The transverse mass spectra of Ω hyperons measured in Pb+Pb collisions at the SPS have been described by the STAR Collaboration. These data allow to test our model in the new energy regime. They also give a unique opportunity to extract parameters of the QGP hadronization at RHIC energies and consequently predict spectra of J/ψ and ψ′ mesons.

Within a hydrodynamical approach of the QGP hadronization the transverse mass spectrum of i-th hadron in the central rapidity region can be written as (see, e.g., Ref. [19]):

$$\frac{dN_i}{m_T dN_T dy} \bigg|_{y=0} = \frac{d_i \gamma_i^m}{\pi} \tau_H \frac{R_H^2}{\lambda_H} \int_0^1 \xi \, d\xi \, K_1 \left(\frac{m_T \cosh y_T \xi}{R_H} \right) I_0 \left(\frac{p_T \sinh y_T \xi}{R_H} \right),$$

where y is the particle longitudinal rapidity and y_T(ξ) = tanh⁻¹(v_T) is the fluid transverse rapidity, R_H and τ_H are, respectively, the transverse system size and proper time at the hadronization (i.e., at the boundary between the mixed phase and hadron matter), ξ = r/R_H is a relative transverse coordinate. The particle degeneracy and fugacity are denoted as d_i and λ_i, respectively, m_T = √p_T^2 + m_i^2 is the hadron transverse mass, K_1 and I_0 are the modified Bessel functions. Parameter γ_i in Eq. (1) (γ_S [20] for i = ρ, Ω and γ_C [14,15] for i = J/ψ, ψ′) describes a possible deviation of strange and charm hadrons from complete chemical equilibrium (n_i = 2 for φ, J/ψ, ψ′ and n_i = 3 for Ω).

The spectrum (1) is obtained under the assumption that the hydrodynamic expansion is longitudinally boost invariant and that the freeze–out occurs at constant longitudinal proper time τ = √t^2 - z^2 (t is the time and z is the longitudinal coordinate), i.e. the freeze–out time t is independent of the transverse coordinate r. In order to complete Eq. (1) the functional form of the transverse rapidity distribution of hadronizing matter y_T(ξ) has to be given. A linear flow profile, y_T(ξ) = y_T^{max} · ξ, used in our model is justified by the numerical calculations of Ref. [9].

Thus, in our model, the QGP hadronization is described by the following parameters: temperature T_H, “volume” τ_H R_H^2, maximum flow rapidity y_T^{max}, fugacities λ_i, and saturation factors γ_i. Note that the ρ, J/ψ, ψ′ have no conserved charges and λ_i = 1 for these particles. We use the fixed values of the parameters T_H = 170 MeV, γ_S = 1.0, λ_Ω = 1/λ_Ω = 1.09 (note that λ_i = exp[(μ_B - 3μ_S)/T], where μ_B and μ_S are, respectively, baryon and strange chemical potentials). These (average) values of the chemical freeze–out parameters have been found in the hadron gas analysis [4] of the full
set of the midrapidity particle number ratios measured in central Au+Au collisions at $\sqrt{s_{NN}} = 130$ GeV. The fit to the m_T-spectra of Ω^\pm hyperons [17] and ϕ mesons [18] measured in central (14% for Ω^\pm and 11% for ϕ) Au+Au collisions at $\sqrt{s_{NN}} = 130$ GeV is shown in Fig. 1. The fit results are: $y_T^{\Omega_{\pm}} = 0.74 \pm 0.09$, $\tau_H R_H^{2\Omega_{\pm}} = 275 \pm 70$ fm$/c$ and $\chi^2/ndf \cong 0.46$. In the calculation of errors of the two free parameters of the model the uncertainties of T_H (± 5 MeV), γ_S (± 0.05) and λ_{Ω^\pm} (± 0.06) were taken into account.

Note that in Refs. [10–12] an additional factor $m_T^{1/2}$ was present in the r.h.s. of Eq. (2). It led to smaller values of T^* when fitting the same spectrum. The m_T–spectrum (1) may, however, deviate significantly from a purely exponential one and its shape depends on the magnitude of the transverse flow and the mass of the particle. The normalization factors C and the inverse slope parameters T^* in different intervals of $m_T - m$ can be found from the ϕ, Ω, J/ψ and ψ' spectra given by Eq. (1) using the maximum likelihood method. The average values of T^* for the m_T domains of “low-p_T” ($m_T - m < 0.6$ GeV) and “high-p_T” (0.6 GeV < $m_T - m < 1.6$ GeV), discussed in Refs. [9,12], are shown in Fig. 2. The values of T^* obtained by fitting the Ω^\pm, J/ψ and ψ' data in Pb+Pb collisions at 158 A-GeV (see Ref. [11]) are also shown for comparison. The observed increase of T^* with increase of the hadron mass is much stronger at RHIC than at SPS energies. It is caused by larger transverse flow velocity of hadronizing QGP at RHIC ($\bar{v}_T \cong 0.44$) than at SPS ($\bar{v}_T \cong 0.19$). The increase of T^* is much more pronounced in “low-p_T” region than in “high-p_T” one. In our model the m_T–spectra of charmonia are extraordinary affected by the stronger transverse flow at RHIC due to enormous masses of these hadrons. Thus, the data on J/ψ and ψ' production in Au+Au collisions, soon to be obtained at RHIC, should allow to test the hypothesis of their formation at the QGP hadronization.

![FIG. 1. The hadron transverse mass spectra in Au+Au collisions at $\sqrt{s_{NN}} = 130$ GeV are shown. The points indicate experimental data for the Ω [17] and ϕ [18] measured by STAR. The model results are shown by full lines.

We note here that at present there exists an uncertainty in the estimates of the γ_S factor, therefore, the predictions concerning charmonia multiplicities in Au+Au collisions at RHIC within statistical approaches significantly vary and their discussion goes beyond the scope of this letter.

![FIG. 2. The values of the inverse slope parameters T^* for two different $(0.6$ GeV/$c < m_T < 4.6$ GeV) in Au+Au collisions at $\sqrt{s_{NN}} = 130$ GeV are shown. The points indicate experimental data for the Ω [17] and ϕ [18] measured by STAR. The model results are shown by full lines. The fit results are: $y_T^{\Omega_{\pm}} = 0.74$, $\tau_H R_H^{2\Omega_{\pm}} = 275 \pm 70$ fm$/c$ and $\chi^2/ndf \cong 0.46$. For comparison, the values of T^* obtained by fitting the Ω^\pm, J/ψ and ψ' data in Pb+Pb collisions at 158 A-GeV (see Ref. [11]) are also shown for comparison. The observed increase of T^* with increase of the hadron mass is much stronger at RHIC than at SPS energies. It is caused by larger transverse flow velocity of hadronizing QGP at RHIC ($\bar{v}_T \cong 0.44$) than at SPS ($\bar{v}_T \cong 0.19$). The increase of T^* is much more pronounced in “low-p_T” region than in “high-p_T” one. In our model the m_T–spectra of charmonia are extraordinary affected by the stronger transverse flow at RHIC due to enormous masses of these hadrons. Thus, the data on J/ψ and ψ' production in Au+Au collisions, soon to be obtained at RHIC, should allow to test the hypothesis of their formation at the QGP hadronization.

The “volume parameter” $\tau_H R_H^2 \equiv A(T_H)$ extracted from the fit to the Ω and ϕ spectra defines the line $\tau_H = A(T_H) \cdot R_H^{-2}$ in the R_H^{-2}–τ_H plane. The allowed region in the R_H^{-2}–τ_H plane can be estimated by varying the temperature parameter within its limits, $T_H = 165$ MeV and $T_H = 175$ MeV. The resulting lines are shown in Fig. 3. The transverse radius $R_H = 5 \div 7$ fm and the proper time $\tau_H = 8 \div 11$ fm$/c$ at the QGP hadronization can be estimated from the hydrodynamical calculations of [9] for central Au+Au collisions at $\sqrt{s_{NN}} = 130$ GeV (see Fig. 3 in Ref. [9]). These model boundaries and their intersection with the R_H^{-2}–τ_H region found in our analysis

![FIG. 3. The “volume parameter” $\tau_H R_H^2 \equiv A(T_H)$ extracted from the fit to the Ω and ϕ spectra defines the line $\tau_H = A(T_H) \cdot R_H^{-2}$ in the R_H^{-2}–τ_H plane. The allowed region in the R_H^{-2}–τ_H plane can be estimated by varying the temperature parameter within its limits, $T_H = 165$ MeV and $T_H = 175$ MeV. The resulting lines are shown in Fig. 3. The transverse radius $R_H = 5 \div 7$ fm and the proper time $\tau_H = 8 \div 11$ fm$/c$ at the QGP hadronization can be estimated from the hydrodynamical calculations of [9] for central Au+Au collisions at $\sqrt{s_{NN}} = 130$ GeV (see Fig. 3 in Ref. [9]). These model boundaries and their intersection with the R_H^{-2}–τ_H region found in our analysis.
FIG. 3. The lines \(\tau_{H} = A(T_{H}) \cdot R_{H}^{-2} \) of constant “volume parameter” \(A(T_{H}) \) are shown: \(T_{H} = 165 \text{ MeV} \) and \(T_{H} = 175 \text{ MeV} \) correspond to the lower and upper solid lines, respectively. The dashed area is the intersection of the \(R_{H}-\tau_{H} \) region between the \(T_{H} = 165 \text{ MeV} \) and \(T_{H} = 175 \text{ MeV} \) lines with the region of \(R_{H} = 5 \div 7 \text{ fm} \) and \(\tau_{H} = 8 \div 11 \text{ fm/c} \) estimated from Ref. [9].

Table I. The values of inverse slope parameters \(T_{*} \) for (anti)protons and (anti)lambdas in Au+Au collisions at \(\sqrt{s_{NN}} = 130 \text{ GeV} \) are presented. The experimental values are taken as the average ones over the STAR and PHENIX results (a difference in the results for particle and its anti-particle is small).

<table>
<thead>
<tr>
<th></th>
<th>(T_{low-p_T}) (MeV)</th>
<th>(T_{high-p_T}) (MeV)</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA (p, \bar{p})</td>
<td>455 ± 105</td>
<td>290 ± 40</td>
<td>[23,25]</td>
</tr>
<tr>
<td>Hydro+RQMD</td>
<td>480</td>
<td>300</td>
<td>[9]</td>
</tr>
<tr>
<td>Single freeze-out</td>
<td>315</td>
<td>310</td>
<td></td>
</tr>
<tr>
<td>DATA (\Lambda, \bar{\Lambda})</td>
<td>505 ± 60</td>
<td>320 ± 30</td>
<td>[21,22]</td>
</tr>
<tr>
<td>Hydro+RQMD</td>
<td>440</td>
<td>310</td>
<td>[9]</td>
</tr>
<tr>
<td>Single freeze-out</td>
<td>360</td>
<td>330</td>
<td>[22]</td>
</tr>
</tbody>
</table>

Within our approach the \(m_T \)-spectra of \(\phi, \Omega, J/\psi, \psi' \) are assumed to be frozen at the space-time hyper-surface where the hadron phase starts. This assumption is justified by the small hadronic cross sections and large masses of these particles (in addition, the \(m_T \)-spectra of these hadrons are almost not affected by the resonance feeding). However, the \(m_T \)-spectra of many other hadrons are shown in Fig. 3.
atic) error was estimated to be a half of the difference between them.

Despite the large uncertainties, the data seem to favor the “QGP hydro + hadron cascade” model over the single freeze–out model. Additional data in the low-p_T region and their theoretical analysis would be helpful to clarify presence of the hadron cascade stage and its influence on $T^*_{\text{low}-p_T}$ of (anti)protons and (anti)lambdas.

The results on m_T–spectra of charmonia in central Au+Au collisions at the RHIC energies are expected to be available soon. They should allow to test a statistical approach to the charmonia production at the QGP hadronization in high energy nuclear collisions. In particular, within this approach, we predict a strong (a few times) increase of the inverse slope parameter T^* of the charmonia m_T–spectra at RHIC in comparison with that at SPS. The higher is the energy the larger inverse slope is expected due to increasing transverse flow of hadronizing QGP. Thus, at $\sqrt{s_{NN}} = 200$ GeV the increase of T^* should become even more pronounced than at $\sqrt{s_{NN}} = 130$ GeV. Due to strong sensitivity of the charmonia spectra to the hadronization temperature and transverse flow velocity, their analysis should significantly improve our estimate of these parameters.

Acknowledgements. We thank A. L. Blokhin, P. Braun–Munzinger and W. Greiner for discussions and comments. The financial supports from the Humboldt Foundation and INTAS grant 00–00366 are acknowledged.