System Identification
Theory for the User
Second Edition

Lennart Ljung
Linköping University
Sweden
Contents

Preface to the First Edition .. xiv

Acknowledgments ... xvi

Preface to the Second Edition .. xviii

Operators and Notational Conventions xix

1 Introduction .. 1

1.1 Dynamic Systems ... 1

1.2 Models ... 6

1.3 An Archetypical Problem—ARX Models and the Linear Least Squares Method .. 8

1.4 The System Identification Procedure 13

1.5 Organization of the Book ... 14

1.6 Bibliography .. 16

part i: systems and models ..

2 Time-Invariant Linear Systems .. 18

2.1 Impulse Responses, Disturbances, and Transfer Functions .. 18

2.2 Frequency-Domain Expressions .. 28

2.3 Signal Spectra .. 33

2.4 Single Realization Behavior and Ergodicity Results (*) 42

2.5 Multivariable Systems (*) .. 44

2.6 Summary ... 45

2.7 Bibliography .. 46

2.8 Problems ... 47

Appendix 2A: Proof of Theorem 2.2 52

Appendix 2B: Proof of Theorem 2.3 55

Appendix 2C: Covariance Formulas 61
part ii: methods

6 Nonparametric Time- and Frequency-Domain Methods

6.1 Transient-Response Analysis and Correlation Analysis 168
6.2 Frequency-Response Analysis 170
6.3 Fourier Analysis 173
6.4 Spectral Analysis 178
6.5 Estimating the Disturbance Spectrum (*) 187
6.6 Summary 189
6.7 Bibliography 190
6.8 Problems 191

Appendix 6A: Derivation of the Asymptotic Properties of the Spectral Analysis Estimate 194

7 Parameter Estimation Methods

7.1 Guiding Principles Behind Parameter Estimation Methods 197
7.2 Minimizing Prediction Errors 199
7.3 Linear Regressions and the Least-Squares Method 203
7.4 A Statistical Framework for Parameter Estimation and the Maximum Likelihood Method 212
7.5 Correlating Prediction Errors with Past Data 222
7.6 Instrumental–Variable Methods 224
7.7 Using Frequency Domain Data to Fit Linear Models (*) 227
7.8 Summary 233
7.9 Bibliography 234
7.10 Problems 236

Appendix 7A: Proof of the Cramér-Rao Inequality 245

8 Convergence and Consistency

8.1 Introduction 247
8.2 Conditions on the Data Set 249
8.3 Prediction-Error Approach 253
8.4 Consistency and Identifiability 258
8.5 Linear Time-Invariant Models: A Frequency-Domain Description of the Limit Model 263
8.6 The Correlation Approach 269
8.7 Summary 273
8.8 Bibliography 274
8.9 Problems 275
9 Asymptotic Distribution of Parameter Estimates 280

9.1 Introduction 280
9.2 The Prediction-Error Approach: Basic Theorem 281
9.3 Expressions for the Asymptotic Variance 283
9.4 Frequency-Domain Expressions for the Asymptotic Variance 290
9.5 The Correlation Approach 296
9.6 Use and Relevance of Asymptotic Variance Expressions 302
9.7 Summary 304
9.8 Bibliography 305
9.9 Problems 305
 Appendix 9A: Proof of Theorem 9.1 309
 Appendix 9B: The Asymptotic Parameter Variance 313

10 Computing the Estimate 317

10.1 Linear Regressions and Least Squares 317
10.2 Numerical Solution by Iterative Search Methods 326
10.3 Computing Gradients 329
10.4 Two-Stage and Multistage Methods 333
10.5 Local Solutions and Initial Values 338
10.6 Subspace Methods for Estimating State Space Models 340
10.7 Summary 351
10.8 Bibliography 352
10.9 Problems 353

11 Recursive Estimation Methods 361

11.1 Introduction 361
11.2 The Recursive Least-Squares Algorithm 363
11.3 The Recursive IV Method 369
11.4 Recursive Prediction-Error Methods 370
11.5 Recursive Pseudolinear Regressions 374
11.6 The Choice of Updating Step 376
11.7 Implementation 382
11.8 Summary 386
11.9 Bibliography 387
11.10 Problems 388
 Appendix 11A: Techniques for Asymptotic Analysis of Recursive Algorithms 389
 11A Problems 398
part iii: user's choices

12 Options and Objectives

12.1 Options 399
12.2 Objectives 400
12.3 Bias and Variance 404
12.4 Summary 406
12.5 Bibliography 406
12.6 Problems 406

13 Experiment Design

13.1 Some General Considerations 408
13.2 Informative Experiments 411
13.3 Input Design for Open Loop Experiments 415
13.4 Identification in Closed Loop: Identifiability 428
13.5 Approaches to Closed Loop Identification 434
13.6 Optimal Experiment Design for High-Order Black-Box Models 441
13.7 Choice of Sampling Interval and Presampling Filters 444
13.8 Summary 452
13.9 Bibliography 453
13.10 Problems 454

14 Preprocessing Data

14.1 Drifts and Detrending 458
14.2 Outliers and Missing Data 461
14.3 Selecting Segments of Data and Merging Experiments 464
14.4 Prefiltering 466
14.5 Formal Design of Prefiltering and Input Properties 470
14.6 Summary 474
14.7 Bibliography 475
14.8 Problems 475

15 Choice of Identification Criterion

15.1 General Aspects 477
15.2 Choice of Norm: Robustness 479
15.3 Variance-Optimal Instruments 485
15.4 Summary 488