An application of supersymmetric quantum mechanics to a planar physical system

R. de Lima Rodriguesa,*, V. B. Bezerrab and A. N. Vaidyac

a Centro Brasileiro de Pesquisas Físicas
Rua Dr. Xavier Sigaud, 150
22290-180, Rio de Janeiro-RJ, Brazil

b Departamento de Física, Universidade Federal da Paraíba
58051-970 João Pessoa-PB, Brazil

c Instituto de Física, Universidade Federal do Rio de Janeiro
21.945-970 Rio de Janeiro-RJ, Brazil

Abstract

Supersymmetry (SUSY) in non-relativistic quantum mechanics (QM) is applied to a 2-dimensional physical system: a neutron in an external magnetic field. The superpotential and the two-component wave functions of the ground state are found out.

PACS numbers: 11.30.Pb, 03.65.Fd, 11.10.

*Permanent address: Departamento de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, 58.900-000 Cajazeiras - PB, Brazil, Email: rafael@cfp.ufpb.br. Published in Phys. Lett. A\textbf{287}, 45-49, (2001).
The algebraic technique of supersymmetry in quantum mechanics (SUSY QM) was first introduced by Witten [1]. The essential idea of this formulation is based on the Darboux procedure on second-order differential equations, which has been successfully utilized to achieve a supersymmetric generalization of the harmonic-oscillator raising and lowering operators for shape-invariant potentials [2,3]. The SUSY algebra has also been applied to construct a variety of new one-parameter families of isospectral supersymmetric partner potentials in quantum field theory [4]. The shape-invariance conditions in SUSY have been independently generalized for systems described by two-component wave functions [5]. Recently, we have found a two-by-two matrix superpotential associated to the linear classical stability from the static solutions for a system of two coupled real scalar fields in (1+1)-dimensions [6].

We also presented an integral representation for the momentum space Green’s function for a neutron in interaction with a static magnetic field of a straight current carrying wire, which is also described by two-component wave functions [7]. The SUSY QM formalism was also applied to this planar physical system in the momentum [8] and coordinate [9] representations.

In this letter, we consider the notation of Ref. [8]. However, according to our developments, we can realize the supersymmetric algebra in coordinate representation, introducing some transformations in the original system corresponding to a neutron interacting with the magnetic field of a linear current carrying conductor, so that we are able to implement a comparison with both superpotentials for the cases corresponding to currents located along x and z directions.

Now, let us consider an electrically neutral spin-$\frac{1}{2}$ particle of mass $M = 1$ and magnetic moment $\mu \vec{\sigma}$ (a neutron) interacting with an infinite straight wire carrying a current I and located along the z-axis. The magnetic field generated by the wire is given by (we use units with $c = \hbar = 1$)

$$\vec{B} = 2I \frac{(-y, x, 0)}{(x^2 + y^2)} ,$$

where x and y are Cartesian coordinates of the plane perpendicular to the wire.

The Hamiltonian associated with the physical system is given by

$$H = \frac{\vec{\mathbf{p}}^2}{2M} + \mu \vec{\sigma} \cdot \vec{B} = \frac{\vec{\mathbf{p}}^2}{2} + 2I \mu \frac{(-y \sigma_1 + x \sigma_2)}{(x^2 + y^2)} ,$$

where $\vec{\mathbf{p}}$ is the momentum of the particle.
where $\vec{\sigma} = (\sigma_1, \sigma_2, \sigma_3)$ are Pauli matrices. The motion along the z-axis is free and will be ignored in what follows and in this way we get a two-dimensional problem.

Due to the translational symmetry in the z-direction, the two-component wave function $\psi(\rho, k)$ can be written as

$$\psi^{(n_\rho)}(\rho, k) = \frac{1}{\sqrt{4\pi L}} \begin{pmatrix} \tilde{\psi}_1^{(n_\rho, m)}(\rho, k) e^{im\phi} \\ \tilde{\psi}_2^{(n_\rho, m)}(\rho, k) e^{i(m+1)\phi} \end{pmatrix} e^{i\frac{2\pi}{L} k z}$$

$$\equiv \begin{pmatrix} \psi_1^{(n_\rho)}(\rho, k) \\ \psi_2^{(n_\rho)}(\rho, k) \end{pmatrix},$$

where $n_\rho = 0, 1, 2, \cdots$ is the radial quantum number; $k = 0, 1, 2, \cdots$; $m = 0, \pm 1, \pm 2, \cdots$; ρ, ϕ, z are the usual cylindrical coordinates and the parameter L is the macroscopic length of the conductor.

Therefore, the Schrödinger equation splits up into a system of two coupled second order differential equations as follows

$$\frac{1}{\rho} \frac{d}{d\rho} \left(\rho \frac{d}{d\rho} \tilde{\psi}_1^{(n_\rho, m)} \right) - \frac{m^2}{\rho^2} \tilde{\psi}_1^{(n_\rho, m)} + 2\tilde{E} \tilde{\psi}_1^{(n_\rho, m)} + \frac{2F}{\rho} \tilde{\psi}_2^{(n_\rho, m)} = 0,$$

$$\frac{1}{\rho} \frac{d}{d\rho} \left(\rho \frac{d}{d\rho} \tilde{\psi}_2^{(n_\rho, m)} \right) - \frac{(m+1)^2}{\rho^2} \tilde{\psi}_2^{(n_\rho, m)} + 2\tilde{E} \tilde{\psi}_2^{(n_\rho, m)} + \frac{2F}{\rho} \tilde{\psi}_1^{(n_\rho, m)} = 0,$$

where

$$F = -\frac{\mu_0 \mu I}{2\pi}$$

and

$$\tilde{E} = E - \frac{2\pi k^2}{L^2}.$$

Note that Eq. (4) is exactly Eq. (2.8) given in [8]. Now, using the relation

$$\tilde{\psi}_i^{(n_\rho, m)} = \rho^{-\frac{1}{2}} \phi_i^{(n_\rho, m)} \quad (i = 1, 2),$$

we can write the system in (4) in the matrix form as

$$\begin{pmatrix} -\frac{d^2}{d\rho^2} + \frac{m^2-1}{\rho^2} - 2\tilde{E} & -\frac{2F}{\rho} \\ \frac{2F}{\rho} & -\frac{d^2}{d\rho^2} + \frac{(m+1)^2-1}{\rho^2} - 2\tilde{E} \end{pmatrix} \begin{pmatrix} \phi_1^{(n_\rho, m)} \\ \phi_2^{(n_\rho, m)} \end{pmatrix} = 0,$$

3
which corresponds to a one-dimensional Schrödinger-like equation associated with the two-component wave function. Therefore, we get the eigenvalue equations

\[H_1 \Phi_1^{(n,\rho,m)} = \tilde{E}_1^{(n,\rho,m)} \Phi_1^{(n,\rho,m)}, \quad E_1^{(n,\rho,m)} = 2\tilde{E}^{(n,\rho,m)}, \]

(9)

where

\[\Phi_1^{(n,\rho,m)} = \Phi_1^{(n,\rho,m)}(\rho,k) = \begin{pmatrix} \phi_1^{(n,\rho,m)}(\rho,k) \\ \phi_2^{(n,\rho,m)}(\rho,k) \end{pmatrix} \]

(10)

and

\[H_1 = -1 \frac{d^2}{d\rho^2} + \begin{pmatrix} \frac{m^2 - \frac{1}{4}}{\rho^2} & \frac{-2F}{\rho} \\ \frac{-2F}{\rho} & \frac{(m+1)^2 - \frac{1}{4}}{\rho^2} \end{pmatrix}. \]

(11)

Defining

\[H_1 \equiv A^+ A^- + 1\tilde{E}_1^{(0)}, \quad A^\pm = \pm \frac{d}{d\rho} + W(\rho), \]

(12)

we obtain the following Riccati equation in matrix form

\[W'(\rho) + W^2(\rho) + 1\tilde{E}_1^{(0)} = \begin{pmatrix} \frac{m^2 - \frac{1}{4}}{\rho^2} & \frac{-2F}{\rho} \\ \frac{-2F}{\rho} & \frac{(m+1)^2 - \frac{1}{4}}{\rho^2} \end{pmatrix}, \]

(13)

where \(W(\rho) \) is a two-by-two superpotential matrix. The hermiticity condition allows us to write

\[W = W^\dagger = \begin{pmatrix} f(\rho) & g(\rho) \\ g(\rho) & h(\rho) \end{pmatrix}, \]

(14)

where \(f, g \) and \(h \) are real functions and satisfy the nonlinear system of differential equations

\[
\begin{aligned}
f' + f^2 + g^2 + E_1^{(0)} &= \frac{m^2 - \frac{1}{4}}{\rho^2} \\
g f + h g + g' &= \frac{-2F}{\rho} \\
h' + h^2 + g^2 + E_1^{(0)} &= \frac{(m+1)^2 - \frac{1}{4}}{\rho^2}.
\end{aligned}
\]

(15)

Now, let us try a solution for equation (15) assuming that \(g \) is constant. Then, we have

\[f + h = \frac{-2F}{g\rho}, \]

(16)

which gives
\[f' - h' - \frac{2F}{g\rho} (f - h) + \frac{2m + 1}{\rho^2} = 0. \]

(17)

Solving the last equation and imposing finiteness condition on the solutions, we get

\[f(\rho) = \frac{b}{\rho}, \]

\[h(\rho) = \frac{c}{\rho}, \]

(18)

where \(b \) and \(c \) are arbitrary constants. Substituting these solutions into the system (15), we find that a consistent solution is possible only if

\[g = \frac{-F}{m + 1} \]

(19)

where \(F \) is defined in Eq. (5). Then, turning to Eq. (17) and substituting Eqs. (18) and (19) we find constants \(b \) and \(c \). Putting these results back into Eq. (18), we have that

\[f(\rho) = \frac{m + \frac{1}{2}}{\rho}, \]

\[h(\rho) = \frac{m + \frac{3}{2}}{\rho}. \]

(20)

In this case, the two almost isospectral Hamiltonians are given by

\[H_1 = A^+ A^- - \frac{F^2}{2(m + 1)^2} \mathbf{1}, \]

\[H_2 = A^- A^+ - \frac{F^2}{2(m + 1)^2} \mathbf{1}. \]

(21)

(22)

Since \(A^+ A^- \) is positive semidefinite, according to (12) and (21) the energy eigenvalue of the ground state is

\[\tilde{E}^{(0)} = -\frac{F^2}{2(m + 1)^2}; \]

(23)

with the annihilation conditions

\[A^- \Phi_1^{(0)} = 0 \]

(24)

and

\[A^+ \Phi_2^{(0)} = 0 \]

(25)

and the new superpotential
The energy eigenvalues of magnetically bound excited states in terms of the radial quantum number n_{ρ}, for $m \geq m_0$ becomes

$$\tilde{E}^{(n_{\rho})} = -\frac{F^2}{2(n_{\rho} + m_0 + 1)^2}. \quad (27)$$

Now let us to determine the eigenfunction associated with the ground state given by Eq.(24). To do this let us consider the transformations

$$\phi(\rho) = \chi^{(0)} \rho^{m + \frac{1}{2}}, \quad \rho = 2(m + 1)\eta, \quad F = -\frac{1}{2}, \quad (28)$$

which implies that Eq. (24) turns into the following matrix differential equation

$$\frac{1}{d\eta} \chi(\eta) = \begin{pmatrix} 0 & 1 \\ 1 & \frac{1}{\eta} \end{pmatrix} \chi^{(0)}(\eta), \quad \chi^{(0)}(\eta) = \begin{pmatrix} \chi_1^{(0)} \\ \chi_2^{(0)} \end{pmatrix}, \quad (29)$$

so that we obtain the following equations for the components $\chi_1^{(0)}$ and $\chi_2^{(0)}$:

$$\frac{d}{d\eta} \chi_1^{(0)}(\eta) = \chi_2^{(0)}(\eta),$$

$$\frac{d}{d\eta} \chi_2^{(0)}(\eta) = \chi_1^{(0)}(\eta) + \frac{1}{\eta} \chi_2^{(0)}(\eta), \quad (30)$$

which leads us a second-order differential equation for $\chi_2^{(0)}(\eta)$, viz.,

$$\frac{d^2}{d\eta^2} \chi_2^{(0)}(\eta) - \frac{1}{\eta} \frac{d}{d\eta} \chi_2^{(0)}(\eta) + \left(\frac{1}{\eta^2} - 1 \right) \chi_2^{(0)}(\eta) = 0. \quad (31)$$

From equations (3), (30) and (31) we obtain the m-dependent normalizable ground state

$$\Psi^{(0)}(\rho) = C_m \rho^{m+1} \left(e^{i(m+1)\phi} K_0 \left(\frac{\rho}{2m+2} \right) \right) e^{i\frac{2\pi}{L} k z} \quad (32)$$

where C_m is the normalization constant, and $K_1 \left(\frac{\rho}{2m+2} \right)$ and $K_0 \left(\frac{\rho}{2m+2} \right)$ are the modified Bessel functions. The eigenfunction $\Psi^{(0)}(\rho)$ is in accord with the result found via momentum representation in Ref. [8]. Note that the complete solution of Eq. (31)

$$\chi_2^{(0)}(\eta) = \eta (C_1 K_0(\eta) + C_2 I_0(\eta)), \quad (33)$$
where C_1 and C_2 are arbitrary non-normalizable constants. Therefore, in order to get a normalizable solution, we choose $c_2 = 0$ and in this way we drop $I_0(\eta)$ which is divergent when $\eta \to \infty$.

It is worthy noticing that under a unitary transformation, $U \mathbf{W}_m U^{-1} = \tilde{\mathbf{W}}_m$, this superpotential, together with the interchange of m by $m + \frac{1}{2}$, and taking $F = -\frac{1}{2}$ becomes that superpotential matrix (\mathbf{W}_{LJM}) shown in [9], viz., $\tilde{\mathbf{W}}_{m+\frac{1}{2}} = -\mathbf{W}_{LJM}$. This minus sign that connects $\tilde{\mathbf{W}}_{m+\frac{1}{2}}$ and \mathbf{W}_{LJM} is associated to the fact that we have chosen the first-order differential operator A^- with the opposite sign in the derivative term of the operator A_m considered in Ref. [9].

Using the coordinate representation, we investigate the SUSY in non-relativistic quantum mechanics with two-component eigenfunctions and find a new realization of supersymmetry in a planar physical system of a neutron in interaction with a straight current-carrying wire.

The $N=2$–SUSY superalgebra has the following representation

$$ H_{SUSY} = [Q_-, Q_+]_+ = \begin{pmatrix} A^+ A^- & 0 \\ 0 & A^- A^+ \end{pmatrix}_{4 \times 4} = \begin{pmatrix} H_- & H_0 \\ 0 & H_+ \end{pmatrix}, $$

where the supersymmetric partners are given by $H_- = H_1 - 1E_1^{(0)}$, $H_+ = H_2 - 1E_1^{(0)}$ and the supercharges Q_\pm are 4 by 4 matrix differential operators of first order and can be given by

$$ Q_- = \begin{pmatrix} 0 & 0 \\ A^- & 0 \end{pmatrix}_{4 \times 4}, \quad Q_+ = \begin{pmatrix} 0 & A^+ \\ 0 & 0 \end{pmatrix}_{4 \times 4}. $$

We have seen that, in non-relativistic quantum mechanics applied to two-component eigenfunctions, if $\Phi_1^{(0)}$ is a normalizable two-component eigenfunction, one cannot write $\Phi_2^{(0)}$ in terms of $\Phi_1^{(0)}$, as in the case of ordinary supersymmetric quantum mechanics. This may be shown in the system considered here of a neutron interacting with an external magnetic field with the current of the conductor in the z direction. Only in the case of 1-component wave functions one may write the superpotential as $W(x) = \frac{d}{dx} \ell n(\psi_0(x))$.

The hermiticity condition satisfied by the superpotential, in the general case, leads us to a method that permits to solve the matrix Riccati equation. As a final remark, we would like to draw the attention to the fact that our result, for a superpotential corresponding to
a neutron in an external magnetic field in the coordinate representation, is related by the following unitary transformation, \(U = \frac{1}{\sqrt{2}} (\sigma_1 + \sigma_3) \), where \(\sigma_1 \) and \(\sigma_3 \) are the Pauli matrix, with a new superpotential so that, after the substitution \(m \) by \(m + \frac{1}{2} \) (the total angular momentum along the wire direction) it reduces to the superpotential recently found in [9], where a current \(I \) along the \(x \) axis of a Cartesian system is considered.

Acknowledgments

This research was supported in part by CNPq (Brazilian Research Agency). RLR wish to thanks the staff of the CBPF and DCEN-CFP-UFPB for the facilities. Thanks are also due to J. A. Helayel Neto for hospitality of RLR at CBPF-MCT and for fruitful discussions on supersymmetric models.
REFERENCES

