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In this paper, we generalize the classical windowed Fourier transform (WFT) to quater-
nion-valued signals, called the quaternionic windowed Fourier transform (QWFT). Using
the spectral representation of the quaternionic Fourier transform (QFT), we derive several
important properties such as reconstruction formula, reproducing kernel, isometry, and
orthogonality relation. Taking the Gaussian function as window function we obtain qua-
ternionic Gabor filters which play the role of coefficient functions when decomposing
the signal in the quaternionic Gabor basis. We apply the QWFT properties and the
(right-sided) QFT to establish a Heisenberg type uncertainty principle for the QWFT.
Finally, we briefly introduce an application of the QWFT to a linear time-varying system.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

One of the basic problems encountered in signal representations using the conventional Fourier transform (FT) is the inef-
fectiveness of the Fourier kernel to represent and compute location information. One method to overcome such a problem is
the windowed Fourier transform (WFT). Recently, some authors [6,9,23] have extensively studied the WFT and its properties
from a mathematical point of view. In [17,24] the WFT has been successfully applied as a tool of spatial-frequency analysis
which is able to characterize the local frequency at any location in a fringe pattern.

On the other hand, the quaternionic Fourier transform (QFT), which is a non-trivial generalization of the real and complex
Fourier transform (FT) using the quaternion algebra [10], has been of interest to researchers for some years (see, for example,
[1,2,4,5,12,16,19,20]). They found that many FT properties still hold and others have to be modified. Based on the (right-
sided) QFT, one may extend the WFT to quaternion algebra while enjoying similar properties as in the classical case.

The idea of extending the WFT to the quaternion algebra setting has been recently studied by Bülow and Sommer [1,2].
They introduced a special case of the QWFT known as quaternionic Gabor filters. They applied these filters to obtain a local
two-dimensional quaternionic phase. Their generalization is obtained using the inverse (two-sided) quaternion Fourier
kernel. Hahn [11] constructed a Fourier–Wigner distribution of 2D quaternionic signals which is in fact closely related to
the QWFT. In [18], the extension of the WFT to Clifford (geometric) algebra was discussed. This extension used the kernel
of the Clifford Fourier transform (CFT) [13]. In general a CFT replaces the complex imaginary unit i 2 C by a geometric root
[14,15] of �1, i.e. any element of a Clifford (geometric) algebra squaring to �1.
. All rights reserved.
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The main goal of this paper is to thoroughly study the generalization of the classical WFT to quaternion algebra, which we
call the quaternionic windowed Fourier transform (QWFT), and investigate important properties of the QWFT such as (specific)
shift, reconstruction formula, reproducing kernel, isometry, and orthogonality relation. We emphasize that the QWFT pro-
posed in the present work is significantly different from [18] in the definition of the exponential kernel. In the present ap-
proach, we use the kernel of the (right-sided) QFT. We present several examples to show the differences between the QWFT
and the WFT. Using the (right-sided) QFT properties and its uncertainty principle [19] we establish a generalized QWFT
uncertainty principle. We will also study an application of the QWFT to a linear time-varying system.

The organization of the paper is as follows. The remainder of this section briefly reviews quaternions and the (right-sided)
QFT. In Section 2, we discuss the basic ideas for the construction of the QWFT and derive several important properties of the
QWFT using the (right-sided) QFT. We also give some examples of the QWFT. In Section 4, an application of the QWFT to a
linear time varying system is presented.

The concept of the quaternion algebra [8,10] was introduced by Sir Hamilton in 1842 and is denoted by H in his honor. It
is an extension of the complex numbers to a four-dimensional (4D) algebra. Every element of H is a linear combination of a
real scalar and three imaginary units i, j, and k with real coefficients,
H ¼ fq ¼ q0 þ iqi þ jqj þ kqkjq0; qi; qj; qk 2 Rg; ð1Þ
which obey Hamilton’s multiplication rules
ij ¼ �ji ¼ k; jk ¼ �kj ¼ i; ki ¼ �ik ¼ j; i2 ¼ j2 ¼ k2 ¼ ijk ¼ �1: ð2Þ
For simplicity, we express a quaternion q as sum of a scalar q0 and a pure 3D quaternion q,
q ¼ q0 þ q ¼ q0 þ iqi þ jqj þ kqk; ð3Þ
where the scalar part q0 is also denoted by ScðqÞ.
It is convenient to introduce an inner product for two functions f ; g : R2 ! H as follows:
hf ; giL2ðR2 ;HÞ ¼
Z

R2
f ðxÞgðxÞd2x; ð4Þ
where the overline indicates the quaternion conjugation of the function. In particular, if f ¼ g, we obtain the associated
norm
kfkL2ðR2 ;HÞ ¼ hf ; f i
1=2
L2ðR2 ;HÞ ¼

Z
R2
jf ðxÞj2d2x

� �1=2

: ð5Þ
As a consequence of the inner product (4) we obtain the quaternion Cauchy–Schwarz inequality
jSchf ; gij 6 kfkL2ðR2 ;HÞkgkL2ðR2 ;HÞ; 8f ; g 2 L2ðR2; HÞ: ð6Þ
In the following we introduce the (right-sided) QFT. This will be needed in Section 2 to establish the QWFT.

Definition 1.1 (Right-sided QFT). The (right-sided) quaternion Fourier transform (QFT) of f 2 L1ðR2; HÞ is the function
F qffg : R2 ! H given by
F qffgðxÞ ¼
Z

R2
f ðxÞe�ix1x1 e�jx2x2 d2x; ð7Þ
where x ¼ x1e1 þ x2e2; x ¼ x1e1 þx2e2, and the quaternion exponential product e�ix1x1 e�jx2x2 is the quaternion Fourier
kernel.
Theorem 1.1 (Inverse QFT). Suppose that f 2 L2ðR2; HÞ and F qffg 2 L1ðR2; HÞ. Then the QFT of f is an invertible transform and
its inverse is given by
F�1
q ½F qffg�ðxÞ ¼ f ðxÞ ¼ 1

ð2pÞ2
Z

R2
F qffgðxÞejx2x2 eix1x1 d2x; ð8Þ
where the quaternion exponential product ejx2x2 eix1x1 is called the inverse (right-sided) quaternion Fourier kernel.
Detailed information about the QFT and its properties can be found in [1,2,5,12,19].
2. Quaternionic windowed Fourier transform (QWFT)

This section generalizes the classical WFT to quaternion algebra. Using the definition of the (right-sided) QFT described
before, we extend the WFT to the QWFT. We shall later see how some properties of the WFT are extended in the new def-
inition. For this purpose we briefly review the 2D WFT.
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Fig. 1. Representation of the complex Gabor filter for r1 ¼ r2 ¼ 1;u0 ¼ v0 ¼ 1 in the spatial domain with its real part (left) and imaginary part (right).
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2.1. 2D WFT

The FT is a powerful tool for the analysis of stationary signals but it is not well suited for the analysis of non-stationary
signals because it is a global transformation with poor spatial localization [24]. However, in practice, most natural signals are
non-stationary. In order to characterize a non-stationary signal properly, the WFT is commonly used.

Definition 2.1 (WFT). The WFT of a two-dimensional real signal f 2 L2ðR2Þ with respect to the window function
g 2 L2ðR2Þ n f0g is given by
1 If w
except
decomp
that the
Ggf ðx;bÞ ¼ 1

ð2pÞ2
Z

R2
f ðxÞgx;bðxÞd

2x; ð9Þ
where the window daughter function gx;b is called the windowed Fourier kernel defined by
gx;bðxÞ ¼ gðx� bÞe
ffiffiffiffiffi
�1
p

x�x: ð10Þ

Eq. (9) shows that the image of a WFT is a complex 4D coefficient function.

Most applications make use of the Gaussian window function g which is non-negative and well localized around the ori-
gin in both spatial and frequency domains. The Gaussian window function can be expressed as
gðx;r1;r2Þ ¼ e�½ðx1=r1Þ2þðx2=r2Þ2 �=2; ð11Þ
where r1 and r2 are the standard deviations of the Gaussian function and determine the width of the window. We call (10), for
fixed x ¼ x0 ¼ u0e1 þ v0e2, and b1 ¼ b2 ¼ 0, a complex Gabor filter as shown in Fig. 1 if g is the Gaussian function (11), i.e.
gc;x0
ðx;r1;r2Þ ¼ e

ffiffiffiffiffi
�1
p

ðu0x1þv0x2Þgðx;r1;r2Þ: ð12Þ
In general, when the Gaussian function (11) is chosen as the window function, the WFT in (9) is called Gabor transform.
We observe that the WFT localizes the signal f in the neighbourhood of x ¼ b. For this reason, the WFT is often called short
time Fourier transform.

2.2. Definition of the QWFT

Bülow [1] extended the complex Gabor filter (12) to quaternion algebra by replacing the complex kernel e
ffiffiffiffiffi
�1
p

ðu0x1þv0x2Þ

with the inverse (two-sided) quaternion Fourier kernel eiu0x1 ejv0x2 . His extension then takes the form
gqðx;r1;r2Þ ¼ eiu0x1 ejv0x2 e�½ðx1=r1Þ2þðx2=r2Þ2 �=2; ð13Þ
which he called quaternionic Gabor filter 1 as shown in Fig. 2 and applied it to get the local quaternionic phase of a two-dimen-
sional real signal. Bayro-Corrochano et al. [4] also used quaternionic Gabor filters for the preprocessing of 2D speech
representations.

The extension of the WFT to quaternion algebra using the (two-sided) QFT is rather complicated, due to the non-commu-
tativity of quaternion functions. Alternatively, we use the (right-sided) QFT to define the QWFT. We therefore introduce the
following general QWFT of a two-dimensional quaternion signal f 2 L2ðR2; HÞ in Definition 2.3.
e would have interchanged the order of the two exponentials in Definition 1.1, which we are always free to do, then (13) and (15) would agree fully,
for the factor ð2pÞ�2. Figs. 2 and 3 illustrate the two different kinds of quaternionic Gabor filters that arise. The differences can be made obvious by
osition of the two exponential products eiu0 x1 ejv0 x2 and ejv0 x2 eiu0 x1 . The imaginary i-part of Fig. 2 is the imaginary j-part of Fig. 3 and vice versa. Note also
imaginary k-parts of Figs. 2 and 3 are essentially the same, because they only have different signs.
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Fig. 2. Bülow’s quaternionic Gabor filter (13) ðr1 ¼ r2 ¼ 1;u0 ¼ v0 ¼ 1Þ in the spatial domain with real part (top left) and imaginary i-part (top right), j-part
(bottom left), and k-part (bottom right).
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Definition 2.2. A quaternion window function is a function / 2 L2ðR2; HÞ n f0g such that jxj1=2/ðxÞ 2 L2ðR2; HÞ too. We call
/x;bðxÞ ¼
1

ð2pÞ2
ejx2x2 eix1x1 /ðx� bÞ; ð14Þ
a quaternionic window daughter function.
If we fix x ¼ x0, and b1 ¼ b2 ¼ 0, and take the Gaussian function as the window function of (14), then we get the qua-

ternionic Gabor filter shown in Fig. 3,
gqðx;r1;r2Þ ¼
1

ð2pÞ2
ejv0x2 eiu0x1 e�½ðx1=r1Þ2þðx2=r2Þ2 �=2: ð15Þ
Definition 2.3 (QWFT). Denote the QWFT on L2ðR2; HÞ by G/. Then the QWFT of f 2 L2ðR2; HÞ is defined by
f ðxÞ ! G/f ðx;bÞ ¼ hf ;/x;biL2ðR2 ;HÞ ¼
Z

R2
f ðxÞ/x;bðxÞd

2x ¼ 1

ð2pÞ2
Z

R2
f ðxÞejx2x2 eix1x1 /ðx� bÞd2x

¼ 1

ð2pÞ2
Z

R2
f ðxÞ/ðx� bÞe�ix1x1 e�jx2x2 d2x: ð16Þ
Please note that the order of the exponentials in (16) is fixed because of the non-commutativity of the product of qua-
ternions. Changing the order yields another quaternion-valued function which differs by the signs of the terms. Eq. (16)
clearly shows that the QWFT can be regarded as the (right-sided) QFT (compare (38)) of the product of a quaternion-valued
signal f and a shifted and quaternion conjugate version of the quaternion window function or as an inner product (4) of f and
the quaternionic window daughter function. In contrast to the QFT basis e�ix1x1 e�jx1x2 which has an infinite spatial extension,
the QWFT basis /ðx� bÞe�ix1x1 e�jx1x2 has a limited spatial extension due to the local quaternion window function /ðx� bÞ.

The energy density is defined as the modulus square of the QWFT (16) given by
jG/f ðx;bÞj2 ¼ 1

ð2pÞ4
Z

R2
f ðxÞ/ðx� bÞe�ix1x1 e�jx2x2 d2x

����
����
2

: ð17Þ
Eq. (17) is often called a spectrogram which measures the energy of a quaternion-valued function f in the position-fre-
quency neighbourhood of ðb;xÞ.
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Fig. 3. The real part (top left) and imaginary i-part (top right), j-part (bottom left), and k-part (bottom right) of a quaternionic Gabor filter
ðr1 ¼ r2 ¼ 1; u0 ¼ v0 ¼ 1Þ in the spatial domain.
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A good choice for the window function / is the Gaussian quaternion function because, according to Heisenberg’s
uncertainty principle, the Gaussian quaternion signal can simultaneously minimize the spread in both spatial and quatern-
ionic frequency domains, and it is smooth in both domains. The uncertainty principle can be written in the following form
[19]
Mgx1
Mgx2
Mgx1

Mgx2
P

1
4
; ð18Þ
where Mgxk
; k ¼ 1;2, are the effective spatial widths of the quaternion function g and Mgxk

; k ¼ 1;2, are its effective
bandwidths.

2.3. Examples of the QWFT

For illustrative purposes, we shall discuss examples of the QWFT. We begin with a straightforward example.

Example 2.1. Consider the two-dimensional first order B-spline window function (see [21]) defined by
/ðxÞ ¼
1; if � 1 6 x1 6 1 and � 1 6 x2 6 1;
0; otherwise:

�
ð19Þ
Obtain the QWFT of the function defined as follows:
f ðxÞ ¼
ex1þx2 ; if �1 < x1 < 0 and �1 < x2 < 0;
0; otherwise:

�
ð20Þ
By applying the definition of the QWFT we have
G/f ðx; bÞ ¼ 1

ð2pÞ2
Z m1

�1þb1

Z m2

�1þb2

ex1þx2 e�ix1x1 e�jx2x2 dx1dx2;

m1 ¼minð0;1þ b1Þ; m2 ¼minð0;1þ b2Þ:
ð21Þ
Simplifying (21) yields
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G/f ðx;bÞ ¼ 1

ð2pÞ2
Z m1

�1þb1

Z m2

�1þb2

ex1ð1�ix1Þex2ð1�jx2Þd2x ¼ 1

ð2pÞ2
Z m1

�1þb1

ex1ð1�ix1Þdx1

Z m2

�1þb2

ex2ð1�jx2Þdx2

¼ 1

ð2pÞ2
ex1ð1�ix1Þð1� ix1Þjm1

�1þb1

ex2ð1�jx2Þ

ð1� jx2Þ
jm2
�1þb2

¼ ðe
m1ð1�ix1Þ � eð�1þb1Þð1�ix1ÞÞðem2ð1�jx2Þ � eð�1þb2Þð1�jx2ÞÞ

ð2pÞ2ð1� ix1 � jx2 þ kx1x2Þ
: ð22Þ
Using the properties of quaternions we obtain
G/f ðx;bÞ ¼
em1ð1�ix1Þ � eð�1þb1Þð1�ix1Þ
� �

ðem2ð1�jx2Þ � eð�1þb2Þð1�jx2ÞÞð1þ ix1 þ jx2 � kx1x2Þ
ð2pÞ2ð1þx2

1 þx2
2 þx2

1x2
2Þ

: ð23Þ
Example 2.2. Given the window function of the two-dimensional Haar function defined by
/ðxÞ ¼
1; for 0 6 x1 < 1=2 and 0 6 x2 < 1=2;
�1; for 1=2 6 x1 < 1 and 1=2 6 x2 < 1;
0; otherwise;

8><
>: ð24Þ
find the QWFT of the Gaussian function f ðxÞ ¼ e�ðx
2
1þx2

2Þ.
From Definition 2.3 we obtain
G/f ðx;bÞ ¼ 1

ð2pÞ2
Z

R2
f ðxÞ/ðx� bÞe�ix1x1 e�jx2x2 d2x

¼ 1

ð2pÞ2
Z 1=2þb1

b1

e�x2
1 e�ix1x1 dx1

Z 1=2þb2

b2

e�x2
2 e�jx2x2 dx2 �

1

ð2pÞ2
Z 1þb1

1=2þb1

e�x2
1 e�ix1x1 dx1

�
Z 1þb2

1=2þb2

e�x2
2 e�jx2x2 dx2: ð25Þ
By completing squares, we have
G/f ðx;bÞ ¼ 1

ð2pÞ2
Z 1=2þb1

b1

e�ðx1þix1=2Þ2�x2
1=4dx1

Z 1=2þb2

b2

e�ðx2þjx2=2Þ2�x2
2=4dx2

� 1

ð2pÞ2
Z 1þb1

1=2þb1

e�ðx1þix1=2Þ2�x2
1=4dx1

Z 1þb2

1=2þb2

e�ðx2þjx2=2Þ2�x2
2=4dx2:
Making the substitutions y1 ¼ x1 þ i x1
2 and y2 ¼ x2 þ j x2

2 in the above expression we immediately obtain
G/f ðx;bÞ ¼ e�ðx
2
1þx2

2Þ=4

ð2pÞ2
Z 1=2þb1þix1=2

b1þix1=2
e�y2

1 dy1

Z 1=2þb2þjx2=2

b2þjx2=2
e�y2

2 dy2 �
e�ðx

2
1þx2

2Þ=4

ð2pÞ2
Z 1þb1þix1=2

1=2þb1þix1=2
e�y2

1 dy1

Z 1þb2þjx2=2

1=2þb2þjx2=2
e�y2

2 dy2

¼ e�ðx
2
1þx2

2Þ=4

ð2pÞ2
Z b1þix1=2

0
ð�e�y2

1 Þdy1 þ
Z 1=2þb1þix1=2

0
e�y2

1 dy1

 !
�

Z b2þjx2=2

0
ð�e�y2

2 Þdy2 þ
Z 1=2þb2þjx2=2

0
e�y2

2 dy2

 !"

�
Z 1=2þb1þix1=2

0
ð�e�y2

1 Þdy1 þ
Z 1þb1þix1=2

0
e�y2

1 dy1

 !
�

Z 1=2þb2þjx2=2

0
ð�e�y2

2 Þdy2 þ
Z 1þb2þjx2=2

0
e�y2

2 dy2

 !#
:

ð27Þ
Eq. (27) can be written in the form
G/f ðx;bÞ ¼ e�ðx
2
1þx2

2Þ=4

ð2
ffiffiffiffi
p
p
Þ3

�erf b1 þ
i
2
x1

� �
þ erf

1
2
þ b1 þ

i
2
x1

� �	 

� �erf b2 þ

j
2
x2

� �
þ erf

1
2
þ b2 þ

j
2
x2

� �	 
�

� �erf
1
2
þ b1 þ

i
2
x1

� �
þ erf 1þ b1 þ

i
2
x1

� �	 

� �erf

1
2
þ b2 þ

j
2
x2

� �
þ erf 1þ b2 þ

j
2
x2

� �	 
�
; ð28Þ
where erfðxÞ ¼ 2ffiffiffi
p
p
R x

0 e�t2 dt.

2.4. Properties of the QWFT

In this subsection, we describe the properties of the QWFT. We must exercise care in extending the properties of the WFT
to the QWFT because of the general non-commutativity of quaternion multiplication. We will find most of the properties of
the WFT are still valid for the QWFT, however with some modifications.
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Theorem 2.1 (Left linearity). Let / 2 L2ðR2; HÞ be a quaternion window function. The QWFT of f ; g 2 L2ðR2; HÞ is a left linear
operator, which means
½G/ðkf þ lgÞ�ðx; bÞ ¼ kG/f ðx; bÞ þ lG/gðx; bÞ ð29Þ
for arbitrary quaternion constants k;l 2 H.
Proof. This follows directly from the linearity of the quaternion product and the integration involved in Definition 2.3. h
Remark 2.1. Restricting the constants in Theorem 2.1 to k;l 2 R we get both left and right linearity of the QWFT.
Theorem 2.2 (Parity). Let / 2 L2ðR2; HÞ be a quaternion window function. Then we have
GP/fPfgðx;bÞ ¼ G/f ð�x;�bÞ; ð30Þ
where P/ðxÞ ¼ /ð�xÞ; 8/ 2 L2ðR2; HÞ.
Proof. A direct calculation gives for every f 2 L2ðR2; HÞ
GP/fPfgðx;bÞ ¼ 1

ð2pÞ2
Z

R2
f ð�xÞ/ð�ðx� bÞÞe�ix1x1 e�jx2x2 d2x

¼ 1

ð2pÞ2
Z

R2
f ð�xÞ/ð�x� ð�bÞÞe�ið�x1Þð�x1Þe�jð�x2Þð�x2Þd2x; ð31Þ
which proves the theorem according to Definition 2.3. h
Theorem 2.3 (Specific shift). Let / be a quaternion window function. Assume that
f ¼ f0 þ if1 and / ¼ /0 þ i/1: ð32Þ
Then we obtain
G/Tx0 f ðx; bÞ ¼ e�ix1x0 ðG/f ðx;b� x0ÞÞe�jx2y0 ; ð33Þ
where Tx0 denotes the translation operator by x0 ¼ x0e1 þ y0e2, i.e. Tx0 f ¼ f ðx� x0Þ.
Proof. By (16) we have
G/ðTx0 f Þðx;bÞ ¼ 1

ð2pÞ2
Z

R2
f ðx� x0Þ/ðx� bÞe�ix1x1 e�jx2x2 d2x: ð34Þ
We substitute t for x� x0 in the above expression and get, with d2x ¼ d2t,
G/ðTx0 f Þðx;bÞ ¼ 1

ð2pÞ2
Z

R2
f ðtÞ/ðt � ðb� x0ÞÞe�ix1ðt1þx0Þe�jx2ðt2þy0Þd2t

¼ 1

ð2pÞ2
Z

R2
f ðtÞ/ðt � ðb� x0ÞÞe�ix1x0 e�ix1t1 e�jx2t2 e�jx2y0 d2t ¼ð32Þ 1

ð2pÞ2
e�ix1x0

�
Z

R2
f ðtÞ/ðt � ðb� x0ÞÞe�ix1t1 e�jx2t2 d2te�jx2y0 : ð35Þ
The theorem has been proved. h

Eq. (33) describes that if the original function f ðxÞ is shifted by x0, its window function will be shifted by x0, the frequency
will remain unchanged, and the phase will be changed by the left and right phase factors e�ix1x0 and e�jx2y0 .

Remark 2.2. Like for the (right-sided) QFT, the usual form of the modulation property of the QWFT does not hold [12,19]. It
is obstructed by the non-commutativity of the quaternion exponential product factors
e�ix1x1 e�jx2x2 – e�jx2x2 e�ix1x1 : ð36Þ

The following theorem tells us that the QWFT is invertible, that is, the original quaternion signal f can be recovered simply

by taking the inverse QWFT.
Theorem 2.4 (Reconstruction formula). Let / be a quaternion window function. Then every 2D quaternion signal f 2 L2ðR2; HÞ
can be fully reconstructed by
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f ðxÞ ¼ ð2pÞ2

k/k2
L2ðR2 ;HÞ

Z
R2

Z
R2

G/f ðx;bÞ/x;bðxÞd
2bd2x: ð37Þ
Proof. It follows from the QWFT (16) that
G/f ðx;bÞ ¼ 1

ð2pÞ2
F qff ðxÞ/ðx� bÞgðxÞ: ð38Þ
Taking the inverse (right-sided) QFT of both sides of (38) we obtain
f ðxÞ/ðx� bÞ ¼ ð2pÞ2F�1
q fG/f ðx;bÞgðxÞ ¼ ð2pÞ2

ð2pÞ2
Z

R2
G/f ðx;bÞejx2x2 eix1x1 d2x: ð39Þ
Multiplying both sides of (39) from the right by /ðx� bÞ and integrating with respect to d2b we get
f ðxÞ
Z

R2
j/ðx� bÞj2d2b ¼ ð2pÞ2

Z
R2

Z
R2

G/f ðx; bÞ 1

ð2pÞ2
ejx2x2 eix1x1 /ðx� bÞd2xd2b: ð40Þ
Inserting (14) into the right-hand side of (40) we finally obtain
f ðxÞk/k2
L2ðR2 ;HÞ ¼ ð2pÞ2

Z
R2

Z
R2

G/f ðx; bÞ/x;bðxÞd
2xd2b; ð41Þ
which gives (37). h

Set C/ ¼ k/k2
L2ðR2 ;HÞ and assume that 0 < C/ <1. Then, the reconstruction formula (37) can also be written as
f ðxÞ ¼ ð2pÞ
2

C/

Z
R2

Z
R2

G/f ðx; bÞ/x;bd2bd2x ¼ ð2pÞ2

C/

Z
R2

Z
R2
hf ;/x;biL2ðR2 ;HÞ/x;bd2bd2x: ð42Þ
More properties of the QWFT are given in the following theorems.

Theorem 2.5 (Orthogonality relation). Let / be a quaternion window function and f ; g 2 L2ðR2; HÞ arbitrary. Then we have
Z
R2

Z
R2
hf ;/x;biL2ðR2 ;HÞhg;/x;biL2ðR2 ;HÞd

2xd2b ¼ C/

ð2pÞ2
hf ; giL2ðR2 ;HÞ: ð43Þ
Proof. By inserting (16) into the left side of (43), we obtain
Z
R2

Z
R2
hf ;/x;biL2ðR2 ;HÞhg;/x;biL2ðR2 ;HÞd

2xd2b

¼
Z

R2

Z
R2
hf ;/x;biL2ðR2 ;HÞ

Z
R2

1

ð2pÞ2
ejx2x2 eix1x1 /ðx� bÞgðxÞd2x

 !
d2xd2b

¼
Z

R2

Z
R2

Z
R2

Z
R2

1

ð2pÞ4
f ðx0Þ/ðx0 � bÞe�ix1x01 � ejx2ðx2�x02Þeix1x1 d2xd2x0

 !
/ðx� bÞgðxÞd2xd2b

¼ 1

ð2pÞ2
Z

R2

Z
R2

Z
R2

f ðx0Þ/ðx0 � bÞd2ðx� x0Þ/ðx� bÞgðxÞd2x0
� �

d2bd2x

¼ 1

ð2pÞ2
Z

R2

Z
R2

f ðxÞ/ðx� bÞ/ðx� bÞgðxÞd2bd2x ¼ 1

ð2pÞ2
Z

R2
f ðxÞk/k2

L2ðR2 ;HÞgðxÞd
2x ¼ C/

ð2pÞ2
Z

R2
f ðxÞgðxÞd2x; ð44Þ
where in line five of (44) d2ðx� x0Þ ¼ dðx1 � x01Þdðx2 � x02Þ. This completes the proof of (43). h

As an easy consequence of the previous theorem, we immediately obtain the following corollary.

Corollary 2.6. If f ;/ 2 L2ðR2; HÞ are two quaternion-valued signals, then
Z
R2

Z
R2
jG/f ðx;bÞj2d2bd2x ¼ 1

ð2pÞ2
kfk2

L2ðR2 ;HÞk/k
2
L2ðR2 ;HÞ: ð45Þ
In particular, if the quaternion window function is normalized so that k/kL2ðR2 ;HÞ ¼ 1, then (45) becomes
Z
R2

Z
R2
jG/f ðx;bÞj2d2bd2x ¼ 1

ð2pÞ2
kfk2

L2ðR2 ;HÞ: ð46Þ



Table 1
Properties of the QWFT of f ; g 2 L2ðR2 ; HÞ, where k;l 2 H are constants and x0 ¼ x0e1 þ y0e2 2 R2.

Property Quaternion function QWFT

Left linearity kf ðxÞ +lgðxÞ kG/f ðx;bÞ þ lG/gðx; bÞ
Parity GP/fPfgðx; bÞ G/f ð�x;�bÞ
Specific shift f ðx� x0Þ e�ix1 x0 ðG/f ðx; b� x0ÞÞe�jx2y0 , if f ¼ f0 þ if1 and / ¼ /0 þ i/1

Formula
Orthogonality k/k2

L2 ðR2 ;HÞ

ð2pÞ2
hf ; giL2ðR2 ;HÞ ¼

R
R2

R
R2 hf ;/x;biL2ðR2 ;HÞhg;/x;biL2ðR2 ;HÞd

2xd2b

Reconstruction f ðxÞ ¼ ð2pÞ2

k/k2
L2 ðR2 ;HÞ

R
R2

R
R2 G/f ðx;bÞ/x;bðxÞ d2bd2x

Isometry 1
ð2pÞ2
kfk2

L2ðR2 ;HÞ ¼
R

R2

R
R2 jG/f ðx;bÞj2d2bd2x, if k/kL2ðR2 ;HÞ ¼ 1

Reproducing Kernel G/f ðx0;b0Þ ¼ R
R2

R
R2 G/f ðx; bÞK/ðx; b;x0;b0Þd2xd2b,

K/ðx;b; x0;b0Þ ¼ ð2pÞ2

k/k2
L2 ðR2 ;HÞ

h/x;b;/x0 ;b0 iL2ðR2 ;HÞ
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Proof. This identity is based on Theorem 2.5, with k/kL2ðR2 ;HÞ ¼ 1 and g ¼ f . h

Eq. (46) shows that the QWFT is an isometry from L2ðR2; HÞ into L2ðR2; HÞ. In other words, up to a factor of 1
ð2pÞ2

the total
energy of a quaternion-valued signal computed in the spatial domain is equal to the total energy computed in the quatern-
ionic windowed Fourier domain, compare (17) for the corresponding energy density.

Theorem 2.7 (Reproducing kernel). Let / 2 L2ðR2; HÞ be a quaternion window function. If
K/ðx; b;x0;b0Þ ¼ ð2pÞ2

C/
h/x;b;/x0 ;b0 iL2ðR2 ;HÞ; ð47Þ
then K/ðx;b; x0;b0Þ is a reproducing kernel, i.e.
G/f ðx0; b0Þ ¼
Z

R2

Z
R2

G/f ðx; bÞK/ðx; b;x0;b0Þd2xd2b: ð48Þ
Proof. By inserting (42) into the definition of the QWFT (16) we obtain
G/f ðx0; b0Þ ¼
Z

R2
f ðxÞ/x0 ;b0 ðxÞd

2x ¼
Z

R2

ð2pÞ2

C/

Z
R2

Z
R2

G/f ðx; bÞ/x;bðxÞd
2bd2x

 !
/x0 ;b0 ðxÞd

2x

¼
Z

R2

Z
R2

G/f ðx; bÞ ð2pÞ2

C/

Z
R2

/x;bðxÞ/x0 ;b0 ðxÞd
2x

� �
d2bd2x

¼
Z

R2

Z
R2

G/f ðx; bÞK/ðx; b;x0;b0Þd2bd2x; ð49Þ
which finishes the proof. h

The above properties of the QWFT are summarized in Table 1.

3. Heisenberg’s uncertainty principle for the QWFT

The classical uncertainty principle of harmonic analysis states that a non-trivial function and its Fourier transform can not
both be simultaneously sharply localized [3,22]. In quantum mechanics an uncertainty principle asserts one can not at the
same time be certain of the position and of the velocity of an electron (or any particle). That is, increasing the knowledge of
the position decreases the knowledge of the velocity or momentum of an electron. This section extends the uncertainty prin-
ciple which is valid for the (right-sided) QFT [19] to the setting of the QWFT. A directional QFT uncertainty principle has been
studied in [16].

In [19] a component-wise uncertainty principle for the QFT establishes a lower bound on the product of the effective
widths of quaternion-valued signals in the spatial and frequency domains. This uncertainty can be written in the following
form.

Theorem 3.1 (QFT uncertainty principle). Let f 2 L2ðR2; HÞ be a quaternion-valued function. If F qffgðxÞ 2 L2ðR2; HÞ too, then
we have the inequality (no summation over k; k ¼ 1;2)
Z

R2
x2

k jf ðxÞj
2d2x

Z
R2

x2
k jF qffgðxÞj2d2x P

ð2pÞ2

4

Z
R2
jf ðxÞj2d2x

� �2

: ð50Þ



M. Bahri et al. / Applied Mathematics and Computation 216 (2010) 2366–2379 2375
Equality holds if and only if f is the Gaussian quaternion function, i.e.
f ðxÞ ¼ C0e�ða1x2
1þa2x2

2Þ; ð51Þ
where C0 is a quaternion constant and a1; a2 are positive real constants.
Applying the Parseval theorem for the QFT [12] to the right-hand side of (50) we get the following corollary.

Corollary 3.2. Under the above assumptions, we have
Z
R2

x2
k jF�1

q ½F qffg�ðxÞj2d2x
Z

R2
x2

k jF qffgðxÞj2d2x P
1

4p

Z
R2
jF qffgðxÞj2d2x

� �2

: ð52Þ
Let us now establish a generalization of the Heisenberg type uncertainty principle for the QWFT. From a mathematical
point of view this principle describes how the spatial extension of a two-dimensional quaternion function relates to the
bandwidth of its QWFT.
Theorem 3.3 (QWFT uncertainty principle). Let / 2 L2ðR2; HÞ be a quaternion window function and let G/f 2 L2ðR2; HÞ be the
QWFT of f such that xkG/f 2 L2ðR2; HÞ, k ¼ 1;2. Then for every f 2 L2ðR2; HÞ we have the following inequality:
Z
R2

Z
R2

x2
k jG/f ðx; bÞj2d2xd2b

� �1=2 Z
R2

x2
k jf ðxÞj

2d2x
� �1=2

P
1

4p
kfk2

L2ðR2 ;HÞk/kL2ðR2 ;HÞ: ð53Þ
In order to prove this theorem, we need to introduce the following lemma.
Lemma 3.4. Under the assumptions of Theorem 3.3, we have
k/k2
L2ðR2 ;HÞ

ð2pÞ4
Z

R2
x2

k jf ðxÞj
2d2x ¼

Z
R2

Z
R2

x2
k jF�1

q fG/f ðx; bÞgðxÞj2d2xd2b; k ¼ 1;2: ð54Þ
Proof. Applying elementary properties of quaternions, we get
k/k2
L2ðR2 ;HÞ

Z
R2

x2
k jf ðxÞj

2d2x ¼
Z

R2
x2

k jf ðxÞj
2d2x

Z
R2
j/ðx� bÞj2d2b ¼

Z
R2

Z
R2

x2
k jf ðxÞj

2j/ðx� bÞj2d2xd2b

¼
Z

R2

Z
R2

x2
k jf ðxÞj

2j/ðx� bÞj2d2xd2b

¼
Z

R2

Z
R2

x2
k jf ðxÞ/ðx� bÞj2d2xd2b ¼ð39Þ

Z
R2

Z
R2
ð2pÞ4x2

k jF�1
q fG/f ðx;bÞg

� ðxÞj2d2xd2b: � ð55Þ
Let us now begin with the proof of Theorem 3.3.
Proof. Replacing the QFT of f by the QWFT of f on the left-hand side of (52) in Corollary 3.2 we obtain
Z
R2

x2
k jG/f ðx;bÞj2d2x

Z
R2

x2
k jF�1

q fG/f ðx; bÞgðxÞj2d2x P
1

4p

Z
R2
jG/f ðx; bÞj2d2x

� �2

: ð56Þ
This replacement is, according to (38), equivalent to inserting f 0ðxÞ ¼ 1
ð2pÞ2

f ðxÞ/ðx� bÞ in (52). Taking the square root on

both sides of (56) and integrating both sides with respect to d2b yields
Z
R2

Z
R2

x2
k jG/f ðx;bÞj2d2x

� �1=2 Z
R2

x2
k jF�1

q fG/f ðx;bÞgðxÞj2d2x
� �1=2

( )
d2b P

1
4p

Z
R2

Z
R2
jG/f ðx;bÞj2d2xd2b: ð57Þ
Now applying the quaternion Cauchy–Schwarz inequality (6) (compare (4.14) of [19]) to the left-hand side of (57) we
get
 Z

R2

Z
R2

x2
k jG/f ðx; bÞj2d2xd2b

� �1=2 Z
R2

Z
R2

x2
k jF�1

q fG/f ðx;bÞgðxÞj2d2xd2b
� �1=2

P
1

4p

Z
R2

Z
R2
jG/f ðx; bÞj2d2xd2b: ð58Þ
Inserting Lemma 3.4 into the second term on the left-hand side of (58) and substituting (45) of Corollary 2.6 into the
right-hand side of (58), we have
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Z
R2

Z
R2

x2
k jG/f ðx;bÞj2d2xd2b

� �1=2 k/k2
L2ðR2 ;HÞ

ð2pÞ4
Z

R2
x2

k jf ðxÞj
2d2x

 !1=2

P
1

16p3 kfk
2
L2ðR2 ;HÞk/k

2
L2ðR2 ;HÞ: ð59Þ
Dividing both sides of (59) by
k/k

L2ðR2 ;HÞ

ð2pÞ2
, we obtain the desired result. h

Remark 3.1. According to the properties of the QFT and its uncertainty principle, Theorem 3.3 does not hold for summation
over k. If we introduce summation, we would have to replace the factor 1

4p on the right hand side of (53) by 1
2p.
4. Application of the QWFT

The WFT plays a fundamental role in the analysis of signals and linear time-varying (TV) systems [6,7,21]. The effective-
ness of the WFT is a result of its providing a unique representation for the signals in terms of the windowed Fourier kernel. It
is natural to ask whether the QWFT can also be applied to such problems. This section briefly discusses the application of the
QWFT to study two-dimensional linear TV systems (see Fig. 4). We may regard the QWFT as a linear TV band-pass filter ele-
ment of a filter-bank spectrum analyzer and, therefore, the TV spectrum obtained by the QWFT can also be interpreted as the
output of such a linear TV band-pass filter element. For this purpose let us introduce the following definition.

Definition 4.1. Consider a two-dimensional linear TV system with h(�, �, �) denoting the quaternion impulse response of the
filter. The output r(�, �) of the linear TV system is defined by
rðx;bÞ ¼
Z

R2
f ðxÞhðx;b;b� xÞd2x ¼

Z
R2

f ðb� xÞhðx;b; xÞd2x; ð60Þ
where f(�) is a two-dimensional quaternion-valued input signal.
We then obtain the transfer function R(�, �) of the quaternion impulse response h(�, �, �) of the TV filter as
Rðx;bÞ ¼
Z

R2
hðx;b;aÞe�ix1a1 e�jx2a2 d2a; a ¼ a1e1 þ a2e2 2 R2: ð61Þ
The following simple theorem (compare to Ghosh and Sreenivas [7]) relates the QWFT to the output of a linear TV band-
pass filter.

Theorem 4.1. Consider a linear TV band-pass filter. Let the TV quaternion impulse response h1ð�; �; �Þ of the filter be defined by
h1ðx; b;aÞ ¼
1

ð2pÞ2
/ð�aÞe�ix1ðb1�a1Þe�jx2ðb2�a2Þ; ð62Þ
where /ð�Þ is the quaternion window function. The output r1ð�; �Þ of the TV system is equal to the QWFT of the quaternion input
signal f ðxÞ.
Proof. Using Definition 4.1, we get the output as follows:
r1ðx; bÞ ¼
Z

R2
f ðxÞh1ðx;b;b� xÞd2x ¼ 1

ð2pÞ2
Z

R2
f ðxÞ/ðx� bÞe�ix1ðb1�ðb1�x1ÞÞe�jx2ðb2�ðx2�x2ÞÞd2x

¼ 1

ð2pÞ2
Z

R2
f ðxÞ/ðx� bÞe�ix1x1 e�jx2x2 d2x ¼ G/f ðx;bÞ; ð63Þ
which proves the theorem. h

This shows that the choice of the quaternion impulse response of the filter will determine a characteristic output of the
linear TV systems. For example, if we translate the TV quaternion impulse response h1ð�; �; �Þ by b0 ¼ b01e1 þ b02e2, i.e.
h1ðx; b;aÞ ! h1ðx; b;a� b0Þ ¼
1

ð2pÞ2
/ð�ða� b0ÞÞe�ix1ðb1�ða1�b01ÞÞe�jx2ðb2�ða2�b02ÞÞ; ð64Þ
then the output is according to Theorem 2.3
r1;b0ðx;bÞ ¼ e�ix1b01 G/f ðx; b� b0Þe�jx2b02 : ð65Þ
In this case, we assumed that the input f i ¼ if and the window function /i ¼ i/.
Fig. 4. Block diagram of a two-dimensional linear time-varying system.
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Theorem 4.2. Consider a linear TV band-pass filter with the TV quaternion impulse response h2ð�; �; �Þ defined by
Fig. 5.
of (69).
h2ðx; b;aÞ ¼ e�ix1ðb1�a1Þe�jx2ðb2�a2Þ; ð66Þ
If the input to this system is the quaternion signal f ðxÞ, its output r2ðxÞ ¼ r2ðx; �Þ is, independent of the b-argument, equal to
the QFT of f:
r2ðxÞ ¼ F qffgðxÞ: ð67Þ
Proof. Using Definition 4.1, we obtain
r2ðx; bÞ ¼
Z

R2
f ðxÞh2ðx;b;b� xÞd2x ¼

Z
R2

f ðxÞe�ix1ðb1�ðb1�x1ÞÞe�jx2ðb2�ðb2�x2ÞÞd2x ¼
Z

R2
f ðxÞe�ix1x1 e�jx2x2 d2x ¼ F qffgðxÞ:

ð68Þ
Or r2ðxÞ ¼ r2ðx;bÞ ¼ F qffgðxÞ, because the right-hand side of (68) is independent of b. h
Example 4.1. Given the TV quaternion impulse response defined by (66). Find the output r2ð�Þ (see Fig. 5) of the following
input
f ðxÞ ¼ e�ðx1þx2Þ; if x1 P 0 and x2 P 0;
0; otherwise:

(
ð69Þ
From Theorem 4.2, we obtain the QFT of f
r2ðxÞ ¼
1

ð2pÞ2
Z 1

0

Z 1

0
e�x1ð1þix1Þe�x2ð1þjx2Þd2x ¼ 1

ð2pÞ2
�1

1þ ix1
e�ix1x1 e�x1 j10

�1
ð1þ jx2Þ

e�jx2x2 e�x2 j10

¼ 1

ð2pÞ2
1

1þ ix1 þ jx2 þ kx1x2
¼ 1

ð2pÞ2
1� ix1 � jx2 � kx1x2

1þx2
1 þx2

2 þx2
1x2

2

: ð70Þ
Example 4.2. Consider the TV quaternion impulse response defined by (62) with respect to the first order two-dimensional
B-spline window function (19) in Example 2.1. Find the output r1ð�; �Þ (see Fig. 6) of the input (69) defined in Example 4.1.
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Fig. 6. The real part (top left) and imaginary i-part (top right), j-part (bottom left), and k-part (bottom right) of the output r1ðx;b ¼ 0Þ in Example 4.2, i.e. the
QWFT (71) of (62) with b1 ¼ b2 ¼ 0.
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With m1 ¼maxð0;�1þ b1Þ;m2 ¼maxð0;�1þ b2Þ, Theorem 4.1 gives
r1ðx; bÞ ¼ G/f ðx;bÞ ¼ 1

ð2pÞ2
Z 1þb1

m1

e�x1 e�ix1x1 dx1

Z 1þb2

m2

e�x2 e�jx2x2 dx2

¼ �1

ð2pÞ2ð1þ ix1Þ
e�x1ð1þix1Þj1þb1

m1

�1
ð1þ jx2Þ

e�x2ð1þjx1Þj1þb2
m2

¼ ðe
�m1ð1þix1Þ � e�ð1þb1Þð1þix1ÞÞðe�m2ð1þjx2Þ � e�ð1þb2Þð1þjx2ÞÞ

ð2pÞ2ð1þ ix1 þ jx2 þ kx1x2Þ
: ð71Þ
For the sake of simplicity, we take the parameters b1 ¼ b2 ¼ 0) m1 ¼ m2 ¼ 0, to obtain
r1ðx; b ¼ 0Þ ¼ ð1� e�ð1þix1ÞÞð1� e�ð1þjx2ÞÞ
ð2pÞ2ð1þ ix1 þ jx2 þ kx1x2Þ

¼ 1� e�1 cos x1 � e�1 cos x2 þ e�2 cos x1 cos x2 þ iðe�1 sin x1 � e�2 sinx1 cos x2Þ
ð2pÞ2ð1þ ix1 þ jx2 þ kx1x2Þ

þ jðe�1 sinx2 � e�2 cos x1 sin x2Þ þ ke�2 sinx1 sin x2

ð2pÞ2ð1þ ix1 þ jx2 þ kx1x2Þ
: ð72Þ
We may regard the QFT (70) as the QWFT with an infinite window function. Since the integration domain of the QWFT
(71) is smaller than that of the QFT (70), the QWFT output (71) is more localized in the base space than the QFT output of
(70). In addition, according to the Paley–Wiener theorem the QWFT output of (71) is very smooth. This means that it pro-
vides accurate information on the output r(�,�) due to the local window function /.

5. Conclusion

Using the basic concepts of quaternion algebra and the (right-sided) QFT we introduced the QWFT. Important properties
of the QWFT such as left linearity, parity, reconstruction formula, reproducing kernel, isometry, and orthogonality relation
were demonstrated. Because of the non-commutativity of multiplication in the quaternion algebra H, not all properties of
the classical WFT can be established for the QWFT, such as general shift and modulation properties. This generalization also
enables us to construct quaternionic Gabor filters (compare to Bülow [1,2]), which can extend the applications of the 2D
complex Gabor filters to texture segmentation and disparity estimation [1].
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We have established a new uncertainty principle for the QWFT. This principle is founded on the QWFT properties and the
uncertainty principle for the (right-sided) QFT. We also applied the QWFT to a linear time-varying (TV) system. We showed
that the output of a linear TV system can result in a QFT or a QWFT of the quaternion input signal, depending on the choice of
the quaternion impulse response of the filter.
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