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Abstract
In the previous paper [7], we proposed the two-dimensional con-

tinuous quaternion wavelet transform (CQWT). In the present paper,
using the orthogonality of harmonic exponential functions we give an
alternative proof for inner product relation property of the CQWT.
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1 Introduction

The quaternion Fourier transform (QFT), which is a nontrivial generalization
of the real and complex Fourier transform (FT) using quaternion algebra has
been of interest to researchers for some years (see e.g. [3, 5]). It was found
that many FT properties still hold but others have to be modified. Based on
the (right-sided) QFT, one can extend the classical wavelet transform (WT) to
quaternion algebra while enjoying the same properties as in the classical case.
In [10], using the (two-sided) QFT Traversoni proposed a discrete quaternion
wavelet transform which was applied by Bayro-Corrochano [2] and Zhou et al.
[11]. In [6, 8], we introduced an extension of the WT to Clifford algebra by
means of the kernel of the Clifford Fourier transform [4].

The purpose of this paper is to provide an alternative proof for inner prod-
uct relation property of the two-dimensional continuous quaternion wavelet
transform (CQWT), which was recently studied in [7]. This property is very
important to derive the inversion formula for the CQWT.

2 Basic Concept

In this section, we briefly review some basic ideas on quaternions, the (right-
sided) QFT and the similitude group SIM(2).
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The quaternion algebra over R, denoted by H, is an associative non-commutative
four-dimensional algebra,

H = {q = q0 + iq1 + jq2 + kq3 | q0, q1, q2, q3 ∈ R}, (1)

which obey Hamilton’s multiplication rules

ij = −ji = k, jk = −kj = i, ki = −ik = j, i2 = j2 = k2 = ijk = −1.
(2)

The quaternion conjugate of a quaternion q is given by

q̄ = q0 − iq1 − jq2 − kq3, q0, q1, q2, q3 ∈ R, (3)

and it is an anti-involution, i.e.

qp = p̄q̄. (4)

From (3) we obtain the norm of q ∈ H defined as

|q| =
√
qq̄ =

√
q2
0 + q2

1 + q2
2 + q2

3. (5)

It is not difficult to see that

|qp| = |q||p|, ∀p, q ∈ H. (6)

It is convenient to introduce the inner product of two quaternion functions,
f, g : R

2 → H, as follows:

(f, g)L2(�2;�) =

∫
�2

f(x)g(x) d2x. (7)

In particular, if f = g, then we obtain the associated norm

‖f‖L2(�2;� ) = (f, f)
1/2

L2(�2;�) =

(∫
�2

|f(x)|2 d2x

)1/2

. (8)

Based on quaternions we can define the (right-sided) QFT.

Definition 2.1 The QFT of f ∈ L1(R2; H) is the function Fq{f}: R
2 → H

given by

Fq{f}(ω) = f̂(ω) =

∫
�2

f(x)e−iω1x1e−jω2x2 d2x, (9)

where x = x1e1 + x2e2, ω = ω1e1 + ω2e2, and the quaternion exponential

product e−iω1x1e−jω2x2 is called the quaternion Fourier kernel.
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Theorem 2.2 Suppose that f ∈ L2(R2; H) and Fq{f} ∈ L1(R2; H). Then
the QFT of f is an invertible transform and its inverse is given by

f(x) =
1

(2π)2

∫
�2

Fq{f}(ω)ejω2x2eiω1x1 d2ω. (10)

As in the classical case, we obtain Plancherel’s formula, specific to the (right-
sided) QFT [3, 5],

(f, g)L2(�2;� ) =
1

(2π)2
(Fq{f},Fq{g})L2(�2;�) . (11)

In particular, if f = g we get Parseval’s formula,

‖f‖2
L2(�2;�) =

1

(2π)2
‖Fq{f}‖2

L2(�2;�) . (12)

Following Antoine et al. (see [1]), we consider the similitude group SIM(2)
denoted by G on R

2 associated with wavelets as follows.

G = R
+ × SO(2) × R

2 = {(a, rθ, b) | a ∈ R
+, rθ ∈ SO(2), b ∈ R

2}, (13)

where SO(2) is the special orthogonal group of R
2. The multiplication defined

by (13) follows the group law

{a, b, rθ}{a′, b′, rθ′} = {aa′, b + arθb
′, rθ+θ′}. (14)

The rotation rθ ∈ SO(2) acts on x ∈ R
2 as usual,

rθ(x) = (x1 cos θ − x2 sin θ, x1 sin θ + x2 cos θ), 0 ≤ θ < 2π. (15)

The left Haar measure on G is given by

dλ(a, θ, b) = dμ(a, θ)d2b,

where dμ(a, θ) = dadθ
a3

and dθ is the Haar measure on SO(2). For the sake of
simplicity, we write dμ = dμ(a, θ) and dλ = dλ(a, θ, b).

3 Construction of 2-D Quaternion Wavelets

Based on quaternions and the (right-sided) QFT, one can extend the real (or
complex) wavelet transform to a quaternion wavelet transform. This section
briefly introduces the basic facts of the two-dimensional continuous quaternion
wavelet transform (CQWT).
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3.1 Admissible Quaternion Wavelet

In the following we introduce the admissible quaternion wavelet.

Definition 3.1 (Admissible quaternion wavelet) Let AQW denote the
class of admissible quaternion wavelets ψ ∈ L2(R2; H) which satisfy the follow-
ing admissibility condition, i.e.∫

SO(2)

∫
�+

|ψ̂(ar−θ(ω))|2dadθ
a

(16)

is a real positive constant independent of ω satisfying |ω| = 1. Denote by Cψ,
the real positive constant.

Notice that according to (5) Cψ is an invertible real constant. Using (1)
we may decompose ψ ∈ AQW into the following form

ψ(x) = ψ0(x) + iψ1(x) + jψ2(x) + kψ3(x), (17)

where ψs ∈ L2(R2; R) for s = 0, 1, 2, 3. Using (9) and the linearity of the
(right-sided) QFT we may write (17) in the quaternionic frequency domain in
the form

Fq{ψ}(ω) =

∫
�2

(ψ0(x) + iψ1(x) + jψ2(x) + kψ3(x)) e−iω1x1e−jω2x2 d2x

= Fq{ψ0}(ω) + iFq{ψ1}(ω) + jFq{ψ2}(ω) + kFq{ψ3}(ω),(18)

where we assume that Fq{ψs} ∈ L2(R2; R) for s = 0, 1, 2, 3.
Like for classical wavelets [9], the zero th moment of ψ ∈ AQW vanishes,∫

�2

ψ(x) d2x =

∫
�2

(ψ0(x) + iψ1(x) + jψ2(x) + kψ3(x)) d2x = 0. (19)

It means that the integral of every component ψs of the quaternion mother
wavelet is zero ∫

�2

ψs d
2x = 0, s = 0, 1, 2, 3. (20)

Definition 3.2 For ψ ∈ L2(R2; H), a ∈ R
+, b ∈ R

2, and rθ ∈ SO(2), we
define the unitary linear operator

U
a,θ,b : L2(R2; H) −→ L2(G; H),

as (
U
a,θ,b(ψ)

)
= ψ

a,θ,b(x) =
1

a
ψ

(
r−θ

(
x − b

a

))
. (21)
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The family of wavelets ψ
a,θ,b are called daughter quaternion wavelets where

a is a dilation parameter, b a translation vector parameter, and θ an SO(2)
rotation parameter.

By straightforward calculations we obtain the following lemma (see [7]).

Lemma 3.3 Let ψ be an admissible quaternion function. Daughter quater-
nion wavelets (21) can be written in terms of the (right-sided) QFT as

Fq{ψa,θ,b}(ω) = a e−iω1b1
{
ψ̂0(ar−θ(ω)) + iψ̂1(ar−θ(ω))

}
e−jω2b2

+a eiω1b1
{
jψ̂2(ar−θ(ω)) + kψ̂3(ar−θ(ω))

}
e−jω2b2 . (22)

3.2 2-D Continuous Quaternion Wavelet Transform

Definition 3.4 (CQWT) The CQWT of a quaternion-valued function f ∈
L2(R2; H) with respect to ψ ∈ AQW in two dimensions is defined by

Tψ : L2(R2; H) → L2(R2; H)

f �→ Tψf(a, θ, b) = (f, ψ
a,θ,b)L2(�2;�)

=

∫
�2

f(x)
1

a
ψ

(
r−θ

(
x − b

a

))
d2x. (23)

The following results can be found in [7], which will be necessary to prove
the main theorem.

Lemma 3.5 Suppose that ψ ∈ AQW . If ψ ∈ L2(R2; H), then the CQWT
(23) has a quaternion Fourier representation of the form

Tψf(a, θ, b) =
a

(2π)2

∫
�2

f̂(ω) ejb2ω2

×
[
ψ̂0l(ar−θ(ω)) eib1ω1 + ψ̂1l(ar−θ(ω)) e−ib1ω1

]
d2ω, (24)

where ψ̂0l(ar−θ(ω)) and ψ̂1l(ar−θ(ω)) are defined by

ψ̂0l(ar−θ(ω)) = ψ̂0(ar−θ(ω)) + iψ̂1(ar−θ(ω)),

ψ̂1l(ar−θ(ω)) = jψ̂2(ar−θ(ω)) + kψ̂3(ar−θ(ω)). (25)

Lemma 3.6 Let ψ ∈ L2(R2; H) be a quaternion valued wavelet. If Fq{ψ} =
Fq{ψ0} + kFq{ψ3}, then equation (24) can be expressed as

Tψf(a, θ, b) = F−1
q

(
af̂(·)ψ̂0(ar−θ(·))

)
(b) + F−1

q

(
af̂(·)kψ̂3(ar−θ(·))

)
(−b).

(26)
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The following proposition is a particular case of the above lemma.

Proposition 3.7 Let ψ ∈ L2(R2; H) be a quaternion valued wavelet.

(i). If Fq{ψ} = Fq{ψ0} ∈ R, then equation (24) has the form

Tψf(a, θ, b) =
a

(2π)2

∫
�2

f̂(ω) ψ̂(ar−θ(ω)) ejb2ω2eib1ω1 d2ω. (27)

Or, equivalently,

Fq(Tψf(a, θ, .))(ω) = af̂(ω) ψ̂(ar−θ(ω)). (28)

(ii). If Fq{ψ} = kFq{ψ3}, then we may rewrite equation (24) in the form

Tψf(a, θ, b) =
a

(2π)2

∫
�2

f̂(ω)ψ̂(ar−θ(ω)) e−jb2ω2e−ib1ω1 d2ω. (29)

Or, equivalently,

Tψf(a, θ, b) = F−1
q

(
af̂(·)ψ̂(ar−θ(·))

)
(−b). (30)

4 Reproducing Formula

In an attempt to reconstruct a original signal f from its CQWT, we have the
following result. Using the orthogonality of harmonic exponential functions
we give an alternative proof of this fundamental property.

Theorem 4.1 (Inner product relation) Suppose that ψ = ψ0 + iψ1 +
jψ2 + kψ3 ∈ L2(R2; H) ∈ AQW be a quaternion admissible wavelet which
defines the CQWT (23).

(i). Assume that Fq{ψ} = Fq{ψ0} ∈ R, then for every f, g ∈ L2(R2; H) ∩
L1(R2; H) we have

(Tψf, Tψg)L2(G;� ) = Cψ(f, g)L2(�2;�) , (31)

(ii). Assume that Fq{ψ} = kFq{ψ3}, then for every f, g ∈ L2(R2; H) ∩
L1(R2; H) we have

(Tψf, Tψg)L2(G;�) = Cψ(f, g)L2(�2;�) . (32)
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Remark 4.1 It is easy to see that the above theorem is not valid if Fq{ψ} is
full quaternion. It is worth noting here that if f = g, then Theorem 4.1 takes
the form

‖Tψf‖2
L2(G;�) = Cψ‖f‖2

L2(�2;� ) . (33)

Proof. Compare to the proof of Theorem 2 in [7].

(i). To prove this theorem, we note that since Fq{ψ} = Fq{ψ0} ∈ R, then
(24) becomes (27). By inserting (27) into the left side of (31), we imme-
diately obtain

(Tψf, Tψg)L2(G;�)

=

∫
SO(2)

∫
�+

a2

(2π)4

(∫
�2

[∫
�2

f̂(ω)ejb2ω2ψ̂(ar−1
θ (ω))eib1ω1d2ω

×
∫
�2

{
ĝ(ω′)ejb2ω′

2ψ̂(ar−1
θ (ω′))eib1ω′

1

}
d2ω′

]
d2b

)
dμ. (34)

Since ψ̂(ar−1
θ (ω)) is a real valued wavelet, then equation (34) reduces to

(Tψf, Tψg)L2(G;�)

=

∫
SO(2)

∫
�+

a2

(2π)4

(∫
�2

[∫
�2

f̂(ω)ejb2ω2ψ̂(ar−1
θ (ω))eib1ω1 d2ω

×
∫
�2

e−ib1ω′
1 ψ̂(ar−1

θ (ω′))e−jb2ω′
2 ĝ(ω′)d2ω′

]
d2b

)
dμ. (35)

Notice that ψ̂(ar−1
θ (ω))ψ̂(ar−1

θ (ω′)) ∈ R. Hence,

(Tψf, Tψg)L2(G;�)

=

∫
SO(2)

∫
�+

a2

(2π)4

(∫
�2

∫
�2

∫
�2

f̂(ω)ejb2ω2eib1ω1e−ib1ω′
1

× ψ̂(ar−1
θ (ω))ψ̂(ar−1

θ (ω′))e−jb2ω′
2 ĝ(ω′)d2ω′d2ωd2b

)
dμ. (36)

Furthermore, we get

(Tψf, Tψg)L2(G;� )

=

∫
SO(2)

∫
�+

a2

(2π)4

(∫
�2

∫
�2

∫
�2

f̂(ω)ψ̂(ar−1
θ (ω))ejb2ω2eib1(ω1−ω′

1)d2b

× e−jb2ω′
2ψ̂(ar−1

θ (ω′))ĝ(ω′)d2ω′ d2ω

)
dμ. (37)
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It follows, therefore, from the orthogonality of harmonic exponential
functions we easily obtain

(Tψf, Tψg)L2(G;�)

=

∫
SO(2)

∫
�+

1

(2π)2

(∫
�2

f̂(ω)ψ̂(ar−1
θ (ω))

×
∫
�2

δ(ω − ω′)ψ̂(ar−1
θ (ω′))ĝ(ω′)d2ω′ d2ω

)
dadθ

a

=
1

(2π)2

∫
SO(2)

(∫
�+

f̂(ω)ψ̂(ar−1
θ (ω))

×
∫
�2

ψ̂(ar−1
θ (ω))ĝ(ω) d2ω

)
dadθ

a

=
1

(2π)2

∫
�2

f̂(ω)

(∫
SO(2)

∫
�+

|ψ̂(ar−1
θ (ω))|2 dadθ

a

)
︸ ︷︷ ︸

Cψ is a real constant

ĝ(ω) d2ω

=
1

(2π)2
Cψ

∫
�2

f̂(ω)ĝ(ω) d2ω

(11)
= Cψ

∫
�2

f(x)g(x) d2x

= Cψ(f, g)L2(�;�) . (38)

In the third equality we applied Fubini’s theorem to reverse the integra-
tion order. �

(ii). From the assumption of Fq{ψ} = kFq{ψ3}, then (24) becomes (29). By
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inserting (29) into the left side of (32), we immediately obtain

(Tψf, Tψg)L2(G;�)

=

∫
SO(2)

∫
�+

a2

(2π)4

(∫
�2

[∫
�2

f̂(ω)ejb2ω2ψ̂(ar−1
θ (ω))e−ib1ω1d2ω

×
∫
�2

{
ĝ(ω′)ejb2ω′

2ψ̂(ar−1
θ (ω′))e−ib1ω′

1

}
d2ω′

]
d2b

)
dμ

=

∫
SO(2)

∫
�+

a2

(2π)4

(∫
�2

[∫
�2

f̂(ω)ψ̂(ar−1
θ (ω))e−jb2ω2e−ib1ω1d2ω

×
∫
�2

{
ĝ(ω′)ψ̂(ar−1

θ (ω′))e−jb2ω′
2e−ib1ω′

1

}
d2ω′

]
d2b

)
dμ

=

∫
SO(2)

∫
�+

a2

(2π)4

(∫
�2

[∫
�2

f̂(ω)ψ̂(ar−1
θ (ω))e−jb2ω2e−ib1ω1 d2ω

×
∫
�2

eib1ω
′
1 ejb2ω

′
2 ψ̂(ar−1

θ (ω′))ĝ(ω′)d2ω′
]
d2b

)
dμ

=

∫
SO(2)

∫
�+

a2

(2π)4

(∫
�2

∫
�2

f̂(ω)ψ̂(ar−1
θ (ω))e−jb2ω2eib1(ω

′
1−ω1)

×
∫
�2

e−jb2ω′
2ψ̂(ar−1

θ (ω′))ĝ(ω′)d2ω′ d2ω

)
d2b dμ

=

∫
SO(2)

∫
�+

1

(2π)2

(∫
�2

f̂(ω)ψ̂(ar−1
θ (ω))

×
∫
�2

δ(ω′ − ω)ψ̂(ar−1
θ (ω′))ĝ(ω′)d2ω′ d2ω

)
dadθ

a

=

∫
SO(2)

∫
�+

1

(2π)2

(∫
�2

f̂(ω)ψ̂(ar−1
θ (ω))

×
∫
�2

ψ̂(ar−1
θ (ω))ĝ(ω) d2ω

)
dadθ

a

=
1

(2π)2

∫
�2

f̂(ω)

(∫
SO(2)

∫
�+

|ψ̂(ar−1
θ (ω))|2 dadθ

a

)
︸ ︷︷ ︸

Cψ is a real constant

ĝ(ω) d2ω

=
1

(2π)2
Cψ

∫
�2

f̂(ω)ĝ(ω) d2ω

(11)
= Cψ

∫
�2

f(x)g(x) d2x

= Cψ(f, g)L2(�;�) , (39)

where in the second equality we have used the fact that ejb2ω2ψ̂ =

ψ̂ e−jb2ω2(ψ̂ = kψ̂3). This proves the theorem. �
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