree means the beam wave incoming from the positive y-axis.

Under the assumption of incompressible and inviscid flow with irrotational mo-

tion, the velocity potential can be introduced, satisfying Laplace’s equation as the

governing equation. The boundary conditions are linearized and all oscillatory

quantities are assumed to be time-harmonic with circular frequency !. Applying
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superposition principle, the velocity potential can be expressed as a summation of

the incident-wave potential �0 and the disturbance potential � as follows:

Φ(x, y, z, t) = Re
[

{�0(x, y, z) + �(x, y, z)} ei!t
]

(5.1)

where �0 for infinite water depth case can be given explicitly as

�0(x, y, z) =
g�a
i!

e−Kz−iK(x cos �+y sin�) (5.2)

with g the acceleration of gravity, �a the amplitude of incident wave, and K the

wavenumber given by K = !2/g .

Furthermore the disturbance potential � can be decomposed in the following form

�(x, y, z) =
g�a
i!

[

�7(x, y, z)−K

6
∑

j=1

Xj

�a
�j(x, y, z)

]

(5.3)

where �7 denotes the scattering potential in the diffraction problem, and �j is the

radiation potential in the j-th mode of body motion with complex amplitude Xj

. In 3D problems, we consider six degrees of freedom in general as shown in Eq.

(5.3), but we will focus our attention in this paper on sway (j = 2), heave (j = 3

), and roll (j = 4) in following waves, because 3D effects will be discussed through

comparison with corresponding 2D results. For the diffraction problem, the sum

of �0+�7 is denoted as �D, which is referred to as the diffraction potential in this

study.
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The governing equation and boundary conditions to be satisfied can be summarized

as follows:

[L] ∇2�j = 0 for z ≥ 0 (5.4)

[F ]
∂�j

∂z
+K�j = 0 on z = 0 (5.5)

[H ]
∂�j

∂n
=

⎧

⎨

⎩

nj (j = 1 ∼ 6)

0 (j = D)
on SH (5.6)

[B]
∂�j

∂z
= 0 as z → ∞ (5.7)

and also an appropriate radiation condition of outgoing waves must be satisfied for

j = 1 ∼ 7. Here SH denotes the body wetted surface and nj the j-th component

of the normal vector, defined as positive when directing out of the body and into

the fluid. These normal vectors are written as follows

n1 = nx, n2 = ny, n3 = nz

n4 = ynz − zny, n5 = znz − xnz, n6 = xny − yn1

⎫



⎬



⎭

(5.8)

Assuming the position of the center of gravity G is denoted by (xg, yg, zg), the

body boundary condition in radiation case and normal vectors with respect to G

for general body case can be written as

∂�G
j

∂n
= nG

j (5.9)

nG
j = nj for j = 1 ∼ 3

nG
4 = (y − yg)nz − (z − zg)ny = n4 − ygn3 + zgn2

nG
5 = (z − zg)nx − (x− xg)nz = n5 − zgn1 + xgn3

nG
6 = (x− xg)ny − (y − yg)nx = n6 − xgn2 + ygn1

⎫



















⎬



















⎭

(5.10)
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So the radiation potential can be transformed as follows

�G
j = �j for j = 1 ∼ 3

�G
4 = �4 − yg�3 + zg�2

�G
5 = �5 − zg�1 + xg�3

�G
6 = �6 − xg�2 + yg�1

⎫



















⎬



















⎭

(5.11)

By using Green’s theorem, the governing differential equations of the present prob-

lem are turned into integral equations on the boundary. That boundary surface

can be only the body surface SH by introducing the free-surface Green function,

and the resulting integral equations can be written in the form

C(P)�j +

∫ ∫

SH

�j(Q)
∂

∂nQ
G(P;Q)dS(Q)

=

⎧



⎨



⎩

∫ ∫

SH

nj(Q)G(P;Q)dS(Q) j = 1 ∼ 6

�0(P) j = D

(5.12)

where C(P) is the solid angle, P = (x, y, z) is the field point, Q = (x′, y′, z′)

is the integration point on the body surface. G(P,Q) is the free-surface Green

function satisfying the linearized free-surface and radiation conditions, which can

be expressed as

G(P;Q) = −
1

4�

(

1

r
+

1

r1

)

−
K

2�
GW (R, z + z′) (5.13)

where

r

r1

⎫

⎬

⎭

=
√

(x− x′)2 + (y − y′)2 + (z ∓ z′)2 ≡
√

R2 + (z ∓ z′)2 (5.14)

GW (R, z) = −
2

�

∫ ∞

0

k sin kz +K cos kz

k2 +K2
K0(kR)dk − i�e−KzH

(2)
0 (KR) (5.15)
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Here K0(kR) denotes the second kind of modified Bessel function of zero-th order

and H
(2)
0 (KR) the second kind of Hankel function of zero-th order.

5.1.2 Higher-order Boundary Element Method (HOBEM)

In order to attain high accuracy, the integral equation shown above was numeri-

cally solved by the Higher-Order Boundary Element Method (HOBEM), described

in Kashiwagi [13]. The body surface is discretized into a number of quadrilateral

panels. According to the concept of iso-parametric representation, both body sur-

face and unknown velocity potential on each panel are represented with 9-point

quadratic shape functions Nk(�, �)(k = 1 ∼ 9) as follows:

(x, y, z)T =
9

∑

k=1

Nk(�, �)(xk, yk, zk)
T (5.16)

�(x, y, z) =
9

∑

k=1

Nk(�, �)�k (5.17)

where (xk, yk, zk) are local coordinates at 9-nodal points on a panel under consid-

eration, and likewise �k denotes the value of the velocity potential (which is to be

determined) at 9-nodal points of a panel.

The shape function in Eqs. (5.16) and (5.17) for a quadrilateral panel can be

expressed in the form

Nk =
1

4
�(� + �k)�(� + �k) for k = 1 ∼ 4

N5 =
1

2
�(� − 1)(1− �2), N6 =

1

2
�(� + 1)(1− �2)

N7 =
1

2
�(� + 1)(1− �2), N8 =

1

2
�(� − 1)(1− �2)

N9 = (1− �2)(1− �2)

⎫





















⎬





















⎭

(5.18)
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where index k denotes the local node number (k = 1 ∼ 9), as shown in Fig. 5.2.

1 2

34

5

6

7

8 9
ξ

η

η=+1

ξ
=
+
1

ξ
=
−
1

η=−1

transform

real panel ξ η plane

Figure 5.2: Quadrilateral 9-node Lagrangian element

The normal vector on the body surface (each panel) can be computed with differ-

entiation of the shape function as follows:

n =
a × b

∣a × b∣
, a =

(

∂x

∂�
,
∂y

∂�
,
∂z

∂�

)

, b =

(

∂x

∂�
,
∂y

∂�
,
∂z

∂�

)

(5.19)

Through a series of substitution, finally the bounday integral equations can be

recast in a series of algebraic equations for the velocity potentials at nodal points

consisting of panels. The results can be expressed in the form

Cm�m +
NT
∑

l=1

Dml�l =

⎧





⎨





⎩

N
∑

n=1

Sj
mn j = 1 ∼ 6, m = 1 ∼ NT

�0(Pm)

(5.20)

where

Dml =

∫ ∫

SH

Nk(�, �)
∂G(Pm; Q)

∂nQ

∣J(�, �)∣d�d� (5.21)

Sj
mn =

∫ ∫

SH

nj(Q)G(Pm; Q)∣J(�, �)∣d�d� (5.22)

and index n denotes the serial n-th panel, index m the global serial number of

nodal points, and l = (n, k) is also the serial number of nodal points associated
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with (to be computed from) the k-th local node within the n-th panel. ∣J(�, �)∣

in Eqs. (5.21) and (5.22) denotes the Jacobian in the variable transformation.

NT denotes the total number of nodal points and thus Eq. (5.20) is a linear

system of simultaneous equations with dimension of NT × NT for the unknown

velocity potentials at nodal points. The solid angle Cm in Eq. (5.20) is computed

numerically by considering the equi-potential condition that a uniform potential

applied over a closed domain produces no flux and thus zero normal velocities over

the entire boundary.

The free-surface Green function, given by Eq. (5.15), can be computed efficiently

by combining several expressions such as the power series, asymptotic expansions,

and recursion formulae; its subroutine is available in Kashiwagi et al. [11].

In actual numerical computations, a few additional field points are considered on

the interior free surface of a floating body for the purpose of removing the irregular

frequencies. At these field points, the value of solid angle Cm in Eq. (5.20) must

be zero; this technique is adopted following the idea of Haraguchi and Ohmatsu

[12] as used in 2D problems. The resultant over-constraint simultaneous equations

are solved with the least-square method.

5.1.3 Hydrodynamic Forces

Once the velocity potentials on the body surface are determined, it is straightfor-

ward to compute the hydrodynamic forces. Similar to 2D case, the hydrodynamic

forces are obtained from integration of pressure multiplied by ith component of

the normal vector. For radiation problem, the hydrodynamic force working in i-th

direction is written as

Fi = −�(i!)2
6

∑

j=1

Xj

∫ ∫

SH

�jnidS =
6

∑

j=1

TijXj (5.23)
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where

Tij = (i!)2Aij − (i!)Bij = −�(i!)2
∫ ∫

SH

�jnidS (5.24)

The transfer function Tij in Eq. (5.24) is expressed with respect to origin of the

coordinate system shown in Fig. 5.1. This quantity can be expressed with respect

to the center of gravity G as follows

TG
ij = −�(i!)2

∫ ∫

SH

�G
j n

G
i dS = (i!)2AG

ij − (i!)BG
ij (5.25)

when i = 1 ∼ 3 and j = 1 ∼ 3, it is known that TG
ij = Tij. For other cases, they

can be written as follows

∙ when i = 1 ∼ 3

TG
i4 = −�(i!)2

∫ ∫

SH

(�4 − yg�3 + zg�2)nidS = Ti4 − ygTi3 + zgTi2 (5.26)

TG
i5 = −�(i!)2

∫ ∫

SH

(�5 − zg�1 + xg�3)nidS = Ti5 − zgTi1 + xgTi3 (5.27)

TG
i6 = −�(i!)2

∫ ∫

SH

(�6 − xg�2 + yg�1)nidS = Ti6 − xgTi2 + ygTi1 (5.28)

∙ when i = 4 and j = 4 ∼ 6

TG
44 = −�(i!)2

∫ ∫

SH

�G
4 (n4 − ygn3 + zgn2)dS, �G

4 = �4 − yg�3 + zg�2

= T44 − ygT43 + zgT42 − ygT
G
34 + zgT

G
24 (5.29)

TG
45 = −�(i!)2

∫ ∫

SH

�G
5 (n4 − ygn3 + zgn2)dS, �G

5 = �5 − zg�1 + xg�3

= T45 − zgT41 + xgT43 − ygT
G
35 + zgT

G
25 (5.30)

TG
46 = −�(i!)2

∫ ∫

SH

�G
6 (n4 − ygn3 + zgn2)dS, �G

6 = �6 − xg�2 + yg�1

= T46 − xgT42 + ygT41 − ygT
G
36 + zgT

G
26 (5.31)
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∙ when i = 5 and j = 4 ∼ 6

TG
54 = −�(i!)2

∫ ∫

SH

�G
4 (n5 − zgn1 + xgn3)dS, �G

4 = �4 − yg�3 + zg�2

= T54 − ygT53 + zgT52 − zgT
G
14 + xgT

G
34 (5.32)

TG
55 = −�(i!)2

∫ ∫

SH

�G
5 (n5 − zgn1 + xgn3)dS, �G

5 = �5 − zg�1 + xg�3

= T55 − zgT51 + xgT53 − zgT
G
15 + xgT

G
35 (5.33)

TG
56 = −�(i!)2

∫ ∫

SH

�G
6 (n5 − zgn1 + zgn3)dS, �G

6 = �6 − xg�2 + yg�1

= T56 − xgT52 + ygT51 − zgT
G
16 + xgT

G
36 (5.34)

∙ when i = 6 and j = 4 ∼ 6

TG
64 = −�(i!)2

∫ ∫

SH

�G
4 (n6 − xgn2 + ygn1)dS, �G

4 = �4 − yg�3 + zg�2

= T64 − ygT63 + zgT62 − xgT
G
24 + ygT

G
14 (5.35)

TG
65 = −�(i!)2

∫ ∫

SH

�G
5 (n6 − xgn2 + ygn1)dS, �G

5 = �5 − zg�1 + xg�3

= T65 − zgT61 + xgT63 − xgT
G
25 + xgT

G
15 (5.36)

TG
66 = −�(i!)2

∫ ∫

SH

�G
6 (n6 − xgn2 + ygn1)dS, �G

6 = �6 − xg�2 + yg�1

= T66 − xgT62 + ygT61 − zgT
G
26 + xgT

G
16 (5.37)

From diffraction case, the wave exciting force Ei with respect to origin O can be

obtained as follows

Ei = �g�a

∫ ∫

SH

�DnidS (5.38)

Its reference is transformed to the center of gravity G which gives

EG
i = �g�a

∫ ∫

�Dn
G
i dS (5.39)
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The explicit expression can be written for different values of i as follows

∙ when i = 1 ∼ 3

�g�a

∫ ∫

SH

�Dn
G
i dS = Ei (5.40)

∙ when i = 4 ∼ 6

EG
4 = �g�a

∫ ∫

�D(n4 − ygn3 + zgn2)dS = E4 − ygE3 + zgE2 (5.41)

EG
5 = �g�a

∫ ∫

�D(n5 − zgn1 + xgn3)dS = E5 − zgE1 + xgE3 (5.42)

EG
6 = �g�a

∫ ∫

�D(n6 − xgn2 + ygn1)dS = E6 − xgE2 + ygE1 (5.43)

From the hydrostatic pressure, the restoring force with respect to the center of

gravity can be obtained as follows

SG
i = −�g

∫ ∫

SH

{

XG
3 + (y − yg)X

G
4 − (x− xg)X

G
5

}

nG
i dS (5.44)

which is shown in nondimensionalized form as follows

SG
i = −�g�ab

2�i

[

XG
3

�a
Ci3 +

XG
4 b

�a
Ci4 +

XG
5 b

�a
Ci5

]

(5.45)

where

Ci3 =

∫ ∫

SH

nG
i dS

Ci4 =

∫ ∫

SH

(y − yg)n
G
i dS

Ci5 =

∫ ∫

SH

(−x+ xg)n
G
i dS

⎫















⎬















⎭

(5.46)
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Because it exists only when i = 3 ∼ 5, so we write the following normal vectors

nG
3 = nz

nG
4 = (y − yg)nz − (z − zg)ny

nG
5 = (z − zg)nx − (x− xg)nz

⎫













⎬













⎭

(5.47)

Using Gauss’s theorem, Eq. (5.46) can be written as

∙ for i = 3

C33 =

∫ ∫

SH

n3dS =

∫ ∫

SF

dxdy = Aw (5.48)

C34 =

∫ ∫

SH

(y − yg)n3dS =

∫ ∫

SF

(y − yg)dxdy = (yF − yg)Aw (5.49)

C35 =

∫ ∫

SH

(−x+ xg)n3dS =

∫ ∫

SF

(−x+ xg)dxdy = −(xF − xg)Aw

(5.50)

∙ for i = 4

C43 =

∫ ∫

SH

{(y − yg)nz − (z − zg)ny} dS

=

∫ ∫

SF

(y − yg)dxdy = C34 (5.51)

C44 =

∫ ∫

SH

(y − yg) {(y − yg)nz − (z − zg)ny} dS

=

∫ ∫

SF

(y − yg)
2dxdy −

∫ ∫ ∫

V

(z − zg)dV

=

∫ ∫

SF

y2dxdy + (−2ygyf + y2g)Aw + (zg − zB)V (5.52)
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C45 = −

∫ ∫

SH

(x− xg) {(y − yg)nz − (z − zg)ny} dS

=

∫ ∫

SF

(x− xg)(y − yg)dxdy

=

∫ ∫

SF

xydxdy + (xgyf + xF yg − xgyg)Aw (5.53)

∙ for i = 5

C53 =

∫ ∫

SH

{(z − zg)nx − (x− xg)nz} dS

= −

∫ ∫

SF

(x− xg)dxdy = −(xF − xg)Aw = C35 (5.54)

C54 =

∫ ∫

SH

(y − yg) {(z − zg)nx − (x− xg)nz} dS

= −

∫ ∫

SF

(x− xg)(y − yg)dxdy = C45 (5.55)

C55 = −

∫ ∫

SH

(x− xg) {(z − zg)nx − (x− xg)nz} dS

= −

∫ ∫ ∫

V

(z − zg)dV +

∫ ∫

SF

(x− xg)
2dxdy

=

∫ ∫

SF

x2dxdy + (−2xgxf + x2
g)Aw + (zg − zB)V (5.56)

In above expressions, variables that need to be known are as follows

V =

∫ ∫ ∫

V

dV, yB(= yg), zB, yF

Aw =

∫ ∫

SF

dxdy,

∫ ∫

SF

y2dxdy,

∫ ∫

SF

x2dxdy

⎫





⎬





⎭

(5.57)

The same notations for body cross section with the ones used in 2D case (refer to

Fig. 2.8) are used in above expressions. For the calculation of a single symmetric

body which is shown in Fig. 5.1 as an example, we have xF = xg = 0, while
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zg is obtained from input data. Denoting the position of center of buoyancy as

(0, yB, zB) and cross section area as S, we have

S =
1

2

N
∑

j=1

(yj − yj+1)(zj + zj+1)

SyB =
1

6

N
∑

j=1

(yj − yj+1) [zj(2yj + yj+1 + zj+1(2yj+1 + yj)]

SzB =
1

6

N
∑

j=1

(zj+1 − zj) [yj(2zj + zj+1 + yj+1(2zj+1 + zj)]

B = ya − yb,
1

2
(ya + yb), yg = yB

⎫



























⎬



























⎭

(5.58)

Using those data, the quantities in Eq. (5.57) can be obtained as follows

V = SL, Aw = BL,
∫ ∫

SF

y2dxdy =
L

3
(y3a − y3b ),

∫ ∫

SF

x2dxdy =
L3

12
B =

L2

12
BAw

⎫











⎬











⎭

(5.59)

where L is the length of the body. Using (5.59), the hydrostatic force and moment

can be written as

C33 = Aw, C34 = (yF − yg)Aw, C35 = 0

C43 = C34, C45 = 0, C53 = 0, C54 = 0

C44 = V (zg − zB) + Aw

{

y2g − 2ygyF +
1

3
(y2a + yayb + y2b )

}

C55 = V (zg − zB) + Aw

1

12
L2

⎫























⎬























⎭

(5.60)

We can write the combination of the hydrodynamic force expressions above as

follows

F = �g�ab
2�iF

G
i (5.61)



Chapter 5. 3D Performance Analysis 65

where

FG
i = EG

i +Kb
6

∑

j=1

XG
j �j

�a
TG
ij −

5
∑

j=3

XG
j �j

�a
Cij (5.62)

which can be written in other forms as follows

− !2
6

∑

j=1

XG
j mij�ij = F

−Kb
6

∑

j=1

XG
j �j

�a

(

mij

�a3�i�j

)

�ij = FG
i (5.63)

In the final form can be written as

6
∑

j=1

XG
j

{

−K
(

Mij�ij + FG
ij

)

+ CG
ij

}

= EG
i i = 1 ∼ 6 (5.64)

where

Mij =
mij

�b3�i�j
(5.65)

Superscript G means quantities with respect to the center of gravity. Mij denotes

the genralized mass matrix, �ij is the Kroenecker’s delta, and CG
ij is the restoring-

force coefficients due to the static pressure. By solving these coupled motion

equations, the complex motion amplitude XG
j can be determined and then the

corresponding complex amplitude with respect to the origin of the coordinate

system Xj(j = 1 ∼ 6) can be obtained from

Xj = XG
j + �jkl(xG)kX

G
l+3

Xj+3 = XG
j+3

⎫

⎬

⎭

(j = 1 ∼ 3) (5.66)

where �jkl denotes the alternating tensor for the outer product of vectors and

(xG)k (k = 1 ∼ 3) the ordinates of the center of gravity.
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The numerical accuracy can be confirmed by checking the Haskind-Newman re-

lation for the wave-exciting force and the energy-conservation relation for the

damping coefficient. These relations are expressed as

Ej = �g�aHj(K, �) (5.67)

Bij =
�!K

4�
Re

∫ 2�

0

Hi(K, �)H∗
j (K, �)d� (5.68)

whereHj denotes the so-called Kochin function in the radiation problem, expressed

as

Hj(K, �) =

∫ ∫

SH

(

∂�j

∂n
− �j

∂

∂n

)

e−Kz−iK(x cos �+y sin �)dS (5.69)

In terms of the Kochin function, the wave drift forces in the x− and y−axes as

described in Maruo [14] and the drift moment about the z−axis in Newman [15]

can be computed. The formulae for the first two components are written as

F̄x =
�g�2a
8�

K

∫ 2�

0

∣H(K, �)∣2 (cos � − cos �) d�

F̄y =
�g�2a
8�

K

∫ 2�

0

∣H(K, �)∣2 (sin � − sin �) d�

⎫





⎬





⎭

(5.70)

where

H(K, �) = H7(K, �)−K

6
∑

j=1

Xj

�a
Hj(K, �) (5.71)

H7(K, �) = −

∫ ∫

SH

�D

∂

∂n
e−Kz−iK(x cos �+y sin �)dS (5.72)

5.1.4 Wave Elevation on the Free Surfaces

The wave elevation on the free surface in the linear theory can be computed from

�(x, y)

�a
= �0(x, y, 0) + �7(x, y, 0)−K

6
∑

j=1

Xj

�a
�j(x, y, 0) (5.73)
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where the velocity potentials due to disturbance by a floating body can be com-

puted from

�7(P) = −

∫ ∫

SH

�D(Q)
∂

∂nQ

G(P;Q)dS(Q) (5.74)

�j(P) = −

∫ ∫

SH

{

nj(Q)− �j

∂

∂nQ

}

G(P;Q)dS(Q) (5.75)

where P = (x, y, 0) is a point on the free surface.

In HOBEM, these velocity potentials can be computed by using the shape function

and the solutions of the velocity potentials at nodal points. The integrals in Eqs.

(5.74) and (5.75) can be evaluated by summation over all panels, on which element

computations can be done using the same scheme for the coefficients shown in Eqs.

(5.21) and (5.22), with the calculation point P placed on the free surface.

In this study, we are concerned with the transmission and reflection waves by a

floating breakwater. The transmission wave is defined by the wave in the lee side,

propagating in the same direction as that of the incident wave. On the other hand,

the reflection wave must be defined as the wave in the weather side, propagating

to the opposite direction. Thus the incident-wave term �0(x, y, 0) in Eq. (5.73) is

subtracted from Eq. (5.73) in numerical computations for the reflection wave.

5.2 Computation Results and Discussion

Based on the 2D shape obtained in previous chapter, a 3D model shape is con-

structed by extruding it in the longitudinal direction as shown in Fig. 5.3. The

transverse section shape is the same as that in Fig. 4.5 and uniform in the longi-

tudinal x-direction with its length denoted as L.

In 3D computations based on HOBEM, following the 2D analysis, half of the

maximum breadth (b = B/2) is used for nondimensionalization. The incident
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Figure 5.3: 3D model shape

angle � of regular incoming wave is set equal to � = −90 deg. so that the situation

corresponds to the 2D case and the results for the body motions and the reflection

and transmission wave coefficients can be compared with 2D results; thereby 3D

effects on those quantities can be discussed.

Unlike 2D case, the wave amplitude in 3D results may vary depending on the

location on the free surface. Thus 3 different positions along the y-axis (centerline

of the body) are considered for the wave measurement. The distance of these

positions from the origin of the coordinate system is taken equal to y/b = 4, 10,

and 18 for the reflection wave and y/b = −4, −10, and −18 for the transmission

wave. (Note that the incident-wave component is subtracted from Eq. (5.73) in

the definition of the reflection wave.)

In order to investigate 3D effects depending on the longitudinal length of the body,

we have computed for 3 different body lengths; those are L/B=2, 8, and 20. The

hydrodymnamic forces are computed, but discussion in this study will be focused

on the difference between 2D and 3D results in the amplitude of body motions

and the reflection and transmission wave coefficients. In numerical computations,

only half of the body was discretized with the symmetry relation with respect

to x taken into account. Then to keep sufficient accuracy, a larger number of

panels was used, although the results of HOBEM are relatively very accurate.
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Specifically, the total number of panels used is 408 for L/B = 2, 638 for L/B = 8,

and 1098 for L/B = 20. One panel consists of 9 nodal points and thus the total

number of unknowns was 1689, 2629, and 4509 for L/B =2, 8, and 20, respectively.

As already described, the numerical accuracy was checked through the Haskind-

Newman and energy-conservation relations and found to be very satisfactory with

these panels and unknowns.

Computed results for a 3D body with L/B = 2 are shown in Fig. 5.4 for the

amplitude of body motions and in Fig. 5.5 for the reflection and transmission

waves. Figs. 5.5 (a) and 5.5 (b) are for the diffraction problem and Figs. 5.5 (c)

and 5.5 (d) are for the case of all motions free.

λ∞/B=π/Kb

A
m

pl
itu

de
/ζ

a(
.k

)

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

3.5

Sway
Heave
Roll

3D Motions Amplitude L/B= 2

Figure 5.4: Body motion amplitudes of 3D model for L/B = 2
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Figure 5.5: 3D Reflection (left) and transmission (right) wave coefficients for
L/B = 2 : (a) (b) for fixed motion case, (c) (d) for free motion case

From Fig. 5.4 we can see that the body motions show very similar trend to the

2D results shown in Fig. 4.8, but the amplitude particularly in heave is different.

On the other hand, the wave amplitudes shown in Fig. 5.5 are very much different

from those by the 2D analysis shown in Figs. 4.6 and 4.7. Furthermore, the wave

amplitudes in 3D results are dependent largely on the measurement position. We

can envisage that the incident wave is diffracted around the longitudinal tip side

of the body and the wave field on the free surface is totally three dimensional.

It should be noted that regular fluctuation in the short wavelength region can be

observed. In order to resolve this fluctuation, computations have been performed

at dense points of the wavelength with very small interval, and we found that



Chapter 5. 3D Performance Analysis 71

this fluctuation was caused by the so-called irregular frequencies. As described in

the numerical method, zero value of the velocity potential was specified on some

interior free-surface points to get rid of the irregular frequencies. However, the

results show that this method is not effective for 3D problems. Since computations

are conducted at dense wavelengths in the present study, a mean line of this regular

fluctuation may be considered as expected results and this fluctuation in the short

wavelength region may be not a fatal problem in discussing 3D effects.
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Figure 5.6: Body motion amplitudes of 3D model for L/B = 8

Computed results for a longer body of L/B = 8 are shown in Figs. 5.6 and

5.7 for the amplitudes of body motions and reflection and transmission waves,

respectively. Looking at the motion amplitudes in Fig. 5.6 and comparing with

Fig. 4.8, we can see that all modes of motion become almost the same not only in

the trend but also in the magnitude. This implies that 3D effects on hydrodynamic

forces are small enough if the length ratio of the body is taken up to L/B = 8.

However, the wave amplitudes are still different from the 2D results, although

the global trend becomes similar. For instance, for the case of fixed motions,

the reflection wave is large and its coefficient is roughly equal to 1.0, and the

transmission wave coefficient is smaller than 0.5. We can also see that, depending
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Figure 5.7: 3D Reflection (left) and transmission (right) wave coefficients for
L/B = 8 : (a) (b) for fixed motion case, (c) (d) for free motion case

on the position and wavelength, the wave amplitude coefficient becomes larger

than 1.0, which should be attributed to 3D effects in the free-surface wave.

In order to see whether more similar results to those in the 2D analysis would be

obtained for a longer body, the body length was increased further to L/B = 20.

Obtained results for the body motions and the reflection and transmission waves

are shown in Figs. 5.8 and 5.9, respectively. The amplitudes of body motions are

unchanged from the case of L/B = 8. However, the results of wave amplitudes

are still different but become similar further to the 2D results.
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Figure 5.8: Body motion amplitudes of 3D model for L/B = 20

Although the wave amplitude is still dependent on the position of measurement,

the reflection wave coefficient fluctuates around 1.0 and decreases at wavelengths

greater than �/B > 5.5 for the free-motion case, which is the same in trend as

the 2D results. Nevertheless, we can realize that 3D effects are large on the wave

amplitude on the free surface even for a longer body of L/B = 20.
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Figure 5.9: 3D Reflection (left) and transmission (right) wave coefficients for
L/B = 20 : (a) (b) for fixed motion case, (c) (d) for free motion case

In order to observe the spatial variation of the free-surface wave around a floating

breakwater, numerical computations for the bird’s-eye view of the wave field were

performed for typical wavelengths; that is, �/B = 3.0 and �/B = 6.0. Computed

results for a short-length body of L/B = 2 are shown in Fig. 5.10, where 5.10 (a)

and 5.10 (b) are for �/B = 3.0 and 5.10 (c) and 5.10 (d) are for �/B = 6.0. Both

cases of fixed and free motions are computed and shown.

These results are only for the real part ( i.e. at time instant t = 0) of the total wave

elevation. Therefore it may be difficult to distinguish the reflected and incident

waves in the weather side, whereas in the lee side we can directly see the spatial

distribution of transmitted wave and its correspondence to the results measured

at 3 selected points along the y−axis (which are shown in Fig. 5.9 for the case of

L/B = 2).
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(a)

(b)

(c)

(d)

Figure 5.10: Bird’s-eye view of 3D wave field around a body of L/B = 2 for
wavelength of �/B=3.0 and 6.0
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We can see from Fig. 5.10 that the wave is relatively uniform for �/B = 6.0 but

scattered by the body for �/B = 3.0 and the resulting wave pattern becomes three

dimensional.

Computed results for a longer body of L/B = 20 are shown in Fig. 5.11. Like

above, 5.11(a) and 5.11(b) are for �/B = 3.0 and 5.11(c) and 5.11(d) are for

�/B = 6.0, and both cases of fixed and free motions are shown to observe the

effect of body motions.

(a)

(b)

(c)
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(d)

Figure 5.11: Bird’s-eye view of 3D wave field around a body of L/B = 20 for
wavelength of �/B=3.0 and 6.0

Looking at the wave in the lee side, we can confirm the correspondence to the

results in Fig. 5.9 measured at 3 different points along the y-axis. We can see that

the effect of body motions is large in the wave pattern for both cases of �/B =3.0

and 6.0. In particular, at �/B = 6.0, the transmitted wave becomes large and

really three dimensional, which is much different from the 2D results.

Finally computed results for the wave drift force are presented in Fig. 5.12 as a

comparison between 2D and 3D results. Here the drift force is defined as positive

when acting in the direction of incident-wave propagation. The results in Fig.

5.11 are just for a longer body of L/B = 20 , and we can see favorable agreement

between 2D and 3D results except in a limited range of short wavelengths. A

discrepancy observed in this range might be attributed to insufficient accuracy in

the integration with respect to � in Eq. (5.70). We can say from Fig. 5.11 that

the 2D analysis can be used for estimation of the wave drift force in the design.

Although the wave drift force and related mooring force are not considered in

computing the wave-induced body motions in the present study, estimation of the

wave drift force will be important in actual installation of a floating breakwater.
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Figure 5.12: Wave drift forces computed by 2D and 3D methods for a body
of L/B = 20 for both cases of fixed and free motions
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Conclusions

Using genetic algorithm (GA) and boundary element method (BEM) based on the

potential-flow theory, a numerical analysis on the performance of floating break-

waters has been performed in both 2D and 3D cases. Some important points found

in this study are :

a. A numerical analysis using BEM on floating breakwater with asymmetric

shape has been performed. The accuracy and correctness of the analysis

were confirmed using several relations and model experiment as well.

b. A scheme based on GA combined with BEM has been exploited to find an

optimal model of floating breakwater which has high performance in a wide

range of frequencies.

c. By computing for the corresponding 3D model of optimized shape, A dif-

ference performance from the 2D model was found. However, the trend in

variation with respect to the wavelength becomes similar for longer body

which is known as 3D wave effect.

d. 3D wave effects were not so large on the hydrodynamic forces and resultant

wave-induced body motions.

79
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e. The free-surface wave elevation was found to be spatially three dimensional

even near the middle of a longer body.

f. The drift forces for a longer body were almost the same in values as those

for the 2D body.
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