A Model of the Electroweak Interactions with Invisible Higgs Particle

I. Viteva,b and V. Rizovb

a Department of Physics, Columbia University, 538 W 120-th Street, New York, NY 10027, USA
b Department of Theoretical Physics, Sofia University St. Kliment Ohridski, boul. J. Bourchier 5, 1164 Sofia, Bulgaria

We propose a minimal unified model of the electroweak interactions without a Higgs particle in the final physical spectrum. This is achieved through adding a nonlinear constraint for the Higgs field in the Lagrangian in which the field’s content is the same as in the Weinberg-Salam (WS) model. In the unitary gauge the generation of masses of the W^\pm and Z bosons, as well as for the leptons and quarks, reproduces the known pattern in the WS model. The path integral quantization shows that with the exception of the scalar particles’ all other vertices known from the WS model in the unitary gauge, remain. A Ward identity relative to the electromagnetic gauge group is also derived.

I. INTRODUCTION

The Weinberg-Salam model \cite{1,2} uses the Higgs-Kibble mechanism \cite{3,4} for the generation of masses for the W^\pm, Z and the spinor fields. After breaking the original gauge symmetry down to the electromagnetic gauge group one has one neutral Higgs boson in the physical spectrum, which as yet has not been observed.* In his attempt to avoid introducing a Higgs field LaChapelle \cite{5} uses the gauge group $U_c(3) \times U(1) \times C(3,1)$, where $U_c(3)$ is the color group and $C(3,1)$ is the conformal group acting on Minkowski space. In this model part of the gauge potentials (except for the photon) acquire masses but there remain problems with the interpretation of the other gauge fields. In the framework of a conformally invariant model Pawlowski and Raczka \cite{6} also suggest the elimination of the Higgs field, restricting its scalar length by a suitable conformal transformation. In the present paper we propose to eliminate the Higgs boson by adding a suitably chosen constraint on the scalar field which reduces the number of particles in the final spectrum. In Section II we study the classical aspects of a model of the electroweak interactions on the basis of a previously introduced gauge group MU(2) \cite{7}, using a quadratic constraint on the Higgs field. As mentioned in \cite{7}, the representations of MU(2) allow one to describe fields with charges proportional to $1/3$ (in units of the elementary charge). This group is different from that proposed as a gauge group for the \textit{standard model} in a recent publication by Roepstorff and Veheus \cite{8}. The latter is a subgroup G of SU(5) and like MU(2), $G/SU(3)$ also appears as a covering of U(2). In Section III we consider the model in the unitary gauge and show that it reproduces all the features of the physical particles in the WS model except for the Higgs field, which is absent in the particle spectrum. The quantization of the model is carried out using Hamiltonian formulation. In Section IV we study the proposed model as a system with first and second class constraints and derive the Hamiltonian. In Section V a Ward identity is derived relative to the residual electromagnetic gauge group. In this paper we are not considering the renormalizability of the the model.

*After this work had been completed we became aware of the report at CERN about a possible evidence of the Higgs boson at LEP, the data, however, being suggestive, not conclusive. In any case we hope that the present paper will be of use for the theorists in the treatment of the Higgs and other elusive particles.
Our convention for the metric in Minkowski space is $g_{\mu\nu} = \text{diag}(1,-1,-1,-1)$, the gamma matrices satisfy $\gamma_0^a \gamma_0 = g_{\mu\nu} \gamma^a \gamma_\mu$ under hermitian conjugation and the matrix $\gamma_5 = i\gamma_0 \gamma_1 \gamma_2 \gamma_3$ is hermitian. The projectors acting in the spinor space S and separating the right- and left-handed part of a spinor, are

$$\Pi_L = \frac{1 - \gamma_5}{2}, \quad \Pi_R = \frac{1 + \gamma_5}{2}.$$ \hfill (1)

The space S is a direct sum

$$S = S_L \oplus S_R, \quad S_L = \Pi_L S, \quad S_R = \Pi_R S.$$ \hfill (2)

We start with a Lagrangian that contains singlet and doublet states with respect to the group $\text{MU}(2) = (\text{R} \times \text{SU}(2))/3\text{Z}$ as suggested in [7],

- left leptons, $L^A \in C^2 \otimes S_L \subset C^2 \otimes S$,
- left quarks, $Q^A \in C^2 \otimes S_L \subset C^2 \otimes S$,
- right leptons, $R^A_\ell \in \Lambda^2 C^2 \otimes S_R \subset \Lambda^2 C^2 \otimes S$,
- right quarks of type “p”, $R^A_p \in \Lambda^2 C^2 \otimes S_R \subset \Lambda^2 C^2 \otimes S$,
- right quarks of type “n”, $R^A_n \in \Lambda^2 C^2 \otimes S_R \subset \Lambda^2 C^2 \otimes S$,
- scalar Higgs field, $\phi \in C^2$.

where the index $A = 1,2,3$ denotes the three generations of spinor fields. The fields (3)-(8) transform under suitably chosen representations of $\text{MU}(2)$ [7] as follows

$$L^A \rightarrow L'^A = T[u,A]L^A,$$ \hfill (9)

$$Q^A \rightarrow Q'^A = T^{-2}[u,A]Q^A,$$ \hfill (10)

$$R^A_\ell \rightarrow R'^A_\ell = \text{Det} [u,A] R^A_\ell,$$ \hfill (11)

$$R^A_p \rightarrow R'^A_p = \text{Det}^{-\frac{1}{2}} [u,A] R^A_p,$$ \hfill (12)

$$R^A_n \rightarrow R'^A_n = \text{Det}^\frac{1}{2} [u,A] R^A_n,$$ \hfill (13)

$$\phi \rightarrow \phi' = T[u,A] \phi.$$ \hfill (14)

In the notations of [7] we write $[u,A] \in \text{MU}(2)$ for the equivalence class $\{(u + 3k\pi, e^{-3k\pi}iA) \mid k \in \text{Z}\}$, $u \in \text{R}$, $A \in \text{SU}(2)$, and

$$T[u,A] = e^{iuA}, \quad T^k[u,A] = e^{iu(1+\frac{2k}{3})}A, \quad \text{Det}^\frac{1}{2}[u,A] = e^{\frac{2iu}{3}}.$$ \hfill (15)

Since the Lie algebras of $\text{MU}(2)$, $\text{U}(2)$ and $\text{SU}(2) \times \text{U}(1)$ are the same,

$$\text{Lie} \text{MU}(2) = \text{R} \oplus \text{Lie} \text{SU}(2),$$ \hfill (16)

there are three gauge potentials $A^a_\mu (a = 1,2,3)$ relative to the Lie algebra of $\text{SU}(2)$ and one, B_μ, for R, the respective gauge coupling parameters being g and g'. A set of four generators for $\text{MU}(2)$ is given by

$$X^a = \left(0, \frac{\sigma^a}{2}\right), \quad a = 1,2,3, \quad \text{and} \quad X = \left(-\frac{1}{2}, 0\right),$$ \hfill (17)

where σ^a are the Pauli matrices. Note that it is specific for this model that the actions of $\text{MU}(2)$ on the left leptons L^A and on the Higgs field ϕ coincide, so that the covariant derivative of ϕ reads

$$D_\mu \phi = \left(\partial_\mu - igA^a_\mu \frac{\sigma^a}{2} + ig'B_\mu \frac{I}{2}\right) \phi.$$ \hfill (18)

The remaining covariant derivatives are the same as in the WS model. The Yang-Mills Lagrangian

$$L_{YM} = -\frac{1}{4} F^a_{\mu\nu} F^a_{\mu\nu} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu}$$ \hfill (19)
In order to write the scalar-spinor interaction term in an MU(2) invariant form we note the following: let \(e_1, e_2 \) be a basis in \(\mathbb{C}^2 \), \(\phi \in \mathbb{C}^2 \), and \(G \) be the standard hermitian metric in \(\mathbb{C}^2 \). Writing \(\phi = \phi_1 e_1 + \phi_2 e_2 \), \(u = u_1 e_1 + u_2 e_2 \) one has \(\phi \wedge u = \langle \phi_1 u_2 - \phi_2 u_1 \rangle e_1 \wedge e_2 \in \Lambda^2 \mathbb{C}^2 \otimes S \). Using \(G \) and Dirac conjugation we define a bilinear form in \(\Lambda^2 \mathbb{C}^2 \otimes S \) denoted by \(\langle \cdot, \cdot \rangle_G \) such that

\[
\langle \psi e_1 \wedge e_2, \theta e_1 \wedge e_2 \rangle_G = \bar{\psi} \theta .
\]

Let \(\hat{u} = i \sigma^2 u^* \) where \(u^* \) is the complex conjugate of \(u \). We will further use the representations of MU(2) on \(\Lambda^2 \mathbb{C}^2 \) defined by \(\text{Det} \tilde{\Lambda} [u, A] = e^{\tilde{\Lambda} \tilde{u}} \). We may write now an MU(2) invariant term involving the spinor fields and the Higgs field, namely

\[
\mathcal{L}_{\text{Yuk}} = - \left[K_{AB}^P \langle \phi \wedge L^A, R^B \rangle_G + K_{AB}^P \langle \tilde{\phi} \wedge Q^A, R^B \rangle_G + K_{AB}^P \langle \phi \wedge Q^A, R^B \rangle_G + h.c. \right] ,
\]

summation over the repeated indices \(A, B \) is assumed. Here \(K_{AB}^P \) are the matrix elements of a \(3 \times 3 \) real diagonal matrix, while \(K_{AB}^P \) and \(K_{AB}^P \) are the matrix elements of \(3 \times 3 \) complex invertible matrices. Note that the transformation property of \(\hat{\phi} \) yields a form of \(\mathcal{L}_{\text{Yuk}} \) which contains a minor difference as compared to the explicit form of the Yukawa term in the WS model. The pure Higgs field term reads

\[
\mathcal{L}_\phi = (D_\mu \phi)^* (D^\mu \phi) + c(x)(\phi^* \phi - a^2) , \quad a = \text{const.}, \quad a > 0 .
\]

Instead of the standard potential \(V(\phi) = -\mu^2 \phi^* \phi + \lambda(\phi^2)^2 \) it contains a nonlinear constraint fixing the squared norm of the field \(\phi \), \(||\phi||^2 = a^2 \). The real field \(c(x) \) is the corresponding Lagrange multiplier. Considering the equations of motion for \(\phi(x) \) and \(c(x) \), we find

\[
D_\mu D^\mu \phi - c(x) \phi - V = 0 ,
\]

\[
\phi^* D_\mu D^\mu \phi - c(x) \phi^* - V^* = 0 ,
\]

\[
\phi^* \phi - a^2 = 0 .
\]

\(D_\mu \) implies hermitian conjugation of the covariant derivative as well as action of the differential operator to the left. The explicit form of \(V \in \mathbb{C}^2 \) is

\[
V = \frac{\partial \mathcal{L}_{\text{Yuk}}}{\partial \phi^*} = \left(-K_{AB}^P (\overline{L^A})_2 R^B_2 - K_{AB}^P R^A_2 (Q^B)_1 - K_{AB}^P (\overline{Q^A})_2 R^B_2 \right)
\]

\[
K_{AB}^P (\overline{L^A})_1 R^B_1 - K_{AB}^P R^A_1 (Q^B)_2 + K_{AB}^P (\overline{Q^A})_1 R^B_2 \right)
\]

and \(V^* \) is the hermitian conjugate of \(V \). Expressing \(c(x) \) from (24)-(26)

\[
c(x) = \frac{1}{a^2} \left[\phi^* (D_\mu D^\mu \phi) - \phi^* V \right] ,
\]

\[
c(x) = \frac{1}{a^2} \left[(\phi^* D_\mu D^\mu \phi) - \phi^* V \right] ,
\]

we eliminate the Lagrange multiplier and obtain

\[
D_\mu D^\mu \phi - \frac{1}{a^2} [\phi^* (D_\mu D^\mu \phi) - \phi^* V] \phi - V = 0 ,
\]

\[
\phi^* D_\mu D^\mu \phi - \frac{1}{a^2} \phi^* [(\phi^* D_\mu D^\mu \phi) - \phi^* V] - V^* = 0 ,
\]

\[
\phi^* (D_\mu D^\mu \phi) - \phi^* V = (\phi^* D_\mu D^\mu \phi) - V^* .
\]

3
The unitary gauge is the gauge in which the scalar Higgs field has one constant component. Due to the nonlinear constraint (26) the other component is also fixed

\[\phi_0(x) = \begin{pmatrix} a \\ 0 \end{pmatrix}. \] (33)

The electromagnetic subgroup \(\text{MU}_{\text{em}}(1) \) is the little group for \(\phi_0 \), i.e.

\[T \left[-\frac{\alpha}{2}, \begin{pmatrix} e^{\frac{\alpha}{2}} & 0 \\ 0 & e^{-\frac{\alpha}{2}} \end{pmatrix} \right] \phi_0 = \phi_0, \quad \alpha \in \mathbb{R}. \] (34)

For each point \(x \) we may choose an element \([u, A] \in \text{MU}(2)\), so that \(T[u, A] \) transforms \(\phi \) to the form (33), namely

\[[u, A] = \begin{pmatrix} 0, 1 \\ \frac{1}{a} \begin{pmatrix} \varphi_1^* & \varphi_2^* \\ -\varphi_2 & \varphi_1 \end{pmatrix} \end{pmatrix}, \quad T[u, A] = \begin{pmatrix} \varphi_1^* & \varphi_2^* \\ -\varphi_2 & \varphi_1 \end{pmatrix}, \]

\[\phi = \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix}, \quad \phi^* \phi = ||\phi||^2 = ||\phi_1||^2 + ||\phi_2||^2 = a^2. \] (35)

Following the standard pattern we define the physical fields \(W^\pm_\mu \), \(Z_\mu \) and \(A_\mu \) as unitary linear combinations of the original gauge fields. The four fields with definite electric charge are

\[\begin{pmatrix} W^+_\mu \\ W^-_\mu \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{i}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} A^1_\mu \\ A^2_\mu \end{pmatrix}, \quad \begin{pmatrix} Z_\mu \\ A_\mu \end{pmatrix} = \begin{pmatrix} \frac{g}{\sqrt{g^2 + g'^2}} \frac{g'}{\sqrt{g^2 + g'^2}} \\ \frac{g}{\sqrt{g^2 + g'^2}} \frac{g'}{\sqrt{g^2 + g'^2}} \end{pmatrix} \begin{pmatrix} A^3_\mu \\ B_\mu \end{pmatrix}. \] (36)

Indeed, the general gauge transformation

\[A'^\alpha T^a = T(g)(A^a_\mu T^a)T(g)^{-1} - \frac{i}{g}(\partial_\mu T(g))T(g)^{-1}, \] (37)

applied for an element from the electromagnetic subgroup \(\text{MU}_{\text{em}}(1) \), gives for the fields (36)

\[W'^+ = e^{i\alpha} W^+_\mu, \quad W'^- = e^{-i\alpha} W^-_\mu, \]

\[Z'_\mu = Z_\mu, \quad A'_\mu = A_\mu + \frac{1}{e} \partial_\mu \alpha. \] (39)

The elementary electric charge is identified as \(e = \frac{2g'}{\sqrt{g^2 + g'^2}}. \) Therefore, in the unitary gauge after breaking the symmetry down to the \(\text{MU}_{\text{em}}(1) \) subgroup, we recognize with no surprise that \(W^\pm_\mu \) are charged vector fields, \(Z_\mu \) is a neutral vector field and \(A_\mu \) is the remaining gauge potential (for the residual invariance group), identified with the electromagnetic field.

If we go back to the Higgs field term (23), we see that in the unitary gauge it only contributes to the masses of the vector fields

\[\mathcal{L}_\phi = \frac{g^2 a^2}{2} W^+_\mu W^-_\mu + \frac{(g^2 + g'^2)a^2}{4} Z_\mu Z^\mu, \]

\[M^2_{W^\pm} = \frac{g^2 a^2}{2}, \quad M^2_Z = \frac{(g^2 + g'^2)a^2}{2}. \] (41)

The field \(e(x) \) has been excluded and does not appear in the unitary gauge. As in the standard scheme, in the unitary gauge the lepton fields are identified with the physical leptons, whereas the quark fields appear as linear combinations of quarks with definite current masses

\[L^A = \begin{pmatrix} \nu^A_e \\ c^A_L \end{pmatrix}, \quad R^A = e^A_R, \quad \nu^A = \nu_e, \nu_\mu, \nu_\tau, \quad e^A = e, \mu, \tau. \] (42)
The scalar-spinor term in the Lagrangian after breaking the symmetry acquires the form

\[\mathcal{L}_{\text{Yuk}} = -\left[\tilde{M}_A^2 \bar{e}^{A} R^L + \tilde{M}_B^2 \bar{\nu}^{A} L^B + \tilde{M}_C^2 \bar{\nu}^{A} R^L + \text{h.c.} \right]. \]

The neutrinos are strictly massless and the quark mass matrices are in general non-diagonal. The procedure of their diagonalization goes in the same way as in the WS model yielding the quark mass eigenstates \(p^A \) and \(n^A \) [9].

The Lagrangian of the proposed model in the unitary gauge can be written in a form, suitable for determining the canonical momenta of the fields and the primary constraints for a further transition to Hamiltonian formalism and quantization by path integrals. The term in the Lagrangian, associated with the massive vector fields and the electromagnetic gauge potential, is

\[
\begin{align*}
\mathcal{L}_{\text{vec.}} &= -\frac{1}{4} (\partial_\mu A_\nu - \partial_\nu A_\mu)(\partial^\mu A^\nu - \partial^\nu A^\mu) - \frac{1}{4} (\partial_\mu Z_\nu - \partial_\nu Z_\mu)(\partial^\mu Z^\nu - \partial^\nu Z^\mu) \\
&+ \frac{1}{2} M_Z^2 Z_\mu Z^\mu - \frac{1}{2} (\partial_\mu W^+ - \partial_\nu W^+) (\partial^\mu W^- - \partial^\nu W^-) + M_W^2 W^+ W^- \\
&+ \frac{ig}{\sqrt{g^2 + g'^2}} (\partial_\mu A_\nu - \partial_\nu A_\mu) (W^+ W^- + (\partial_\mu W^+ - \partial_\nu W^+) W^+ - (\partial_\mu W^- - \partial_\nu W^-) W^- A^+ A^-) \\
&+ \frac{ig}{\sqrt{g^2 + g'^2}} (\partial_\mu W_\nu - (\partial_\mu W^- - \partial_\nu W^-) Z^+ Z^- - (\partial_\mu W^- - \partial_\nu W^-) Z^- Z^+) \\
&- \frac{g^2}{2} (W^+ W^- W^+ W^+ - W^+ W^- W^- W^-) - \frac{g^2 g'}{g^2 + g'^2} (W^+ W^- A_\nu A^+ - (W^- A^+ W^+) A^-) \\
&- \frac{g^4}{g^2 + g'^2} (W^+ W^- Z_\nu Z^+ - W^+ Z^+ W^- Z^-) - \frac{g^2 g'}{g^2 + g'^2} (2W^+ W^- A_\nu A^+ - (W^- A^+ W^+) Z^- - (W^+ A^+ W^- Z^- - W^+ Z^+ W^- A^-)) .
\end{align*}
\]

The Lagrangian, describing a free spinor theory with physical fermions, is

\[\mathcal{L}^{(0)}_f = \bar{e}^{A} (i\gamma^\mu \partial_\mu - m_\lambda) e^A + \bar{p}^A (i\gamma^\mu \partial_\mu - m_\lambda^p) p^A + \bar{n}^A (i\gamma^\mu \partial_\mu - m_\lambda^n) n^A + \bar{\nu}^A (i\gamma^\mu \partial_\mu - m_\lambda^n) \nu^A . \]

Here \(m_\lambda^p \), \(m_\lambda^A \) and \(m_\lambda^n \) denote the masses of the three charged leptons and quarks of type “p” and “n” respectively. It remains to list the electromagnetic current part, the weak neutral current part and the charged current term of the Lagrangian

\[
\begin{align*}
\mathcal{L}_{\text{em.c.}} &= \frac{g g'}{\sqrt{g^2 + g'^2}} \left[-\bar{e}^{A} \gamma^\mu e^A + \frac{2}{3} \bar{p}^A \gamma^\mu p^A - \frac{1}{3} \bar{n}^A \gamma^\mu n^A \right] A_\mu . \\
\mathcal{L}_{\text{n.c.}} &= \frac{1}{2\sqrt{g^2 + g'^2}} \left[-(g^2 - g'^2) \bar{e}^A \gamma^\mu e^A + 2g^2 \bar{e}^A \gamma^\mu \gamma^\nu e^A + (g^2 + g'^2) \bar{p}^A \gamma^\mu \nu^A \right] Z_\mu \\
&+ \frac{1}{2\sqrt{g^2 + g'^2}} \left[(g^2 - g'^2) \bar{p}^A \gamma^\mu p^A - 4g^2 \bar{p}^A \gamma^\mu \gamma^\nu p^A - (g^2 + g'^2) \bar{n}^A \gamma^\mu n^A + 2g^2 \bar{n}^A \gamma^\mu \gamma^\nu n^A \right] Z_\mu . \\
\mathcal{L}_{\text{c.c.}} &= \frac{g}{\sqrt{2}} \left[(\bar{e}^A \gamma^\mu e^A + \bar{p}^A \gamma^\mu U_{\lambda\rho} p_{\lambda}^A + \bar{n}^A \gamma^\mu n_{\lambda}^A) W^+ + \text{h.c.} \right] ,
\end{align*}
\]

where \(U \) is the Kobayashi-Maskawa matrix. Finally we go back to the equations (30)-(32). If we take into account the explicit form of the vectors \(V \) and \(V^* \) in the unitary gauge, we find
theory of a free vector field

signify the fact that a massive vector field has three physical components and are analogous to
Equations (50)-(52) appear in the unitary gauge as part of the equations of motion for the

\[\partial_{\mu}W^{+\mu} + \frac{ig^2}{\sqrt{g^2 + g'^2}}Z_{\mu}W^{+\mu} - \frac{igg'}{\sqrt{g^2 + g'^2}}A_{\mu}W^{+\mu} \]
\[+ \frac{i\sqrt{2}}{ga^2}(m_A^e e^A_{R}v^A + m_A^a U_{AB} = m_B^A U_{AB} = 0) \]

Equations (50)-(52) appear in the unitary gauge as part of the equations of motion for the \(W^\pm \) and \(Z \) bosons. They signify the fact that a massive vector field has three physical components and are analogous to \(\partial_{\mu}U^\mu = 0 \) in Proka’s theory of a free vector field \(U^\mu \).

IV. HAMILTONIAN FORMALISM

For the transition to a Hamiltonian form and a subsequent quantization of the model we will use the approach and terminology of [10–12]. Following [11], we will treat the fields in the model as elements of a Berezin algebra. The time component of the electromagnetic gauge potential \(A_0 \) will be considered as a Lagrange multiplier.

Given the Lagrangian (45)-(49) we find the conjugate momenta for the spinor fields

\[\Pi_{e^A} = \frac{\partial R\mathcal{L}}{\partial \dot{e}^A} = i\dot{e}^A \gamma^0, \quad \Pi_{\bar{e}^A} = \frac{\partial R\mathcal{L}}{\partial \dot{\bar{e}}^A} = 0, \]

Here \(\frac{\partial R\mathcal{L}}{\partial \dot{e}^A} \), etc..., stand for “right” differentiation. The canonical momenta for the massive vector fields and the electromagnetic gauge potential are

\[\Pi_0^Z = \frac{\partial R\mathcal{L}}{\partial Z^0} = 0, \]

\[\Pi_i^Z = \frac{\partial R\mathcal{L}}{\partial Z^i} = \dot{Z}^i + \partial_i Z_0 + \frac{ig^2}{\sqrt{g^2 + g'^2}}(W_0^+ W_i^- - W_i^+ W_0^-), \]

\[\Pi_{0}^{W^+} = \frac{\partial R\mathcal{L}}{\partial W^{+0}} = 0, \]

\[\Pi_{i}^{W^+} = \frac{\partial R\mathcal{L}}{\partial W^{+i}} = \dot{W}^{--} + \partial_i W_0^- + \frac{igg'}{\sqrt{g^2 + g'^2}}(W_0^- A_i - A_0 W_i^-) + \frac{igg^2}{\sqrt{g^2 + g'^2}}(W_0^- Z_i - Z_0 W_i^-), \]

\[\Pi_{0}^{W^-} = \frac{\partial R\mathcal{L}}{\partial W^{-0}} = 0, \]

\[\Pi_{i}^{W^-} = \frac{\partial R\mathcal{L}}{\partial W^{-i}} = \dot{W}^{++} + \partial_i W_0^+ + \frac{igg'}{\sqrt{g^2 + g'^2}}(A_0 W_i^+ - W_i^+ A_0) + \frac{igg^2}{\sqrt{g^2 + g'^2}}(Z_0 W_i^+ - W_i^+ Z_0), \]

\[\Pi_i^A = \frac{\partial R\mathcal{L}}{\partial A^i} = \dot{A}^i + \partial_i A_0 + \frac{igg'}{\sqrt{g^2 + g'^2}}(W_0^+ W_i^- - W_i^+ W_0^-). \]
The corresponding velocities that can be expressed from here are W^\pm_i, $\tilde Z^i$ and $\tilde A^i$. The remaining equations from (53)-(63) and the part of the Lagrangian that multiplies A^0 define the primary constraints in the model

\[\phi_{e_A}^{(1)} = \Pi_{e_A} - i e A^0 \gamma_0, \quad \phi_{\nu_A}^{(1)} = \Pi_{\nu_A}, \quad \phi_{\mu_A}^{(1)} = \Pi_{\mu_A}, \quad \phi_{\rho_A}^{(1)} = \Pi_{\rho_A} - i e A^0 \gamma_0, \quad \phi_{\gamma_A}^{(1)} = \Pi_{\gamma_A}, \quad \phi_{n_A}^{(1)} = \Pi_{n_A} - i n A^0 \gamma_0, \quad \phi_{\bar n_A}^{(1)} = \Pi_{\bar n_A}. \]

(64)

(65)

(66)

(67)

For the massive vector mesons and the electromagnetic gauge potential one gets the primary constraints

\[\phi_{\mu}^{(1)} = \Pi_{\mu}^0, \quad \phi_{W^+}^{(1)} = \Pi_{W^+}^0, \quad \phi_{W^-}^{(1)} = \Pi_{W^-}^0, \quad \phi_{A^0}^{(1)} = \partial_i \Pi_i^0 + \frac{igg'}{\sqrt{g^2 + g'^2}} \left(\Pi_{W^-}^0 \Pi_i^0 - \Pi_{W^+}^0 \Pi_i^0 \right) \]

\[- \frac{g g'}{\sqrt{g^2 + g'^2}} \left(- e A^0 e A^0 + \frac{2}{3} p A^0 p A - \frac{1}{3} n A^0 n A \right). \]

(68)

With the help of the explicitly solved velocities one finds the Hamiltonian of the system

\[\mathcal{H} = \frac{1}{2} \Pi_i^0 \Pi_i^0 - \frac{igg'}{\sqrt{g^2 + g'^2}} \Pi_i^0 (W_0^+ W_i^- - W_i^+ W_0^-) + \frac{1}{2} \Pi_i^0 \Pi_i^0 - \frac{igg^2}{\sqrt{g^2 + g'^2}} \Pi_i^0 (W_0^+ W_i^- - W_i^+ W_0^-) \]

\[- \Pi_i^0 \partial_i Z_0 + \Pi_i^{W^+} \Pi_i^{W^-} + \frac{igg'}{\sqrt{g^2 + g'^2}} A_i (\Pi_i^{W^+} W_0^+ - W_0^- \Pi_i^{W^-}) + \frac{igg^2}{\sqrt{g^2 + g'^2}} (W_0^+ Z_i - Z_0 W_i^+) \Pi_i^{W^+} \]

\[- \frac{ig^2}{\sqrt{g^2 + g'^2}} \Pi_i^{W^-} \left(W_0^+ Z_i - Z_0 W_i^- \right) - \Pi_i^{W^+} \partial_i W_0^- - \Pi_i^{W^-} \partial_i W_0^+ + \frac{1}{2} M_Z^2 Z_0 Z_0 + \frac{1}{2} M_Z^2 Z_i Z_i + M_W^2 W_i^+ W_i^- \]

\[+ M_Z^2 W_i^+ W_i^- + \frac{1}{4} (\partial_i A_k - \partial_k A_i)^2 + \frac{1}{4} (\partial_i Z_k - \partial_k Z_i)^2 + \frac{1}{2} (\partial_i W_k^+ - \partial_k W_i^+) (\partial_i W_k^- - \partial_k W_i^-) \]

\[- \frac{igg'}{\sqrt{g^2 + g'^2}} \left[(\partial_i A_k - \partial_k A_i) W_i^- W_k^- + (\partial_i W_k^+ - \partial_k W_i^+) W_i^- A_k + (\partial_i W_k^- - \partial_k W_i^-) A_i W_k^+ \right] \]

\[- \frac{ig^2}{\sqrt{g^2 + g'^2}} \left[(\partial_i Z_k - \partial_k Z_i) W_i^- W_k^- + (\partial_i W_k^+ - \partial_k W_i^+) W_i^- Z_k + (\partial_i W_k^- - \partial_k W_i^-) Z_i W_k^+ \right] \]

\[+ \frac{g^2}{2} (W_i^+ W_k^- W_i^- W_k^- - W_i^+ W_k^+ W_i^- W_k^-) + \frac{g g^2}{g^2 + g'^2} (W_i^+ W_k^- A_i A_k - W_i^+ A_i W_k^- A_k) \]

\[+ \frac{g^4}{g^2 + g'^2} (W_i^+ W_k^- Z_k Z_i - W_i^+ Z_i W_k^- Z_k) + \frac{g g^2}{g^2 + g'^2} (2 W_i^+ W_k^- A_i Z_i - W_i^+ A_i W_k^- Z_k - W_i^+ Z_i W_k^- Z_k) \]

\[+ e A^0 (i \partial_k \partial_m - m_A^0) e A^0 + \bar p A^0 (i \gamma_k \partial_m - m^p) p A + n A^0 (i \gamma_k \partial_m - m_n^0) n A^0 + \bar p A^0 (i \gamma_k \partial_m) \]

\[- \frac{gg'}{\sqrt{g^2 + g'^2}} \left[- e A^0 e A^0 + \frac{2}{3} p A^0 p A - \frac{1}{3} n A^0 n A \right] A_k - \frac{1}{2} \left[-(g^2 - g'^2) e A^\mu e A^\mu + 2 g^2 e A^0 e A^0 \right] \]

\[+ (g^2 + g'^2) \bar p A^\mu A^\mu V_{\mu} - \frac{1}{2} \left[(g^2 - g'^2) \bar p A^\mu p A - \frac{4}{3} g^2 \bar p A^0 p A - (g^2 + g'^2) V_{\mu} V_{\mu} \right] \]

\[+ \frac{2 g^2}{3} \bar n A^\mu n A^\mu \right] Z_k - \frac{g}{\sqrt{2}} \left[(\bar p A^\mu p A + \bar p A^0 n A) W_{\mu} + \text{h.c.} \right]. \]

(69)

The Hamiltonian, in which we have added the primary constraints with the help of Lagrange multipliers with their appropriate parities, can be written as
\[H^{(1)} = H + A_0 \left[\partial_i \Pi_A^+ \frac{ig'}{\sqrt{g^2 + g'^2}} (\Pi_i W_i - \Pi_i W_i^+) - \frac{ig'}{\sqrt{g^2 + g'^2}} \left(-\bar{e} A_0 e_A^0 + \frac{2}{3} \bar{e} A_0 e_A^0 p^A \right) \right]
\]
\[- \frac{1}{\lambda} \zeta \left(e_A^0 \right) \]
\[+ \lambda Z_0 \zeta + \lambda W^+ \Pi_0 W_i^+ + \lambda W^- \Pi_0 W_i^- + \zeta_{\lambda A} \Pi_{\lambda A} + \left(\Pi e_A - i \bar{e} A_0 \gamma^0 \right) \zeta_{\lambda A} + \zeta_{\lambda A} \zeta_{\lambda A}. \]

The requirement for the primary constraints to be time-independent completely defines the odd Lagrange multipliers \(\zeta_{\lambda A}, \zeta_{\lambda A} \). If we substitute the values for the odd Lagrange multipliers one sees by direct inspection that

\[\left\{ \phi_A^{(1)}, H \right\}_{\phi^{(1)} = 0} = 0 \]

is satisfied identically. The primary constraints for the massive vector fields generate secondary constraints

\[\phi^{(2)} = - \partial_i \Pi_i^+ \frac{ig^2}{\sqrt{g^2 + g'^2}} (\Pi_i W_i - \Pi_i W_i^+) + M_Z Z_0 \]
\[+ \frac{1}{2\sqrt{g^2 + g'^2}} \left[-(g^2 - g'^2) \bar{e} A_0 e_A^0 + 2g^2 \bar{e} A_0 e_A^0 \right] \]
\[+ \frac{1}{2\sqrt{g^2 + g'^2}} \left[(g^2 - g'^2) \bar{e} A_0 e_A^0 - \frac{4g^2}{3} \bar{e} A_0 e_A^0 \right] \]

(70)

\[\phi^{(2)} = - \partial_i \Pi_i^+ \frac{ig^2}{\sqrt{g^2 + g'^2}} (\Pi_i W_i - \Pi_i W_i^+) A_i + M^2 Z_0 \]
\[+ \frac{g}{\sqrt{2}} \left(\bar{e} A_0 e_A^0 + \bar{e} A_0 e_A^0 U_{AB} n_B \right), \]

(73)

\[\phi^{(2)} = - \partial_i \Pi_i^+ \frac{ig^2}{\sqrt{g^2 + g'^2}} (\Pi_i W_i + \Pi_i W_i^+) A_i - \frac{ig^2}{\sqrt{g^2 + g'^2}} (\Pi_i W_i - \Pi_i W_i^+) Z_i + M^2 Z_0, \]
\[+ \frac{g}{\sqrt{2}} \left(\bar{e} A_0 e_A^0 + \bar{e} A_0 e_A^0 U_{AB} \right) \]

(74)

If we impose that the new constraints (72)-(74) are time-independent we find the new Lagrange multipliers \(\lambda^{W+}, \lambda^{W-}, \lambda^Z \) and no new constraints appear.

We will quantize the proposed model in the Coulomb gauge \(\partial_i A_i = 0 \) for the electromagnetic gauge potential. We choose sources for the fields, having the relevant parity. The functional integral \(Z(J) \) acquires the form

\[Z(J) = \int \exp \left[i \int d^4 x (\pi^0 q^0 - \mathcal{H} + j^0 q^0) \right] \text{Sdet} \left\{ \phi', \phi' \right\} \delta(\phi^{(1)}) \delta(\phi^{(2)}) d\mu(\pi, q), \]

(75)

where \(d\mu(\pi, q) = D\pi Dq \) and the sums over \(\alpha \) in the exponent of (75) are given by

\[\pi^0 q^0 = \Pi_i \bar{A}^i + \Pi_0 Z + \Pi_i \bar{Z}^i + \Pi_0 W^+ + \Pi_0 W^- W^+ + \Pi_0 W^- W^- \]
\[+ \Pi_0 \bar{A}^i + \bar{e} A_0 e_A^0 + \bar{e} A_0 e_A^0 \bar{A}^i + \bar{e} A_0 e_A^0 \bar{A}^i + \bar{e} A_0 e_A^0 \bar{A}^i + \bar{e} A_0 e_A^0 \bar{A}^i, \]

(76)

\[j^0 q^0 = \int J_\mu A_\mu + J_\mu Z_\mu + J_\mu W^+ + J_\mu W^- + \bar{e} A_\mu e_A^0 + \bar{e} A_\mu e_A^0 \bar{A}^i + \bar{e} A_\mu e_A^0 \bar{A}^i + \bar{e} A_\mu e_A^0 \bar{A}^i + \bar{e} A_\mu e_A^0 \bar{A}^i. \]

(77)

By direct inspection one sees that the superdeterminant, restricted to the constraints by the \(\delta \)-functions [11] is independent of the fields and reduces to a constant multiplier of \(Z(J) \).

Given the integral representation of the \(\delta \)-function, one may place the constraints \(\phi_A^{(1)}, \phi_W^{(2)}, \phi_W^{(2)} \) and \(\phi_Z^{(2)} \) in the exponent of the functional integral. As a result we have additional integration over the variables \(A_0, \lambda^{W+}, \lambda^{W-} \) and \(\lambda^Z \). A change of variables, which makes the corresponding integrals of a Gaussian type, reads
These integrals do not contribute to the normalized $Z(\mathcal{J})$. In the next step one has to take the integrals over $\Pi_1^A, \Pi_2^Z, \Pi_1^{W^+}$ and $\Pi_1^{W^-}$. A change of variables, that separates the integrations, is

$$W_0^+ + \lambda^{W^+} \rightarrow W_0^+ , \quad W_0^- + \lambda^{W^-} \rightarrow W_0^- , \quad Z_0 + \lambda^Z \rightarrow Z_0 .$$

(78)

For the normalized functional integral one obtains finally

$$\frac{Z(\mathcal{J})}{Z_0(\mathcal{J})} = \int \exp \left[i \int d^4 x \left(L_0 + L_{(g.f.)} + L_{(sec.)} + L_{(int.)} \right) \right] d\mu(q) .$$

(83)

V. A WARD IDENTITY

The functional integral (83) can be written in the form:

$$\frac{Z(\mathcal{J})}{Z_0(\mathcal{J})} = \int \exp \left[i \int d^4 x \left(L_0 + L_{(g.f.)} + L_{(sec.)} + L_{(int.)} \right) \right] d\mu(q) ,$$

(84)

where the terms in the exponent are the Lagrangian of the free theory, the gauge fixing part $L_{(g.f.)} = -\frac{1}{2} (\partial_\mu A^\mu)^2$ for the Feynman gauge of A_μ, the source part and the interaction. One easily checks that all nonzero vertices (i.e. those without Higgs lines), as well as the 2-point free Green's functions for the photon, vector-meson and spinor fields, coincide with the corresponding ones from the WS model [9] in the unitary gauge. The physical consequences of the model should not depend on the gauge transformations. Introducing the restriction that the functional integral $Z(\mathcal{J})$ is gauge-invariant, one finds an equation in variational derivatives, which represents the Ward identity. The infinitesimal gauge transformations from the electromagnetic gauge subgroup [7] are

$$A'_\mu = A_\mu + \frac{1}{e} \partial_\mu \alpha , \quad Z'_\mu = Z_\mu ,$$

(85)

$$W'^\pm_\mu = W^\pm_\mu + i \alpha W^\pm_\mu , \quad W'^\mp_\mu = W^\mp_\mu - i \alpha W^\mp_\mu ,$$

(86)

$$e'^A = e^A - i \alpha e^A , \quad \bar{e}'^A = \bar{e}^A + i \alpha \bar{e}^A ,$$

(87)

$$\nu'^A = \nu^A , \quad \bar{\nu}'^A = \bar{\nu}^A ,$$

(88)

$$p'^A = p^A + \frac{2i}{3} \alpha n^A , \quad \bar{p}'^A = \bar{p}^A - \frac{2i}{3} \bar{\alpha} \bar{n}^A ,$$

(89)

$$n'^A = n^A - \frac{i}{3} \bar{\alpha} \bar{n}^A , \quad \bar{n}'^A = \bar{n}^A + \frac{i}{3} \alpha n^A .$$

(90)

The transformations (85)-(90) result in an additional exponential part in the functional integral

$$\frac{Z^{(0)}(\mathcal{J})}{Z_0(\mathcal{J})} = \int \exp \left[i \int d^4 x \left(-\frac{1}{e} \partial_\mu A^\mu \partial_\nu \alpha + \frac{1}{e} J^\mu A_\nu + i (J^\mu W^\mu - J^\mu W^-) \alpha \right)

+ i (\bar{e}'^A \eta^A - \bar{n}'^A \bar{\eta}^A) \alpha - \frac{2i}{3} (\bar{p}'^A \eta^A - \bar{n}'^A \bar{n}^A) \alpha + \frac{i}{3} (\bar{n}'^A \bar{n}^A - \bar{\eta}'^A \eta^A) \alpha \right] \times

\times \exp \left[i \int d^4 x \mathcal{L}_{(eff.)} \right] d\mu(q) .$$

(91)
where the variational derivatives act directly on Z. It is convenient to rewrite (94) as an equation for the vertex function
\[Z(J) = 0, \] (93)

Eq. (92) acquires the form
\[\partial_\nu J^\mu \frac{\delta W}{\delta J^\mu} + \partial_\mu J^\nu - e \left(\frac{\delta W}{\delta J^\mu} J^\mu - J^\mu \frac{\delta W}{\delta J^\nu} \right) = e \left(\eta_\nu \frac{\delta W}{\delta \eta_\nu} + \frac{\delta W}{\delta \eta_\nu} \eta_\nu \right) \] (94)

It is convenient to rewrite (94) as an equation for the vertex function
\[\Gamma = W(J) - \int d^4x J^\alpha q^\alpha. \] (95)

We may express the sources through variational derivatives over the fields
\begin{align*}
J^\mu_A &\rightarrow -\frac{\delta \Gamma}{\delta A^\mu}, & J^\mu_Z &\rightarrow \frac{\delta \Gamma}{\delta Z^\mu}, \\
J^\mu_+ &\rightarrow -\frac{\delta \Gamma}{\delta W^\mu_+}, & J^\mu_- &\rightarrow -\frac{\delta \Gamma}{\delta W^\mu_-}, \\
\eta_{eA} &\rightarrow -\frac{\delta \Gamma}{\delta \eta_{eA}}, & \eta_{eA} &\rightarrow \frac{\delta \Gamma}{\delta \eta_{eA}}, \\
\eta_{\nu A} &\rightarrow -\frac{\delta \Gamma}{\delta \eta_{\nu A}}, & \eta_{\nu A} &\rightarrow \frac{\delta \Gamma}{\delta \eta_{\nu A}}, \\
\eta_{pA} &\rightarrow -\frac{\delta \Gamma}{\delta \eta_{pA}}, & \eta_{pA} &\rightarrow \frac{\delta \Gamma}{\delta \eta_{pA}}, \\
\eta_{\bar{n}A} &\rightarrow -\frac{\delta \Gamma}{\delta \eta_{\bar{n}A}}, & \eta_{\bar{n}A} &\rightarrow \frac{\delta \Gamma}{\delta \eta_{\bar{n}A}}.
\end{align*}

If we recall the standard variational derivative expressions for the fields in the path integral formulation (83) and take into account the definition of the vertex function (95) we find
\begin{align*}
\frac{\delta W}{\delta J^\mu_A} &\rightarrow A^\mu, & \frac{\delta W}{\delta J^\mu_Z} &\rightarrow Z^\mu, \\
\frac{\delta W}{\delta J^\mu_+} &\rightarrow W^\mu_+, & \frac{\delta W}{\delta J^\mu_-} &\rightarrow W^\mu_-, \\
\frac{\delta W}{\delta \eta_{eA}} &\rightarrow e^A, & \frac{\delta W}{\delta \eta_{eA}} &\rightarrow \bar{e}^A, \\
\frac{\delta W}{\delta \eta_{\nu A}} &\rightarrow \nu^A, & \frac{\delta W}{\delta \eta_{\nu A}} &\rightarrow \bar{\nu}^A, \\
\frac{\delta W}{\delta \eta_{pA}} &\rightarrow p^A, & \frac{\delta W}{\delta \eta_{pA}} &\rightarrow \bar{p}^A, \\
\frac{\delta W}{\delta \eta_{\bar{n}A}} &\rightarrow \bar{n}^A, & \frac{\delta W}{\delta \eta_{\bar{n}A}} &\rightarrow \bar{n}^A.
\end{align*}

(102)
Finally using (94) we derive
\[\partial_\nu \partial_\rho \partial_\mu A_\mu - \partial_\mu \delta A_\mu - i e \left(\frac{\delta \Gamma}{\delta W_\mu^-} W_\mu^- - W_\mu^+ \frac{\delta \Gamma}{\delta W_\mu^+} \right) + i e \left(\bar{e}^A \frac{\delta \Gamma}{\delta e^A} + \frac{\delta \Gamma}{\delta \bar{e}^A} e^A \right) \]
\[- \frac{2i}{3} e \left(\bar{p}^A \frac{\delta \Gamma}{\delta p^A} + \frac{\delta \Gamma}{\delta \bar{p}^A} \bar{p}^A \right) + \frac{i}{3} e \left(\bar{n}^A \frac{\delta \Gamma}{\delta n^A} + \frac{\delta \Gamma}{\delta \bar{n}^A} n^A \right) = 0 . \] (109)

Equation (109) gives relations between the Green’s functions of the charged fields and the electromagnetic gauge potential. Taking variational derivatives gives the Ward identities for the electromagnetic interaction of the fields in the proposed model.

If we substitute the action
\[S = \int d^4 x \mathcal{L} \] (110)
with a suitably regularized gauge-invariant action
\[S_\Lambda = \int d^4 x \mathcal{L}_\Lambda , \] (111)
(\(\Lambda \) being a regularizing parameter) we may derive analogous equation, which gives relations among the regularized Green’s functions in arbitrary order in perturbation theory.

ACKNOWLEDGMENTS

One of us (V.R.) is grateful to Prof. R. Kerner and the Laboratoire de Physique des Particules, Université Pierre et Marie Curie, Paris, for their hospitality during a visit when this work was started. This work was partly supported (I.V.) by the DOE Research Grant under Contract No. De-FG-02-93ER-40764.

A. Salam, In: *Elementary Particle Physics: Relativistic Groups and Analyticity, Nobel Symposium No 8 (Ed. N.Svartholm, Almqvist and Wiksell, Stockholm, 1968) 367.*

