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1. Introduction

We presents detailed study of the effect of volume dependence on strangeness and
charm yields evaluated along the ‘canonical statistical mechanics method’ [1]. This
‘20 years after’ work has been made necessary by claims that one can reinterpret the
strange hadron signature of quark–gluon plasma in terms of the so called canonical
enhancement/suppression [2, 3].

We will explain the need to amend the grand canonical method in subsection 2.1,
and present the intuitive derivation of the canonical constraint in subsection 2.2, where
we follow the approach of Ref. [1]. This can be generalized to more complex systems
using the projection method [4, 5], which we demonstrate in subsection 2.3, and use in
subsection 2.4 to obtain within the classical Boltzmann limit the suppression factors of
multistrange hadrons [2, 3, 6]. This method can be extended and applied to solve more
complex situation, for example conservation of several ‘Abelian’ quantum numbers
[7, 8] (such as strangeness, baryon number, electrical charge) and the problem of
particular relevance in this field, the exact conservation of color: all hadronic states,
including QGP must be exactly color ‘neutral’ [9, 10].

After offering this thorough theoretical introduction in section 2, we study, in
section 3, the magnitude of the different effects. We evaluate the magnitude of the
canonical suppression in subsection 3.1. We demonstrate in subsection 3.2, after a
rebasing which is converting the suppression into enhancement, that the canonical
enhancement effect is in better agreement with the experimental results when the
phase space considered is that of deconfined strange quarks. We then show, in
subsection 3.3, that for charm flavor, the proposed mechanism is leading to a significant
disagreement with experimental constraints on charm production, and thus charm
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must be different from strangeness in that we cannot use canonical enhancement
argument.

In our closing section 4, we also evaluate the specific (per participant) A–A yield
enhancement of multistrange baryons and antibaryons, comparing to the p–p system.
We see that an enhancement is predicted well above the one observed experimentally,
just like for the charm yield. It is generally accepted that the production pattern of
charm must be explored within the realm of kinetic theory models. Logic demands
that this observation extends also to the strange flavor sector. This then implies
that the chemical equilibrium canonical reinterpretation of strangeness signature of
quark–gluon plasma is not valid, and that the kinetic methods are applicable [11, 12].

2. Exact conservation of flavor quantum numbers

2.1. General considerations

At low reaction energy, or/and in small collision systems the yield of strangeness in
each reaction is rather small, less than one pair of quarks produced per collision.
This occasional pair can thermally (momentum distribution) equilibrate with the
background of hadrons. In the discussion of the magnitude of this yield, we may
be tempted to apply methods of grand canonical statistical ensemble equilibrium.
However, these are wrong, as in their derivation a strong and important assumption
is that the number of particles considered is large.

The statistical grand canonical flavor conservation condition is

〈ns〉 − 〈ns̄〉 = 0 , (1)

where the average is over the ensemble of physical systems, which in Gibbs sense
are weakly connected, and can exchange particle number. Thus, each individual
system does not conserve strangeness, the fluctuations of strange and antistrange
quark number, in the subsystem, are independent of each other. In each subsystem,
the magnitude of the average violation is the fluctuation in particle number:

ns − ns̄ '
√

ns + ns̄ . (2)

In heavy ion reactions where each collision system is completely disconnected from
the other, use of grand canonical method is an idealization which allows the violation
of the strangeness conservation law in the theoretical description of each individual
collision reaction. This is a severe defect of the statistical method applied, which
needs to be quantitatively understood and corrected. Only in a very large system, the
average yield of strange quarks nearly equals the average yield of antistrange quarks,
and the relative violation of strangeness conservation vanishes like 1/

√
ns.

For many reaction systems of physical interest, the difference in strangeness and
antistrangeness yield is not negligible. We thus must improve the statistical description
enforcing exact strangeness conservation both for systems small and large. Strangeness
is always produced in pairs and all experiments always will find (in absence of flavor
changing weak interactions) that the micro canonical condition is satisfied,

ns − ns̄ = 0 . (3)

The yield of net strangeness will vanish exactly within our theoretical approach,
as it does in nature. We will next show how it is possible to implement that the net
strangeness conservation law is satisfied exactly in the statistical description of the
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physical properties, while using the power and convenience of statistical mechanics.
This then has the minor defect that the number of pairs,

〈ns〉+ 〈ns̄〉 = 2〈ns-pair〉 , (4)

fluctuates in each collision. This may even not be a defect at all as the quantum
mechanical laws which govern particle production also are leading to such fluctuations.

We refer to this situation, with exact conservation of some quantum number
implemented, here specifically strangeness, as the canonical statistical ensemble. Each
member of the ensemble conserves net strangeness exactly, while the number of pairs
fluctuates, being exchanged between the members of the ensemble. The discussion
above was for the case of vanishing strangeness quantum number, but could be easily
repeated for the case of another arbitrary net value of the conserved quantum number.

2.2. Grand canonical and canonical partition functions

The grand partition function in the classical Boltzmann limit for strange particles has
the form,

lnZHG
s ≡ Z

(1)
HGs =

V T 3

2π2

[
(λsλ

−1
q + λ−1

s λq)γsγqFK + (λsλ
2
q + λ−1

s λ−2
q )γsγ

2
qFY

+(λ2
sλq + λ−2

s λ−1
q )γ2

s γqFΞ + (λ3
s + λ−3

s )γ3
s FΩ

]
. (5)

In the phase space function Fi, all kaon (K), hyperon (Y), cascade (Ξ) and omega (Ω)
resonances plus their antiparticles are taken into account:

FK =
∑

j

gKj W (mKj /T ); Kj = K, K∗, K∗
2, . . . , m ≤ 1780 MeV ,

FY =
∑

j

gYj W (mYj /T ); Yj = Λ, Σ, Σ(1385), . . . , m ≤ 1940 MeV ,

FΞ =
∑

j

gΞj W (mΞj /T ); Ξj = Ξ, Ξ(1530), . . . , m ≤ 1950 MeV ,

FΩ =
∑

j

gΩj W (mΩj /T ); Ωj = Ω, Ω(2250) . (6)

The gi are the spin–isospin degeneracy factors, W (x) = x2K2(x), where K2 is the
modified Bessel function.

The chemical fugacities, as introduced in Eq. (5), allow to count separately the
quark content (λq, λs) and the yield of quark–antiquark pairs (γs, γq). Specifically,

〈ns〉 − 〈ns̄〉 = λs
∂

∂λs
lnZHG

s , (7)

〈ns〉+ 〈ns̄〉 = 2〈ns-pair〉 = γs
∂

∂γs
lnZHG

s . (8)

To emphasize that any flavor (in particular s, c) or even baryon number is under
consideration here, we generalize slightly the notation s → f. We also expand the
exponential of the one particle partition function Z(1) in Eq. (5):

Zf = eZ
(1)
f =

∞∑
n=0

1
n!

(
Z

(1)
f

)n

. (9)



Importance of reaction volume in hadronic collisions: Canonical enhancement 4

The flavor and antiflavor terms within Z
(1)
f are additive in Eq. (5), and we consider at

first only singly-flavored particles, in a self explanatory simplified notation:

Z
(1)
f = γ[λf F̃f + λ−1

f F̃f̄ ] , F̃i =
V T 3

2π2
Fi. (10)

Combining Eq. (10) with Eq. (9), we obtain:

Zf =
∞∑

n,k=0

γn+k

n!k!
λn−k

f F̃n
f F̃ k

f̄ . (11)

When n 6= k, the sum in Eq. (11) contains contributions with unequal number of
f and f̄ terms. Only when n = k, we have contributions with exactly equal number
of f and f̄ terms. We recognize that only n = k terms contribute to the canonical
partition function with exactly conserved flavor quantum number,

Zf=0 =
∞∑

n=0

γ2n

n!n!
(F̃f F̃f̄)

n = I0(2γ

√
F̃f F̃f̄) , (12)

where we have introduced the modified Bessel function I0.
The argument of I0 has a physical meaning, it is the yield of flavor pairs NGC

pair in
grand canonical ensemble, evaluated with grand canonical flavor conservation, Eq. (1).
To see this, we evaluate:

0 =
∂

∂λf
lnZf =

∂

∂λf

(
γ[λf F̃f + λ−1

f F̃f̄ ]
)

. (13)

We obtain:

λf |0 =
√

F̃f̄/F̃f , lnZf |λf=λf |0 = 2γ

√
F̃f F̃f̄ ≡ 2 NGC

pair . (14)

In order to evaluate, using Eq. (12), the number of flavor pairs in the canonical
ensemble, we need to average the number n over all the contributions to the sum in
Eq. (12). To obtain the extra factor n, we perform the differentiation with respect to
γ2 and obtain the canonical ensemble f-pair yield,

〈NCE
f 〉 ≡ γ2 d

dγ2
ln Zf=0 = γ

√
F̃f F̃f̄

I1(2γ
√

F̃f F̃f̄)

I0(2γ
√

F̃f F̃f̄)
= NGC

pair

I1(2NGC
pair)

I0(2NGC
pair)

, (15)

where we have used I1(x) = dI0(x)/dx. The first term is identical with the result we
obtained in the grand canonical formulation, Eq. (14). The second factor I1/I0 is the
effect of exact conservation of the number of flavor pairs.

2.3. Projection method

For the case of ‘Abelian’ quantum numbers, e.g., flavor or baryon number, the
projection method arises from the general relation between the grand canonical and
canonical partition function:

Z(β, λ, V ) =
∞∑

f=−∞
λfZf(β, V ) . (16)

In the canonical partition function Zf , some discrete (flavor, baryon) quantum number
has the value f. Substituting λ = eiϕ, we obtain:

Zf(β, V ; nf) =
∫ 2π

0

dϕ

2π
e−infϕZ(β, λ = eiϕ, V ) . (17)
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In case of Boltzmann limit, and including singly charged particles only, we obtain
for net flavor nf , from Eq. (11):

Zf(β, V ; nf) =
∞∑

n,k=0

γn+k

n!k!

∫ 2π

0

dϕ

2π
ei(n−k−nf )ϕF̃n

f F̃ k
f̄ . (18)

The integration over ϕ yields the δ(n − k − nf)-function. Replacing n = k + nf , we
obtain:

Zf(β, V ; nf) =
∞∑

k=0

γ2k+nf

k!(k + nf)!
F̃ k+nf

f F̃ k
f̄ . (19)

The power series definition of the modified Bessel function If is:

Inf (z) =
∞∑

k=0

(z/2)2k+nf

k!(k + nf)!
. (20)

Thus, we obtain:

Zf(β, V ; nf) =

(
F̃f

F̃f̄

)nf/2

Inf (2γ

√
F̃f F̃f̄) . (21)

The case nf = 0, we considered earlier Eq. (12), is reproduced. We note that for integer
nf , we have Inf = I−nf . We used nf as we would count baryon number, thus in flavor
counting, nf counts the flavored quark content, with quarks counted positively and
antiquarks negatively. This remark is relevant in numerical studies when the factors
F̃f , F̃f̄ contain baryochemical potential.

2.4. Suppression of multistrange particle yield

Multistrange particles can be introduced as additive terms in the exponent of Eq. (17).
This allows us to evaluate their yields [2]. However, the canonical partition function
is dominated by singly strange particles and we will assume, in the following, that
it is sufficient to only consider these, in order to obtain the effect of canonical flavor
conservation. This assumption is consistent with use of classical Boltzmann statistics.
In fact, expanding the Bose distribution for kaons, one finds that the next to leading
order contribution, which behaves as strangeness ns = ±2 hadron, is dominating in
the projection the influence of all multistrange hadrons.

In order to find yields of rarely produced particles such as is, e.g., Ω(sss), we show
the omega term explicitly:

Zf(β, V ; nf = 0) =
∫ 2π

0

dϕ

2π
eF̃fe

iϕ+F̃f̄e
−iϕ+λΩe3iϕF̃Ω+··· . (22)

The unstated terms in the exponent are the other small abundance multi-flavored
particles. The fugacities not associated with strangeness, as well as the yield fugacity
γs, are incorporated in Eq. (22) into the phase space factors F̃i for simplicity of
notation.

The number of Ω is obtained differentiating lnZf(β, V ), with respect to λΩ, and
subsequently neglecting the sub dominant terms in the exponent. We obtain:

〈nΩ〉 =
F̃Ω

I0

∫ 2π

0

dϕ

2π
e3iϕeF̃fe

iϕ+F̃f̄e
−iϕ

. (23)
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The integral is just Zf(β, V ; nf = −3), Eq. (21), since we need to balance the three
strange quarks in the particle observed by the balance in the background of singly
strange particles (kaons and hyperons):

〈nΩ〉 = F̃Ω

(
F̃f

F̃f̄

)−3/2
I3(2NGC

pair)
I0(2NGC

pair)
. (24)

We recall that, according to Eq. (14), the middle term is just the fugacity factor
λ3

s . The first two factors, in Eq. (24), constitute the grand canonical yield, while
the canonical Ω-suppression factor is the last term. A full treatment of the canonical
suppression of multistrange particles in small volumes has been used to obtain particle
yields in elementary interactions [13].

Similarly, one finds that the Ξ suppression has the factor I2/I0, while as discussed
for the general example of flavor pair yield, the single strange particle yield is
suppressed by the factor I1/I0. The yield of all flavored hadrons in the canonical
approach (superscript ‘C’) can be written as function of the yield expected in the
grand canonical approach in the general form,

〈sκ〉C = F̃κ

(
F̃f

F̃f̄

)κ/2
I|κ|(2NGC

pair)
I0(2NGC

pair)
= 〈sκ〉GC

I|κ|(2NGC
pair)

I0(2NGC
pair)

, (25)

with κ = ±3, ±2, and ±1 for Ω, Ξ, and Y, K, respectively. On the left hand side,
in Eq. (25), the power indicates the flavor content in the particle considered with
negative numbers counting antiquarks. We note, inspecting the final form of Eq. (25),
that the canonical suppression of particles and antiparticles is the same. However, a
particle/antiparticle asymmetry can occur if baryon/antibaryon asymmetry is present.

The simplicity of this result originates in the assumption that the single strange
particle contribution to strangeness conservation are dominant. A more complex
evaluation taking all multistrange hadrons into account, but considering kaons as
Boltzmann particles is theoretically inconsistent.

3. Canonical strangeness and charm suppression

3.1. The suppression function

The canonical flavor yield suppression factor,

η ≡
I1(2γ

√
F̃f F̃f̄)

I0(2γ
√

F̃f F̃f̄)
=

I1(2NGC
pair)

I0(2NGC
pair)

< 1 , (26)

depends in a complex way on the volume of the system, or alternatively said, on
the grand canonical number of pairs, NGC

pair. The suppression function η(N) ≡
I1(2N)/I0(2N) is shown in Fig. 1, as function of N . For N > 1, we see (dotted
lines) that the approach to the grand canonical limit is relatively slow, it follows the
asymptotic form,

η ' 1− 1
4N

− 1
128N2

+ . . . , (27)

while for N � 1, we see a nearly linear rise:

η = N − N3

2
+ . . . (28)
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Figure 1. Solid line: canonical yield suppression factor as function of the grand canonical
particle yield N . Dotted lines: asymptotic expansion presented in text.

Overall, when the the yield of particles is small, we have using Eq. (28):

NCE
f ' (NGC

f )2 . (29)

The chemical equilibrium yield, at small abundances, is quadratic in grand
canonical particle yield, which for m > T is, expanding the K2-Bessel function,

NGC
f =

gf

2π2
T 3V

√
πm3

f

2T 3
e−mf/T . (30)

Thus, when the yield of particles is small, e.g., when mf � T , the canonical result
applies:

NCE
f =

g2
f

4π3
T 3m3

f V
2e−2mf/T . (31)

This result resolves an old puzzle first made explicit by Hagedorn, who queried
the quadratic behavior of the pair particle yield, compared to Boltzmann yield,
Y ∝ e−2m/T ' (e−m/T )2 being concerned about rarely occurring astrophysical pair
production processes [14].

The benchmark result, seen in Fig. 1, is that when one particle pair would be
expected to be present in grand canonical chemical equilibrium the actual canonical
yield is suppressed, the true phase space yield is 0.6 pairs. This suppression occurs
when the exact strangeness conservation is enforced due to reduction of the accessible
phase space by particle–antiparticle correlation.

We now look at the suppression of multistrange particles by the suppression
factors η3(N) = I3(2N)/I0(2N), for Ω, and η2(N) = I2(2N)/I0(2N), for Ξ. For
small values of N , we obtain:

ηκ ≡ Iκ(2N)
I0(2N)

→ Nκ 1
κ!

(
1− κ

κ + 1
N2

)
. (32)

This result is easily understood on physical grounds: for example when the expected
grand canonical yield is three strangeness pairs, it is quite rare that all three strange
quarks go into an Ω. This is seen in Fig. 2 (short dashed curve), and in fact this
will occur 1/5 as often as we would expect computing the yield of Ω, ignoring the
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Figure 2. Canonical yield suppression factor Iκ/I0 as function of the grand canonical particle
yield N . Short-dashed line: suppression of triply strange hadrons; long dashed: suppression of
doubly flavored hadrons; and solid line, the suppression of singly flavored hadrons.

canonical conservation of strangeness. The other lines, in Fig. 2, correspond to the
other suppression factors, long dashed is η2(N) = I2(2N)/I0(2N) and the solid line
is η(N) = I1(2N)/I0(2N). They are shown dependent on the number N of strange
pairs expected in the grand canonical equilibrium. We see that the suppression effect
increases with strangeness content, and that for N > 5, it practically vanishes.

3.2. Hadronic gas compared to quark–gluon plasma

We first consider how big a volume we need, in order to find (using grand canonical
ensemble counting) one pair of strange particles. As unit volume, we choose Vh =
(4π/3) 1 fm3. The flavor and antiflavor phase space is symmetric in the deconfined
state. In the Boltzmann limit,

F̃f = F̃f̄ =
3V Tm2

f

π2
K2(mf/T ) . (33)

In Fig. 3, the dashed line shows the volume required for one pair using the strange
quark phase space, which does not depend on λq, and has been obtained choosing
ms = 160 MeV and T = 160 MeV. Just a little less than one hadronic volume suffices,
one finds one pair in Vh for ms = 200 MeV.

For the hadronic phase space, counting as before strange quark content as
positively ‘flavor charged’, we obtain using Eqs. (5, 6):

F̃f =λ−1
q F̃K + λ2

qF̃Y , (34)

F̃f̄ =λqF̃K + λ−2
q F̃Y . (35)

All these quantities F̃i are proportional to the reaction volume. With λs chosen to
conserve strangeness, Eq. (14),

V

Vh
=

2π2

VhT 3γqγs

√
(FK + λ3

qFY)(FK + λ−3
q FY)

. (36)

The result is shown as solid line in Fig. 3, as function of λq, for γq = 1, γs = 1. We
recall that at SPS and RHIC energies, we have λq < 1.6. We see that for small λq, we
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Figure 3. Volume needed for one strange quark pair using grand canonical counting as function
of λq for T = 160 MeV, γq = 1, γs = 1, Vh = (4π/3) 1 fm3. Solid line: hadron gas phase space,
dashed line: quark phase space with ms = 160 MeV.

need much greater volumes to find one strange quark pair, and thus we recognize that
the hadron gas phase space is significantly smaller in absence of dense baryon number.
In a more colloquial language, strangeness ‘production’ is easier in the channel KΛ
than in KK.

This strong difference in the magnitude of the phase space between the confined
and deconfined phase, seen in Fig. 3, makes the effect of canonical suppression different
when we compare quark–gluon plasma with hadronic gas. Thus in what follows the
yield of strange hadrons is dependent on the nature of the phase from which emission
occurs.

It has been proposed to exploit the canonical suppression, which grows with
strangeness content, in order to explain the increase of strange hadron production,
which also grows with strangeness content of the particle [2, 3]. To do this, we must
turn things ‘upside down’ by rebasing all yields to unity at a unit volume. We first
consider more closely how big an effect we get for singly strange hadrons for quark–
gluon plasma and hadronic gas. In Fig. 4, the quark phase (solid line) and hadron
phase (dashed line), the suppression results are renormalized multiplicatively to cross
for V = Vh unity. Since quark phase space is bigger, it has ‘less space left’ to grow
to reach saturation, and hence the production enhancement is by a factor two, while
for the hadron case there is ‘more catch up left’ to do and thus the enhancement is
larger, we see that it is by a factor three.

Experimentally, the enhancement of strangeness production comparing p–p and
A–A interactions is nearly be the factor two, which result is obtained from the yields
of produced particles in terms of the Wróblewski ratio [15],

Ws =
2〈ss̄〉

〈uū〉+ 〈dd̄〉 . (37)

Only newly made ss̄, uū and dd̄ quark pairs are counted. If strangeness were to
be as easily produced as light u, d quarks, we would find Ws → 1. To obtain the
experimental value for Ws, a careful study of produced hadron yields is required.
We refer to results obtained using a semi-theoretical method [8], in which numerous
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Figure 4. Canonical yield enhancement at large volumes compared to unit hadron volume
Vh = (4π/3) 1 fm3. Solid line QGP phase, dashed line HG.

particle yields are described within the framework of a statistical model. In elementary
collisions pp, pp̄, e+e−, a value Ws ' 0.22 is obtained, strangeness is thus relatively
strongly suppressed. On the other hand, in nuclear A–A′ collisions Ws nearly doubles
compared to p–p interactions at the same collision energy.

Assuming that the enhancement is due to canonical effects, the result shown in
Fig. 4 is implying that strange quarks originate from deconfined state. This conclusion
is very strong since there is no way that the experimental ratio Ws is enhanced by factor
three, or that reaction volume in p–p interactions is much smaller than Vh. On cannot
stop but to smile at this. Namely, turning things ‘upside down’ one succeeds to argue
that the smaller strangeness enhancement (not a factor three, but two) is indication
of deconfinement! Of course such arguments, based on comparison of equilibrium
oranges with equilibrium apples, are very tentative: using as input the actual yield of
strangeness in p–p interactions, the canonical enhancement is by a factor three in any
scenario, as the observed experimental yield absorbs the uncertainty about the phase
space, see section 4. However, the presentation we have made in Fig. 4 follows the line
of argument of [2, 3], and illuminates the arguments made in this work.

3.3. Canonical charm yields

Not everybody is tempted to use statistical equilibrium when considering the yield
of charm. The charmed quark mass is sufficiently high to stop even the greatest of
optimists from claiming that thermal collisions could equilibrate the yield. On the
other hand, since the mass is so large, the thermal grand canonical abundance is
relatively small. Thus, the few hard collisions occurring between colliding partons
also suffice to reproduce so much charm that it can easily be well above the chemical
equilibrium yield.

The yield of charm, in Pb–Pb interactions at 158A GeV, is estimated from lepton
background at 0.5 pairs per central collision [16]. We can use the small N expansion,
Eq. (32). The corresponding A–A canonical enhancement factor, compared to p–A,
is NAA/NpA ' 100 A. (Here, N is now grand canonical yield of ‘open’ charm, and
not strangeness). Experimental results are scaling with Aα , α < 1.3, thus there is no



Importance of reaction volume in hadronic collisions: Canonical enhancement 11

Figure 5. Canonical yield of open charm quark pairs 〈n〉pair per unit volume as function of
volume, in units of Vh = 4π/3 1 fm3. Solid line: QGP with mc = 1.3 GeV, dashed line HG at
µb = 210 MeV, both phases at T = 145 MeV.

space for canonical enhancement/suppression for charm production of this magnitude.
To be more specific, we show, in Fig. 5, the specific yield per unit volume as

function of volume of charm 〈n〉pair. The canonical effect is the deviation from a
constant value and it is significant, O(100). Even at V = 400Vh the infinite volume
grand canonical limit is not yet attained, for the case of the larger phase space of
QGP (solid line), the total charm yield is 0.8 charm pairs. The absolute yield in both
phases is strongly dependent on temperature used, here T = 145 MeV, corresponding
to SPS hadronization condition. In quark–gluon plasma, we took mc = 1.3 GeV. The
hadronic gas phase space includes all known charmed mesons and baryons, with light
quark abundance controlled by µb = 210 MeV, µs = 0.

While choosing a slightly higher value of T , we could increase the equilibrium yield
of charm in hadronic gas to the quark–gluon plasma level [17], this does not eliminate
the effect of canonical suppression of charm production if chemical equilibrium is
assumed for charm in the elementary interactions. We are simply so deep in the
‘quadratic’ domain of the yield, see Eq. (32), that playing with parameters changes
nothing, since we are constrained in Pb–Pb interactions by experiment to have a charm
yield below one pair. Then, the expected yield in p–p and p–A interactions is well
below measurement, the canonical suppression is overwhelming. Charm yield is surely
not in chemical equilibrium either at small or large volumes, most probably in both
limits.

4. Final remarks

We have discussed the subtle differences in particle yields that arise in equilibrium
statistical mechanics when, within a finite system, the conservation of flavor is enforced
exactly. We addressed the recent proposal [2, 3], that the enhancement of strange
particles may be also described in chemical equilibrium model using the nonlinear
canonical volume dependence discovered 20 years ago [1].

We have shown that, for single strange hadrons, this effect is actually much better
agreeing with data when the phase space of strangeness is that of deconfined quarks,
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Figure 6. Canonical yield enhancement factor Ei, i = 1, 2, 3 as function of the canonical
pair particle yield NCE . Solid line, E1 the enhancement of singly flavored hadrons, relative
to the yield 0.66 ± 0.07, expected in p–p reactions. Similarly, long dashed: E2 enhancement
of doubly flavored hadrons; and short-dashed line: E3 enhancement of triply strange hadrons.
Dotted lines correspond to the errors arising from the error in the strangeness yield, to which
the results are normalized.

and thus such an interpretation strongly supports the quark–gluon plasma hypothesis
as the source of hadrons, rather the conventional confined hadron gas source. However,
we have pointed out that the chemical equilibrium hypothesis applied in this context
is a very uncertain one. Specifically, we recall that in all systems studied the full
chemical strangeness equilibrium has not been attained [8, 12, 13].

How is it then possible that the multistrange hadron yield has been explained?
Compared to the grand canonical ensemble, we see, in Fig. 2, ‘upside down’
suppression/enhancement factor which depends sensitively on the choice of the (grand-
canonical) yield of strange pairs N ∝ V . Thus, with an appropriate choice of a
reference point Vh and T these factors can be fine tuned as is in fact done in Ref. [2, 3],
within a eyeball fit.

We try here a more refined approach. For p–p reactions at the top SPS energy the
strange pair yield is known, 〈ns-pair〉 = 0.66±0.07 pairs [15]. We take the results shown
in Fig. 2 and convert the ordinate to be the canonical yield, NCE = NI1(2N)/I0(2N),
and normalize the yields at the observed 0.66±0.07 pairs, thus showing the ‘canonical
enhancement’, Ei, i = 1, 2, 3, with reference to the p–p collision system in Fig. 6. The
errors (dotted lines) correspond to the errors in the strangeness yield, to which the
results are normalized.

The single strange hadron enhancement, solid line in Fig. 6, is by factor three. By
coincidence the canonical strangeness enhancement shown is of the same magnitude as
expected in kinetic theory models of strangeness production. However, the canonical
(equilibrium) enhancement is very rapid, as seen in Fig. 4, and expressed equivalently
in Fig. 6. It is reached in a few elementary collision volumes, or equivalent when a few
strange quark pairs are present. On the other hand, this yield rise will be significantly
delayed if the chemical equilibrium can be attained only at 30–50 elementary volumes,
where new physics comes into play. The shape of the enhancement curve as function
of the volume then also shows where the gluon fusion mechanism of strangeness
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production sets in [11], where one would expect that the deconfinement begins, as
function of reaction volume at given collision energy. The experimental results from
NA52 experiment [18] shows a rather sudden strangeness enhancement threshold
at ' 50 participants, just where WA57 recently reports a sudden onset of Ξ yield
enhancement [19].

Moreover, we see in Fig. 6 the long-dashed line describing the double strange
(cascade) canonical enhancement which is by a factor E2 =12–21, and the short-
dashed line describing the enhancement of triply strange Ω, Ω by a factor E3 =80–
200, well above kinetic model expectations. The experimental enhancement results
are reported by the WA97 experiment, with base obtained in p–Pb and p–Be collision
system [20]. The p–Be interaction is dominated by the p–n interaction, where the
valance neutron ‘binding’ the two alpha-nuclei is scattered from, thus these results
can be used here. The reported enhancement is considerably smaller, for the Ω + Ω,
E3 < 20 and for Ξ E2 < 8, with a yet smaller enhancement for Ξ. We believe that
the WA97 results are in disagreement with the expected large canonical multi strange
hadron effects. This disagreement is already clearly visible looking at p–Pb yields
which are not enhanced compared to p–Be yields. The canonical enhancement is
highly sensitive to the relatively large increase in the number of participants, when
these two systems are compared, the quark–gluon plasma kinetic mechanism with
larger participant threshold is not sensitive, as seen in the experiment.

In passing, we address the more complex case of φ(ss̄) enhancement. This particle
has only ‘hidden’ strangeness, it does not follow the E2 enhancement curve. If the
φ production mechanism in p–p and A–A reactions are the same and involve s–s̄
pairs performed in the fireball, the enhancement of φ production follows the general
strangeness pair enhancement. Experimentally expressed per participant the φ(ss̄)
enhancement is by factor 3.6 [21], comparing p–p with Pb–Pb.

For charm, we have also obtained a canonical enhancement well above
experimental expectations. We have seen, in Fig. 5, that a large change is expected
in the canonical charm yield per unit of volume (which is equivalent to yield per
participant) when chemical equilibrium is subsumed. Experimental results do not
show that the yield of charm is rising that fast. This implies that heavy charm quarks
are not in chemical equilibrium, and their production has to be studied in kinetic
theory of parton collision processes.

If attainment of chemical equilibration is seen as a fundamental process driven by
an unknown ‘demon’ which operates within statistical hadronization, charm should
not be different from strangeness. Thus, if charm is excluded from equilibrium, this
means that there is indeed no 21st century Maxwell ‘equilibration demon’ control of
charm, and by extension, also not of strangeness.

In conclusion, we argued and/or have shown that the canonical strangeness
enhancement:
1) lacks internal theoretical consistency, considering both strangeness and charm;
2) it is more consistent with the observed strangeness enhancement when QGP phase
space is used;
3) that its behavior as function of volume disagrees with the available experimental
results;
4) that the effect for multistrange hadrons is much greater than the experimental
results suggest;
5) is absent, though expected, comparing p–Be with p–Pb results.

This work has demonstrated that the chemical equilibrium canonical suppres-
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sion/enhancement reinterpretation of quark–gluon plasma strange hadron signature is
without scientific merit.
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[15] A. Wróblewski, 1985. On the strange quark suppression factor in high energy collisions. Acta
Phys. Pol. B, 16, 379.

[16] M.C. Abreu et al., NA50 collaboration, 2001. Results on open charm from NA50. J. Phys. G,
27, 677.
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