POSSIBLE LARGE DIRECT CP VIOLATIONS
IN CHARMLESS B-DECAYS

– Summary Report on the pQCD method –

Y.-Y. KEUM AND A. I. SANDA

EKEN LAB. Department of Physics
Nagoya University, Nagoya 464-8602 JAPAN

Abstract

We discuss the perturbative QCD approach on the exclusive non-leptonic two body B-meson decays. We briefly review its ingredients and some important theoretical issues on the factorization approaches. We show numerical results which is compatible with present experimental data for the charmless B-meson decays. Specailly we predict the possibility of large direct CP violation effects in $B^0 \rightarrow \pi^+\pi^- (23 \pm 7\%)$ and $B^0 \rightarrow K^+\pi^- (-17 \pm 5\%)$. In the last section we investigate two methods to determine the weak phases ϕ_2 and ϕ_3 from $B \rightarrow \pi\pi, K\pi$ processes. We obtain quite interesting bounds on ϕ_2 and ϕ_3 from present experimental measurements.

Talk given by Y.-Y. Keum at the
3rd workshop on Higher Luminosity B Factory,
Kanagawa, Japan, 6–7 August 2002
To appear in the Proceedings
CONTENTS:

– Introduction
– Ingredients of PQCD
– Important Theoretical Issues
– Numerical Results
 • Branching Ratios
 • Large direct CP Asymmetry in $B \to \pi\pi, K\pi$ decays
– Determination of ϕ_2 and ϕ_3
 • Determination of ϕ_2 from $B \to \pi\pi$
 • Determination of ϕ_3 from $B \to K\pi$
– Summary and Outlook
Possible Large Direct CP Violations in Charmless B-meson Decays

Y.-Y. Keum and A.I. Sanda

EKEN LAB. Department of Physics, Nagoya University, Nagoya 464-8602 JAPAN

Abstract. We discuss the perturbative QCD approach on the exclusive non-leptonic two body B-meson decays. We briefly review its ingredients and some important theoretical issues on the factorization approaches. We show numerical results which is compatible with recent experimantal data for the charmless B-meson decays. Specailly we predict the possibility of large direct CP violation effects in $B^0 \rightarrow \pi^+\pi^-$ $(23 \pm 7\%)$ and $B^0 \rightarrow K^+\pi^-$ $(-17 \pm 5\%)$. In the last section we investigate two methods to determine the weak phases ϕ_2 and ϕ_3 from $B \rightarrow \pi\pi, K\pi$ processes. We obtain quite interesting bounds on ϕ_2 and ϕ_3 from present experimental measurements.

INTRODUCTION

The aim of the study on weak decay in B-meson is two folds: (1) To determine precisely the elements of Cabibbo-Kobayashi-Maskawa (CKM) matrix[1, 2] and to explore the origin of CP-violation in low energy scale, (2) To understand strong interaction physics related to the confinements of quarks and gluons within hadrons.

Both tasks complement each other. An understanding of the connection between quarks and hadron properties is a necessary prerequisite for a precise determination of CKM matrix elements and CP-violating phases, so called Kobayashi-Maskawa(KM) phase[2].

The theoretical description of hadronic weak decays is difficult since nonperturbative QCD interactions are involved. This makes a difficult to interpret correctly data from asymmetric B-factories and to seek the origin of CP violation. In the case of B-meson decays into two light mesons, we can explain roughly branching ratios by using the factorization approximation [3, 4]. Since B-meson is quite heavy, when it decays into two light mesons, the final-state mesons are moving so fast that it is difficult to exchange gluons between final-state mesons. So we can express the amplitude in terms of the product of weak decay constant and transition form factors by the factorization (color-transparancy) argument[5, 6]. In this approach we can not calculate non-factorizable contributions and annihilation contributions even though which is not dominant. Because of this weakness, asymmetry of CP violation can not be predicted precisely.

Recently two different QCD approaches beyond naive and general factorization assumption [3, 4, 7, 8] was proposed: (1) QCD-factorization in heavy quark limit [9, 10]
in which non-factorizable terms and a_i are calculable in some cases. (2) A Novel PQCD approach [11, 12, 13] including the resummation effects of the transverse momentum carried by partons inside meson. In this talk, I discuss some important theoretical issues in the PQCD factorization and numerical results for charmless B-decays.

INGREDIENTS OF PQCD

Factorization in PQCD: The idea of pertubative QCD is as follows: When heavy B-meson decays into two light mesons, the hard process is dominant. Since two light mesons fly so fast with large momentum, it is reasonable assumptions that the final-state interaction is not important for charmless B-decays and hard gluons are needed to boost the resting spectator quark to get large momentum and finally to hadronize a fast moving final meson. So the dominant process is that one hard gluon is exchanged between spectator quark and other four quarks.

Let’s start with the lowest-order diagram of $B \rightarrow K \pi$. The soft divergences in the $B \rightarrow \pi$ form factor can be factorized into a light-cone B meson wave function, and the collinear divergences can be factorized into a pion distribution amplitude. The finite pieces of them is absorbed into the hard part. Then in the natural way we can factorize amplitude into two pieces: $G \equiv H(Q,\mu) \otimes \Phi(m,\mu)$ where H stands for hard part which is calculable with a perturbative way, and Φ is wave functions which belong to the non-perturbative physics.

PQCD adopt the three scale factorization theorem [14] based on the perturbative QCD formalism by Brodsky and Lepage [15], and Botts and Sterman [16], with the inclusion of the transverse momentum components which was carried by partons inside meson.

We have three different scales: electroweak scale: M_W, hard interaction scale: $t \sim O(\sqrt{(\Lambda m_b)})$, and the factorization scale: $1/b$ where b is the conjugate variable of parton transverse momenta. The dynamics below $1/b$ is completely non-perturbative and can be parameterized into meson wave funtions which is universal and process independent. In our analysis we use the results of light-cone distribution amplitudes (LCDAs) by Ball [17, 18] with light-cone sum rule.

The amplitude in PQCD is expressed as

$$A \sim C(t) \times H(t) \times \Phi(x) \times \exp \left[-s(P,b) - 2 \int_{1/b}^{t} \frac{d\mu}{\mu} \gamma_q(\alpha_s(\mu)) \right] \quad (1)$$

where $C(t)$ are Wilson coefficients, $\Phi(x)$ are meson LCDAs and variable t is the factorized scale in hard part.

FIGURE 1. The diagrams generate double logarithm corrections for the sudakov resummation.
Sudakov Suppression Effects: When we include k_\perp, the double logarithms $\ln^2(Pb)$ are generated from the overlap of collinear and soft divergence in radiative corrections to meson wave functions, where P is the dominant light-cone component of a meson momentum. The resummation of these double logarithms leads to a Sudakov form factor $\exp[-s(P, b)]$ in Eq.(1), which suppresses the long distance contributions in the large b region, and vanishes as $b > 1/\Lambda_{QCD}$.

This suppression renders k_\perp^2 flowing into the hard amplitudes of order

$$ k_\perp^2 \sim O(\bar{\Lambda}M_B). $$

(2)

The off-shellness of internal particles then remain of $O(\bar{\Lambda}M_B)$ even in the end-point region, and the singularities are removed. This mechanism is so-called Sudakov suppression.

Du et al. have studied the Sudakov effects in the evaluation of nonfactorizable amplitudes [19]. If equating these amplitudes with Sudakov suppression included to the parametrization in QCDF, it was observed that the corresponding cutoffs are located in the reasonable range proposed by Beneke et al. [10]. Sachrajda et al. have expressed an opposite opinion on the effect of Sudakov suppression in [20]. However, their conclusion was drawn based on a very sharp B meson wave function, which is not favored by experimental data.

Here I would like to comment on the negative opinions on the large $k_\perp^2 \sim O(\bar{\Lambda}M_B)$. It is easy to understand the increase of k_\perp^2 from $O(\bar{\Lambda}^2)$, carried by the valence quarks which just come out of the initial meson wave functions, to $O(\bar{\Lambda}M_B)$, carried by the quarks which are involved in the hard weak decays. Consider the simple deeply inelastic scattering of a hadron. The transverse momentum k_\perp carried by a parton, which just come out of the hadron distribution function, is initially small. After infinite many gluon radiations, k_\perp becomes of $O(Q)$, when the parton is scattered by the highly virtual photon, where Q is the large momentum transfer from the photon. The evolution of the hadron distribution function from the low scale to Q is described by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equation [21, 22]. The mechanism of the DGLAP evolution in DIS is similar to that of the Sudakov evolution in exclusive B.

meson decays. The difference is only that the former is the consequence of the single-logarithm resummation, while the latter is the consequence of the double-logarithm resummation.

By including Sudakov effects, all contributions of the $B \to \pi$ form factor comes from the region with $\alpha_s/\pi < 0.3$ [12] as shown in Figure 2. It indicate that our PQCD results are well within the perturbative region.

Threshold Resummation: The other double logarithm is $\alpha_s \ln^2 (1/x)$ from the end point region of the momentum fraction x [23]. This double logarithm is generated by the corrections of the hard part in Figure 2. This double logarithm can be factored out of the hard amplitude systematically, and its resummation introduces a Sudakov factor $S_t(x) = 1.78[x(1-x)]^c$ with $c = 0.3$ into PQCD factorization formula. The Sudakov factor from threshold resummation is universal, independent of flavors of internal quarks, twists and topologies of hard amplitudes, and decay modes.

![Figure 3](image-url)

FIGURE 3. The diagrams generate double logarithm corrections for the threshold resummation.

Threshold resummation[23] and k_\perp resummation [24, 16, 25] arise from different subprocesses in PQCD factorization and suppresses the end-point contributions, making PQCD evaluation of exclusive B meson decays reliable. If excluding resummation effects, the PQCD predictions for the $B \to K$ form factors are infrared divergent. If including only k_\perp resummation, the PQCD predictions are finite. However, the two-parton twist-3 contributions are still huge, so that the $B \to K$ form factors have an unreasonably large value $F_{BK} \sim 0.57$ at maximal recoil. The reason is that the double logarithms $\alpha_s \ln^2 x$ have not been organized. If including both resummations, we obtain the reasonable result $F_{BK} \sim 0.35$. These studies indicate the importance of resummations in PQCD analyses of B meson decays. In conclusion, if the PQCD analysis of the heavy-to-light form factors is performed self-consistently, there exist no end-point singularities, and both twist-2 and twist-3 contributions are well-behaved.

Power Counting Rule in PQCD: The power behaviors of various topologies of diagrams for two-body nonleptonic B meson decays with the Sudakov effects taken into account has been discussed in details in [26]. The relative importance is summarized below:

$$\text{emission} : \text{annihilation} : \text{nonfactorizable} = 1 : \frac{2m_0}{M_B} : \frac{\bar{\Lambda}}{M_B}, \quad (3)$$

with m_0 being the chiral symmetry breaking scale. The scale m_0 appears because the annihilation contributions are dominated by those from the $(V-A)(V+A)$ penguin operators, which survive under helicity suppression. In the heavy quark limit the annihilation and nonfactorizable amplitudes are indeed power-suppressed compared to
Therefore, the PQCD formalism for two-body charmless nonleptonic B meson decays coincides with the factorization approach as $M_B \to \infty$. However, for the physical value $M_B \sim 5$ GeV, the annihilation contributions are essential. In Table 1 and 2 we can easily check the relative size of the different topology in Eq.(3) by the penguin contribution for W-emission ($f_{\pi} F_P^\pi$), annihilation($f_B F_P^B$) and non-factorizable(M_P^π) contributions. Specially we show the relative size of the different twisted light-cone-distribution-amplitudes (LCDAs) for each topology. We have more sizable twist-3 contributions in factorizable diagram.

Note that all the above topologies are of the same order in α_s in PQCD. The nonfactorizable amplitudes are down by a power of $1/m_b$, because of the cancellation between a pair of nonfactorizable diagrams, though each of them is of the same power as the factorizable one. I emphasize that it is more appropriate to include the nonfactorizable contributions in a complete formalism. The factorizable internal-W emission contributions are strongly suppressed by the vanishing Wilson coefficient a_2 in the $B \to J/\psi K^{(*)}$ decays [27], so that nonfactorizable contributions become dominant[28]. In the $B \to D\pi$ decays, there is no soft cancellation between a pair of nonfactorizable diagrams, and nonfactorizable contributions are significant [27].

In QCDF the factorizable and nonfactorizable amplitudes are of the same power in $1/m_b$, but the latter is of next-to-leading order in α_s compared to the former. Hence, QCDF approaches FA in the heavy quark limit in the sense of $\alpha_s \to 0$. Briefly speaking, QCDF and PQCD have different counting rules both in α_s and in $1/m_b$. The former approaches FA logarithmically ($\alpha_s \sim 1/\ln m_b \to 0$), while the latter does linearly ($1/m_b \to 0$).

TABLE 1. Amplitudes for the $B^0 \to \pi^+ \pi^-$ decay where F (M) denotes factorizable (nonfactorizable) contributions, P (T) denotes the penguin (tree) contributions, and a denotes the annihilation contributions. Here we adopted $\phi_3 = 80^\circ$, $R_b = 0.38$, $m_{b}^0 = 1.4$ GeV and $\omega_B = 0.40$ GeV.

<table>
<thead>
<tr>
<th>Amplitudes</th>
<th>twist-2 contribution</th>
<th>Twist-3 contribution</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Re(f_{\pi} F_P^\pi)$</td>
<td>$-1.26 \cdot 10^{-3}$</td>
<td>$-4.76 \cdot 10^{-3}$</td>
<td>$-6.02 \cdot 10^{-3}$</td>
</tr>
<tr>
<td>$Im(f_{\pi} F_P^\pi)$</td>
<td>$-1.26 \cdot 10^{-3}$</td>
<td>$-4.76 \cdot 10^{-3}$</td>
<td>$-6.02 \cdot 10^{-3}$</td>
</tr>
<tr>
<td>$Re(f_B F_P^B)$</td>
<td>$2.52 \cdot 10^{-7}$</td>
<td>$-3.30 \cdot 10^{-4}$</td>
<td>$-3.33 \cdot 10^{-4}$</td>
</tr>
<tr>
<td>$Im(f_B F_P^B)$</td>
<td>$8.72 \cdot 10^{-7}$</td>
<td>$3.81 \cdot 10^{-3}$</td>
<td>$3.81 \cdot 10^{-3}$</td>
</tr>
<tr>
<td>$Re(M_P^\pi)$</td>
<td>$-1.62 \cdot 10^{-3}$</td>
<td>$-2.91 \cdot 10^{-4}$</td>
<td>$-1.33 \cdot 10^{-3}$</td>
</tr>
<tr>
<td>$Im(M_P^\pi)$</td>
<td>$7.26 \cdot 10^{-4}$</td>
<td>$1.39 \cdot 10^{-6}$</td>
<td>$-7.25 \cdot 10^{-4}$</td>
</tr>
<tr>
<td>$Re(M_P^B)$</td>
<td>$-1.67 \cdot 10^{-5}$</td>
<td>$-1.47 \cdot 10^{-7}$</td>
<td>$1.66 \cdot 10^{-5}$</td>
</tr>
<tr>
<td>$Im(M_P^B)$</td>
<td>$3.52 \cdot 10^{-5}$</td>
<td>$6.56 \cdot 10^{-6}$</td>
<td>$-2.87 \cdot 10^{-5}$</td>
</tr>
<tr>
<td>$Re(M_{B a})$</td>
<td>$-7.37 \cdot 10^{-5}$</td>
<td>$2.50 \cdot 10^{-6}$</td>
<td>$-7.12 \cdot 10^{-5}$</td>
</tr>
<tr>
<td>$Im(M_{B a})$</td>
<td>$3.13 \cdot 10^{-5}$</td>
<td>$-2.04 \cdot 10^{-5}$</td>
<td>$-5.17 \cdot 10^{-5}$</td>
</tr>
</tbody>
</table>
TABLE 2. Amplitudes for the $B_0^+ \to K^+\pi^-$ decay where F (M) denotes factorizable (nonfactorizable) contributions, P (T) denotes the penguin (tree) contributions, and a denotes the annihilation contributions. Here we adopted $\phi_3 = 80^\circ$, $R_b = 0.38$.

<table>
<thead>
<tr>
<th>Amplitudes</th>
<th>Left-handed gluon exchange</th>
<th>Right-handed gluon exchange</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Re(f_{\pi}\bar{F}^T)$</td>
<td>$7.07 \cdot 10^{-2}$</td>
<td>$3.16 \cdot 10^{-2}$</td>
<td>$1.02 \cdot 10^{-1}$</td>
</tr>
<tr>
<td>$Im(f_{\pi}\bar{F}^T)$</td>
<td>$-5.52 \cdot 10^{-3}$</td>
<td>$-2.44 \cdot 10^{-3}$</td>
<td>$-7.96 \cdot 10^{-3}$</td>
</tr>
<tr>
<td>$Re(f_B\bar{F}_a^P)$</td>
<td>$4.13 \cdot 10^{-4}$</td>
<td>$-6.51 \cdot 10^{-4}$</td>
<td>$-2.38 \cdot 10^{-4}$</td>
</tr>
<tr>
<td>$Im(f_B\bar{F}_a^P)$</td>
<td>$2.73 \cdot 10^{-3}$</td>
<td>$1.68 \cdot 10^{-3}$</td>
<td>$4.41 \cdot 10^{-3}$</td>
</tr>
<tr>
<td>$Re(M^T)$</td>
<td>$7.06 \cdot 10^{-3}$</td>
<td>$-7.17 \cdot 10^{-3}$</td>
<td>$-1.11 \cdot 10^{-4}$</td>
</tr>
<tr>
<td>$Im(M^T)$</td>
<td>$-1.10 \cdot 10^{-2}$</td>
<td>$1.35 \cdot 10^{-2}$</td>
<td>$2.59 \cdot 10^{-3}$</td>
</tr>
<tr>
<td>$Re(M_P^a)$</td>
<td>$-3.05 \cdot 10^{-4}$</td>
<td>$3.07 \cdot 10^{-4}$</td>
<td>$2.17 \cdot 10^{-6}$</td>
</tr>
<tr>
<td>$Im(M_P^a)$</td>
<td>$4.50 \cdot 10^{-4}$</td>
<td>$-5.29 \cdot 10^{-4}$</td>
<td>$7.92 \cdot 10^{-5}$</td>
</tr>
<tr>
<td>$Re(M_P^a)$</td>
<td>$2.03 \cdot 10^{-5}$</td>
<td>$-1.37 \cdot 10^{-4}$</td>
<td>$-1.16 \cdot 10^{-4}$</td>
</tr>
<tr>
<td>$Im(M_P^a)$</td>
<td>$-1.45 \cdot 10^{-5}$</td>
<td>$-1.27 \cdot 10^{-4}$</td>
<td>$-1.42 \cdot 10^{-4}$</td>
</tr>
</tbody>
</table>

IMPORTANT THEORETICAL ISSUES

End Point Singularity and Form Factors: If calculating the $B \to \pi$ form factor $F^{B\pi}$ at large recoil using the Brodsky-Lepage formalism [15, 29], a difficulty immediately occurs. The lowest-order diagram for the hard amplitude is proportional to $1/(x_1 x_3^2)$, x_1 being the momentum fraction associated with the spectator quark on the B meson side. If the pion distribution amplitude vanishes like x_3 as $x_3 \to 0$ (in the leading-twist, i.e., twist-2 case), $F^{B\pi}$ is logarithmically divergent. If the pion distribution amplitude is a constant as $x_3 \to 0$ (in the next-to-leading-twist, i.e., twist-3 case), $F^{B\pi}$ even becomes linearly divergent. These end-point singularities have also appeared in the evaluation of the nonfactorizable and annihilation amplitudes in QCDF mentioned above.

When we include small parton transverse momenta k_\perp, we have

$$\frac{1}{x_1 x_3^2 M_B^4} \to \frac{1}{(x_3 M_B^2 + k_3^2) [x_1 x_3 M_B^2 + (k_1 - k_3)^2]}$$

and the end-point singularity is smeared out.

In PQCD, we can calculate analytically space-like form factors for $B \to P, V$ transition and also time-like form factors for the annihilation process [26, 30].

Strong Phases: While strong phases in FA and QCDF come from the Bander-Silverman-Soni (BSS) mechanism[31] and from the final state interaction (FSI), the dominant strong phase in PQCD come from the factorizable annihilation diagram[11, 12, 13] (See Figure 4). In fact, the two sources of strong phases in the FA and QCDF approaches are strongly suppressed by the charm mass threshold and by the end-point behavior of meson wave functions. So the strong phase in QCDF is almost zero without soft-annihilation contributions.
Dynamical Penguin Enhancement vs Chiral Enhancement: As explained before, the hard scale is about 1.5 GeV. Since the RG evolution of the Wilson coefficients $C_{4,6}(t)$ increase drastically as $t < M_B/2$, while that of $C_{1,2}(t)$ remain almost constant, we can get a large enhancement effects from both wilson coefficients and matrix elements in PQCD.

In general the amplitude can be expressed as

$$Amp \sim [a_{1,2} \pm a_4 \pm m^P_0(\mu)a_6] \cdot <K\pi|O|B>$$ \hspace{1cm} (5)

with the chiral factors $m^P_0(\mu) = m^2_P/[m_1(\mu) + m_2(\mu)]$ for pseudoscalar meson and $m^V_0 = m_V$ for vector meson. To accommodate the $B \to K\pi$ data in the factorization and QCD-factorization approaches, one relies on the chiral enhancement by increasing the mass m_0 to as large values about 3 GeV at $\mu = m_b$ scale. So two methods accomodate large branching ratios of $B \to K\pi$ and it is difficult for us to distinguish two different methods in $B \to PP$ decays. However we can do it in $B \to PV$ because there is no chiral factor in LCDAs of the vector meson.
We can test whether dynamical enhancement or chiral enhancement is responsible for the large $B \to K\pi$ branching ratios by measuring the $B \to \phi K$ modes. In these modes penguin contributions dominate, such that their branching ratios are insensitive to the variation of the unitarity angle ϕ_3. According to recent works by Cheng et al. [32], the branching ratio of $B \to \phi K$ is $(2 - 7) \times 10^{-6}$ including 30% annihilation contributions in QCD-factorization approach (QCDF). However PQCD predicts 10×10^{-6} [26, 36]. For $B \to \phi K^*$ decays, QCDF gets about 9×10^{-6} [33], but PQCD have 15×10^{-6} [37]. Because of these small branching ratios for $B \to PV$ and VV decays in QCD-factorization approach, they can not globally fit the experimental data for $B \to PP$, VP and VV modes simultaneously with same sets of free parameters (ρ_H, ϕ_H) and (ρ_A, ϕ_A) [34].

Fat Imaginary Penguin in Annihilation: There is a folklore that annihilation contribution is negligible compared to W-emission one. In this reason annihilation contribution was not included in the general factorization approach and the first paper on QCD-factorization by Beneke et al. [9]. In fact there is a suppression effect for the operators with structure $(V - A)(V - A)$ because of a mechanism similar to the helicity suppression for $\pi \to \mu \nu \mu$. However annihilation from the operators $O_{5, 6, 7, 8}$ with the structure $(S - P)(S + P)$ via Fiertz transformation survive under the helicity suppression and can get large imaginary value. The real part of factorized annihilation contribution becomes small because there is a cancellation between left-handed gluon exchanged one and right-handed gluon exchanged one as shown in Table 1. This mostly pure imaginary value of annihilation is a main source of large CP asymmetry in $B \to \pi^+ \pi^-$ and $K^+ \pi^-$. In Table 5 we summarize the CP asymmetry in $B \to K(\pi)\pi$ decays.

NUMERICAL RESULTS

Branching ratios and Ratios of CP-averaged rates: The PQCD approach allows us to calculate the amplitudes for charmless B-meson decays in terms of ligh-cone distribution amplitudes upto twist-3. We focus on decays whose branching ratios have already been measured. We take allowed ranges of shape parameter for the B-meson wave function as $\omega_B = 0.36 - 0.44$ which accomodate to reasonable form factors, $F^{B\pi}(0) = 0.27 - 0.33$ and $F^{BK}(0) = 0.31 - 0.40$. We use values of chiral factor with $m_0^\pi = 1.3 GeV$ and $m_0^K = 1.7 GeV$. Finally we obtain branching ratios for $B \to K(\pi)\pi$ [11, 12, 13, 35], $K\phi$ [26, 36] $K^+\phi$[37] and $K^+\pi$[38], which is well agreed with present experimental data (see Table 3 and 4).

In order to reduce theoretical uncertainties from decay constant of B-meson and from light-cone distribution amplitudes, we consider rates of CP-averaged branching ratios, which is presented in Table 4. While the first ratio is hard to be explained by QCD factorization approach with $\phi_3 < 90^\circ$, our prediction can be reached to 0.30.

CP Asymmetry of $B \to \pi\pi, K\pi$: Because we have a large imaginary contribution from factorized annihilation diagrams in PQCD approach, we predict large CP asymmetry ($\sim 25\%$) in $B^0 \to \pi^+ \pi^-$ decays and about -15% CP violation effects in $B^0 \to K^+ \pi^-$. The
One of the most exciting aspect of present high energy physics is the exploration of CP asymmetry (both magnitude and sign) is a crucial way to test factorization models which have different sources of strong phases. Our predictions for CP-asymmetry on $B \rightarrow K(\pi)\pi$ have a totally opposite sign to those of QCD factorization.

DETERMINATION ϕ_3 IN $B \rightarrow \pi\pi, K\pi$

One of the most exciting aspect of present high energy physics is the exploration of CP violation in B-meson decays, allowing us to overconstrain both sides and the three weak phases $\phi_1 (= \beta)$, $\phi_2 (= \alpha)$ and $\phi_3 (= \gamma)$ of the unitarity triangle of the CKM matrix and to check the possibility of New Physics.

Beside the “gold-plated” mode $B_d \rightarrow J/\psi K_s$[41] which allow us to determine ϕ_1 without any hadron uncertainty, recently measured by BaBar and Belle collaborations[42].

TABLE 3. Branching ratios of $B \rightarrow \pi\pi, K\pi$ and $K\bar{K}$ decays with $\phi_3 = 80^0$, $R_\theta = 0.38$. Here we adopted $m_0^\pi = 1.3$ GeV and $m_0^K = 1.7$ GeV. Unit is 10^{-6}, (07/2002 data).

<table>
<thead>
<tr>
<th>Decay Channel</th>
<th>CLEO</th>
<th>BELLE</th>
<th>BABAR</th>
<th>World Av.</th>
<th>PQCD</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi^+\pi^-$</td>
<td>$3.4^{+1.6}_{-1.4}$</td>
<td>$5.4^{+0.9}_{-1.0}$</td>
<td>$4.7^{+0.6}_{-0.2}$</td>
<td>$4.4^{+0.9}_{-0.7}$</td>
<td>$7.0^{+2.0}_{-1.3}$</td>
</tr>
<tr>
<td>$\pi^+\pi^0$</td>
<td>$5.4^{+1.0}_{-2.0}$</td>
<td>$7.4^{+2.3}_{-1.9}$</td>
<td>$5.5^{+0.9}_{-0.6}$</td>
<td>$5.6^{+1.5}_{-1.3}$</td>
<td>$3.7^{+1.1}_{-1.0}$</td>
</tr>
<tr>
<td>$K^0\pi^0$</td>
<td><5.2</td>
<td><6.4</td>
<td><3.4</td>
<td>$-$</td>
<td>$0.3^{+0.1}_{-0.2}$</td>
</tr>
<tr>
<td>$K^+\pi^-$</td>
<td>$17.2^{+2.5}_{-2.4}$</td>
<td>$22.5^{+1.9}_{-1.8}$</td>
<td>$17.9^{+0.9}_{-0.7}$</td>
<td>$18.6^{+1.1}_{-0.9}$</td>
<td>$15.5^{+3.1}_{-3.5}$</td>
</tr>
<tr>
<td>$K^0\pi^-$</td>
<td>$18.2^{+1.6}_{-1.1}$</td>
<td>$19.4^{+3.1}_{-1.6}$</td>
<td>$17.5^{+1.8}_{-1.3}$</td>
<td>$17.9^{+1.7}_{-1.3}$</td>
<td>$16.4^{+2.7}_{-2.2}$</td>
</tr>
<tr>
<td>$K^+\pi^0$</td>
<td>$11.6^{+1.1}_{-1.2}$</td>
<td>$13.0^{+2.5}_{-1.3}$</td>
<td>$12.8^{+1.2}_{-1.0}$</td>
<td>$11.5^{+1.3}_{-1.0}$</td>
<td>$9.1^{+1.9}_{-1.3}$</td>
</tr>
<tr>
<td>$K^0\pi^0$</td>
<td>$14.6^{+2.3}_{-2.4}$</td>
<td>$8.0^{+3.2}_{-1.6}$</td>
<td>$8.2^{+1.1}_{-1.2}$</td>
<td>$8.9^{+2.3}_{-2.0}$</td>
<td>$8.6^{+0.3}_{-0.4}$</td>
</tr>
</tbody>
</table>

TABLE 4. Branching ratios of $B \rightarrow \phi K^{(*)}$ and $K^*\pi$ decays with $\phi_3 = 80^0$, $R_\theta = 0.38$. Here we adopted $m_0^\pi = 1.3$ GeV and $m_0^K = 1.7$ GeV. Unit is 10^{-6}, (07/2002 data).

<table>
<thead>
<tr>
<th>Decay Channel</th>
<th>CLEO</th>
<th>BELLE</th>
<th>BABAR</th>
<th>PQCD</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϕK^\pm</td>
<td>$5.5^{+2.1}_{-1.8}$</td>
<td>$11.2^{+2.2}_{-2.0}$</td>
<td>$7.7^{+1.6}_{-1.4}$</td>
<td>$10.2^{+3.9}_{-3.1}$</td>
</tr>
<tr>
<td>ϕK^0</td>
<td><12.3</td>
<td>$8.9^{+2.7}_{-1.0}$</td>
<td>$8.1^{+3.1}_{-2.3}$</td>
<td>$9.6^{+3.7}_{-2.0}$</td>
</tr>
<tr>
<td>ϕK^{\pm}</td>
<td>$10.6^{+6.4}_{-4.9}$</td>
<td><36</td>
<td>$9.7^{+4.2}_{-3.4}$</td>
<td>$16.0^{+5.2}_{-3.9}$</td>
</tr>
<tr>
<td>ϕK^{0}</td>
<td>$11.5^{+3.7}_{-3.7}$</td>
<td>15^{+8}_{-6}</td>
<td>$8.6^{+2.8}_{-2.4}$</td>
<td>$14.9^{+3.4}_{-3.4}$</td>
</tr>
<tr>
<td>$K^{*0}\pi^\pm$</td>
<td>$7.6^{+3.3}_{-3.0}$</td>
<td>$19.4^{+4.2}_{-3.9}$</td>
<td>$2.1^{+3.5}_{-2.0}$</td>
<td>$12.2^{+2.4}_{-2.0}$</td>
</tr>
<tr>
<td>$K^*^0\pi^0$</td>
<td>22^{+8}_{-6}</td>
<td>-4^{+8}_{-6}</td>
<td>-4^{+8}_{-6}</td>
<td>$9.6^{+2.0}_{-1.6}$</td>
</tr>
</tbody>
</table>
There are many interesting channels with which we may achieve this goal by the determination of ϕ_2 and ϕ_3.

In this talk, we focus on the $B \to \pi^+\pi^-$ and $K\pi$ processes, providing promising strategies to determine the weak phases of ϕ_2 and ϕ_3, by using the perturbative QCD method.

TABLE 5. Ratios of CP-averaged rates in $B \to K\pi, \pi\pi$ decays with $\phi_3 = 80^0$, $R_b = 0.38$. Here we adopted $m_b^\pi = 1.3$ GeV and $m_b^K = 1.7$ GeV.

<table>
<thead>
<tr>
<th>Quality</th>
<th>Experiment</th>
<th>PQCD</th>
<th>QCDF[39]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{Br(\pi^+\pi^-)}{Br(\pi^+K^-)}$</td>
<td>0.25 ± 0.04</td>
<td>0.30 – 0.69</td>
<td>0.5 – 1.9</td>
</tr>
<tr>
<td>$\frac{Br(\pi^+K^-)}{2Br(\pi^+K^+)}$</td>
<td>1.05 ± 0.27</td>
<td>0.78 – 1.05</td>
<td>0.9 – 1.4</td>
</tr>
<tr>
<td>$\frac{2Br(\pi^0K^-)}{Br(\pi^0K^+)}$</td>
<td>1.25 ± 0.22</td>
<td>0.77 – 1.60</td>
<td>0.9 – 1.3</td>
</tr>
<tr>
<td>$\frac{\tau(B^+)Br(\pi^+K^0)}{\tau(B^+Br(\pi^+K^+))}$</td>
<td>1.07 ± 0.14</td>
<td>0.70 – 1.45</td>
<td>0.6 – 1.0</td>
</tr>
</tbody>
</table>

TABLE 6. CP-asymmetry in $B \to K\pi, \pi\pi$ decays with $\phi_3 = 40^0 \sim 90^0$, $R_b = 0.38$. Here we adopted $m_b^\pi = 1.3$ GeV and $m_b^K = 1.7$ GeV.

<table>
<thead>
<tr>
<th>Direct A_{CP}(%)</th>
<th>BELLE (07/02)</th>
<th>BABAR (07/02)</th>
<th>PQCD</th>
<th>QCDF[40]</th>
</tr>
</thead>
<tbody>
<tr>
<td>π^+K^-</td>
<td>$-6 \pm 9^{+5}_{-2}$</td>
<td>$-10.2 \pm 5.0 \pm 1.6$</td>
<td>$-12.9 \sim -21.9$</td>
<td>5 ± 9</td>
</tr>
<tr>
<td>π^0K^-</td>
<td>$-2 \pm 19 \pm 2$</td>
<td>$-9.0 \pm 9.0 \pm 1.0$</td>
<td>$-10.0 \sim -17.3$</td>
<td>7 ± 9</td>
</tr>
<tr>
<td>π^-K^0</td>
<td>$46 \pm 15 \pm 2$</td>
<td>-4.7 ± 13.9</td>
<td>$-0.6 \sim -1.5$</td>
<td>1 ± 1</td>
</tr>
<tr>
<td>$\pi^+\pi^-$</td>
<td>$94^{+25}_{-31} \pm 9$</td>
<td>$30 \pm 25 \pm 4$</td>
<td>$16.0 \sim 30.0$</td>
<td>-6 ± 12</td>
</tr>
<tr>
<td>$\pi^+\pi^0$</td>
<td>$30 \pm 30^{+6}_{-4}$</td>
<td>$-3 \pm 18 \pm 2$</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

A: Extraction of ϕ_2 ($\equiv \alpha$) from $B \to \pi^+\pi^-$

Even though isospin analysis of $B \to \pi\pi$ can provide a clean way to determine ϕ_2, it might be difficult in practice because of the small branching ratio of $B^0 \to \pi^0\pi^0$. In reality to determine ϕ_2, we can use the time-dependent rate of $B^0(t) \to \pi^+\pi^-$ including sizable penguin contributions. In our analysis we use the c-convention. The amplitude can be written as:

$$ A(B^0 \to \pi^+\pi^-) = V^*_{ub}V_{ud}A_u + V^*_{cb}V_{cd}A_c + V^*_{tb}V_{td}A_t, $$

$$ = V^*_{ub}V_{ud} (A_u - A_t) + V^*_{cb}V_{cd} (A_c - A_t), $$

$$ = -(|T_c| e^{i\delta_T} e^{i\phi_3} + |P_c| e^{i\delta_p}) $$

(6)
Penguin term carries a different weak phase than the dominant tree amplitude, which leads to generalized form of the time-dependent asymmetry:

\[A(t) \equiv \frac{\Gamma(\bar{B}^0(t) \rightarrow \pi^+\pi^-) - \Gamma(B^0(t) \rightarrow \pi^+\pi^-)}{\Gamma(B^0(t) \rightarrow \pi^+\pi^-) + \Gamma(B^0(t) \rightarrow \pi^+\pi^-)} = S_{\pi\pi} \sin(\Delta mt) - C_{\pi\pi} \cos(\Delta mt) \]

(7)

where

\[C_{\pi\pi} = \frac{1 - |\lambda_{\pi\pi}|^2}{1 + |\lambda_{\pi\pi}|^2}, \quad S_{\pi\pi} = \frac{2 \text{Im}(\lambda_{\pi\pi})}{1 + |\lambda_{\pi\pi}|^2} \]

(8)

satisfies the relation of \(C_{\pi\pi}^2 + S_{\pi\pi}^2 \leq 1 \). Here

\[\lambda_{\pi\pi} = |\lambda_{\pi\pi}| e^{2i(\phi_2 + \Delta \phi_2)} = e^{2\phi_2} \left[\frac{1 + R c e^{i\delta} e^{i\phi_3}}{1 + R c e^{i\delta} e^{-i\phi_3}} \right] \]

(9)

with \(R_c = |P_c/T_c| \) and the strong phase difference between penguin and tree amplitudes \(\delta = \delta_P - \delta_T \). The time-dependent asymmetry measurement provides two equations for \(C_{\pi\pi} \) and \(S_{\pi\pi} \) in terms of \(R_c, \delta \) and \(\phi_2 \).

\[R_{\pi\pi} = 1 - 2 R_c \cos \delta \cos(\phi_1 + \phi_2) + R_c^2, \]

(10)

\[R_{\pi\pi} S_{\pi\pi} = \sin 2\phi_2 + 2 R_c \sin(\phi_1 - \phi_2) \cos \delta - R_c^2 \sin 2\phi_1, \]

(11)

\[R_{\pi\pi} C_{\pi\pi} = 2 R_c \sin(\phi_1 + \phi_2) \sin \delta. \]

(12)

FIGURE 5. Plot of \(C_{\pi\pi} \) versus \(S_{\pi\pi} \) for various values of \(\phi_2 \) with \(\phi_1 = 25.5^\circ \), \(0.18 < R_c < 0.30 \) and \(-41^\circ < \delta < -32^\circ \) in the pQCD method. Here we consider allowed experimental ranges of BaBar measurement within 90% C.L. Dark areas is allowed regions in the pQCD method for different \(\phi_2 \) values.

When we define \(R_{\pi\pi} = \overline{Br}(B^0 \rightarrow \pi^+\pi^-)/\overline{Br}(B^0 \rightarrow \pi^+\pi^-)_{\text{tree}} \), where \(\overline{Br} \) stands for a branching ratio averaged over \(B^0 \) and \(\bar{B}^0 \), the explicit expression for \(S_{\pi\pi} \) and \(C_{\pi\pi} \) are given by:
FIGURE 6. Plot of $\Delta \phi_2$ versus ϕ_2 with $\phi_1 = 25.5^\circ$, $0.18 < R_c < 0.30$ and $-41^\circ < \delta < -32^\circ$ in the pQCD method.

If we know R_c and δ, we can determine ϕ_2 from the experimental data on $C_{\pi \pi}$ versus $S_{\pi \pi}$.

Since the pQCD method provides $R_c = 0.23^{+0.07}_{-0.05}$ and $-41^\circ < \delta < -32^\circ$, the allowed range of ϕ_2 at present stage is determined as $55^\circ < \phi_2 < 100^\circ$ as shown in Figure 1. Since we have a relatively large strong phase than QCD-factorization ($\delta \sim 0^\circ$), we predict large direct CP violation effect of $A_{cp}(B^0 \to \pi^+ \pi^-) = (23 \pm 7)^\%$ which will be tested by more precise experimental measurement in future. In our numerical analysis, since the data by Belle collaboration[44] is placed outside allowed physical regions, we only considered the recent BaBar measurement[45] with 90% C.L. interval taking into account the systematic errors:

- $S_{\pi \pi} = 0.02 \pm 0.34 \pm 0.05 \quad [-0.54, +0.58]$
- $C_{\pi \pi} = -0.30 \pm 0.25 \pm 0.04 \quad [-0.72, +0.12]$.

The central point of BaBar data corresponds to $\phi_2 = 78^\circ$ in the pQCD method.

The $\Delta \phi_2$ is the deviation of ϕ_2 due to the penguin contribution, derived from Eq.(4), can be determined with known values of R_c and δ by using the relation $\phi_3 = 180 - \phi_1 - \phi_2$. In figure 2 we show our pQCD prediction on the relation $\Delta \phi_2$ versus ϕ_2. For allowed regions of $\phi_2 = (55 \sim 100)^\circ$, $\Delta \phi_2 = (8 \sim 16)^\circ$ and main uncertainties come from the uncertainty of $|V_{ub}|$. The non-zero value of $\Delta \phi_2$ demonstrates sizable penguin contributions in $B^0 \to \pi^+ \pi^-$ decay.
B. Extraction of $\phi_3(=\gamma)$ from $B^0 \to K^+\pi^-$ and $B^+ \to K^0\pi^+$

By using tree-penguin interference in $B^0 \to K^+\pi^-(\sim T' + P')$ versus $B^+ \to K^0\pi^+(\sim P')$, CP-averaged $B \to K\pi$ branching fraction may lead to non-trivial constraints on the ϕ_3 angle[46]. In order to determine ϕ_3, we need one more useful information on CP-violating rate differences[47]. Let’s introduce the following observables:

$$R_K = \frac{Br(B^0 \to K^+\pi^-) \tau_+}{Br(B^+ \to K^0\pi^+) \tau_0} = 1 - 2 r_K \cos \delta \cos \phi_3 + r_K^2 \geq \sin^2 \phi_3 \quad (13)$$

$$A_0 = \frac{\Gamma(B^0 \to K^-\pi^+ - \Gamma(B^0 \to K^+\pi^-)}{\Gamma(B^- \to K^0\pi^-) + \Gamma(B^+ \to K^0\pi^+)} = A_{cp}(B^0 \to K^+\pi^-) R_K = -2 r_K \sin \phi_3 \sin \delta. \quad (14)$$

where $r_K = |T'/P'|$ is the ratio of tree to penguin amplitudes and $\delta = \delta_{T'} - \delta_{P'}$ is the strong phase difference between tree and penguin amplitudes. After eliminate $\sin \delta$ in Eq.(8)-(9), we have

$$R_K = 1 + r_K^2 \pm \sqrt{4r_K^2 \cos^2 \phi_3 - A_0^2 \cot^2 \phi_3}. \quad (15)$$

Here we obtain $r_K = 0.201 \pm 0.037$ from the pQCD analysis[12, 49] and $A_0 = -0.11 \pm 0.065$ by combining recent BaBar measurement on CP asymmetry of $B^0 \to K^+\pi^-$: $A_{cp}(B^0 \to K^+\pi^-) = -10.2 \pm 5.0 \pm 1.6 \%$ [45] with present world averaged value of $R_K = 1.10 \pm 0.15[48]$.

![FIGURE 7. Plot of R_K versus ϕ_3 with $r_K = 0.164, 0.201$ and 0.238.](image)
As shown in Figure 3, we can constrain ϕ_3 with 1σ range of World Averaged R_K as follows:

- For $cos\delta > 0$, $r_K = 0.164$: we can exclude $0^o \leq \phi_3 \leq 60^o$ and $24^o \leq \phi_3 \leq 75^o$.
- For $cos\delta > 0$, $r_K = 0.201$: we can exclude $0^o \leq \phi_3 \leq 60^o$ and $27^o \leq \phi_3 \leq 75^o$.
- For $cos\delta > 0$, $r_K = 0.238$: we can exclude $0^o \leq \phi_3 \leq 60^o$ and $34^o \leq \phi_3 \leq 75^o$.
- For $cos\delta < 0$, $r_K = 0.164$: we can exclude $0^o \leq \phi_3 \leq 60^o$.
- For $cos\delta < 0$, $r_K = 0.201$: we can exclude $0^o \leq \phi_3 \leq 60^o$ and $35^o \leq \phi_3 \leq 62^o$.
- For $cos\delta < 0$, $r_K = 0.238$: we can exclude $0^o \leq \phi_3 \leq 60^o$ and $24^o \leq \phi_3 \leq 62^o$.

According to the table 2, since we obtain $\delta_{P^\prime} = 157^o$ and $\delta_{T^\prime} = 1.4^o$, the value of $cos\delta$ becomes negative, -0.91. Therefore the maximum value of the constraint bound for the ϕ_3 is strongly depend on the uncertainty of $|V_{ub}|$. When we take the central value of $r_K = 0.201$, ϕ_3 is allowed within the ranges of $51^o \leq \phi_3 \leq 129^o$, which is consistent with the results by the model-independent CKM-fit in the (ρ, η) plane.

SUMMARY AND OUTLOOK

In this talk I have discuss ingredients of PQCD approach and some important theoretical issues with numerical results by comparing experimental data. The PQCD factorization approach provides a useful theoretical framework for a systematic analysis on non-leptonic two-body B-meson decays. This method explain successfully present experimental data up to now and will be tested more thoroughly with more precise data in near future. Specially our pQCD method predicted large direct CP asymmetries in $B^0 \rightarrow \pi^+\pi^-$, $K^+\pi^-$ decays, which will be a crucial touch stone to distinguish our approach from others in future precise measurement.

We discuss two methods to determine ϕ_2 and ϕ_3 within the pQCD approach through 1) Time-dependent asymmetries in $B^0 \rightarrow \pi^+\pi^-$, 2) $B \rightarrow K\pi$ processes via penguin-tree interference. We can get interesting bounds on ϕ_2 and ϕ_3 from present experimental measurements. More detail works on other methods in $B \rightarrow K\pi$ and $D(\ast)\pi$ processes will be appeared in other publications [49].

ACKNOWLEDGMENTS

We wish to acknowledge the fruitful collaboration with H.-N. Li and joyful discussions with other members of PQCD working group. This work was supported in part by Grant-in Aid of Special Project Research (Physics of CP Violation) and by Grant-in Aid for Scientific Exchange from the Ministry of Education, Science and Culture of Japan. Y.Y.K. thanks H.Y. Cheng and M. Kobayashi for their hospitality and encouragement.

REFERENCES

15. see first one in ref.[5].
45. BaBar Collaboration (K. Aubert et al.), BaBar-Pub-02-09 [hep-ex/0207055].