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Abstract

We use string duality to describe instanton induced spontaneous supersymmetry
breaking in string compactifications with additional background fields. Dynamical
supersymmetry breaking by space-time instantons in the heterotic string theory is
mapped to a tree level breaking in the type II string which can be explicitly calcu-
lated by geometric methods. The point particle limit describes the non-perturbative
scalar potential of a SYM theory localized on a hypersurface of space-time. The
N = 0 vacuum displays condensation of magnetic monopoles and confinement. The
supersymmetry breaking scale is determined by Mstr, which can be in the TeV range,
and the geometry transverse to the gauge theory.

March 2000

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25281866?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arXiv.org/abs/hep-th/0003198v3


1. Introduction and summary

The remarkable success in the understanding of non-perturbative properties of

string theories triggered by string dualities can not conceal the fact that their impact on

the formulation of theories with N < 2 supersymmetry and dynamical supersymmetry

breaking has been much less effective. In fact the step to N = 1 supersymmetry

may be already a vital one for the description of the non-supersymmetric world as

it is known that dynamical supersymmetry breaking may appear in these theories as

a consequence of strong gauge interactions [1]. It is interesting that supersymmetry

breaking in the string theory might be so closely related to its low energy sector. In fact

in the realization of confinement as result of monopole condensation [2][3], anomaly

considerations imply a non-zero gaugino condensate [4] which breaks supersymmetry

in the theory coupled to gravity [1]. In this sense the lack of supersymmetry observed

in our world could be linked in an intriguing way to the existence of confining gauge

theories.

One of the most useful N = 2 dualities has been the one between type II and

heterotic strings [5][6]. As the heterotic coupling maps to a geometric modulus in

the type II theory, non-perturbative effects of the heterotic theory are related to tree

level of the type II string. In particular space-time instanton effects map to geometric

instantons in the type II theory which can be calculated by mirror symmetry. More

fundamentally the instantons in the type II theory can be viewed as honest space-time

instantons in the RR-sector, which has the special property to not depend on the type

II string coupling and thus is described by string tree level.

This opens the fascinating possibility that after a supersymmetry breakdown to

N = 1, dynamical supersymmetry breaking to N = 0 in the RR-sector of the type II

theory is calculable as the non-perturbative effects are still governed by a geometric

coupling constant and not the string coupling. In particular condensation of fermions

will appear at string tree level. This non-supersymmetric type II theory will be dual

to a N = 1 supersymmetric heterotic theory where supersymmetry is broken only

in the non-perturbative sector of the string theory. Such a picture was advocated

in [7] using the special constructions of [8] to obtain N = 1 dual pairs from N =

2 ones by freely acting orbifolds1. Based on qualitative arguments on the general

properties of the orbifolding procedure it was argued that indeed gaugino condensation

1 The relation between spontaneous supersymmetry breaking in string theory and freely acting

orbifolds with various supersymmetries has been studied in refs.[9].
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in the heterotic theory should map to a tree level supersymmetry breaking in the type

II theory which, remarkably enough, was related to monopole condensation and the

associated relalization of confinement. Unfortunately the orbifold duals of [7] are not

accessible to instanton calculations by mirror symmetry and thus the study of string

duals with supersymmetry breaking has been restricted to a rather qualitative level,

far from the success in the N = 2 supersymmetric case. To provide a calculable

framework of string duals with dynamical supersymmetry breaking is one of the goals

of this paper.

In a seemingly unrelated development in the supergravity part of the world, the

no-go theorem [10] on partial local supersymmetry breaking N = 2 → N = 1 was

deprived its validity [11]. The argument is that for a special class of supergravity

theories, the tensor calculus of ref. [12], which was the basis for the derivation of the

no-go theorem, is inappropriate. In these special cases, the no-go theorem does not

apply and spontaneous partial supersymmetry breaking has indeed be shown to be

possible [11]. In string theory compactifications, scalar potentials that may trigger

spontaneous supersymmetry breaking can be induced by RR background fields in the

type II string [13] or magnetic backgrounds in the dual heterotic theory [14]. However,

as we will argue in this paper, partial breaking fails to exist, although in an interesting

way. The reason is that even though the conditions of partial supersymmetry breaking

may be satisfied in the classical string effective theory, there will always be instanton

effects in compactifications with finite volume, that restore the foundations of the

no-go theorem. We will also argue that the effect of these instantons is to break

supersymmetry completely, rather then to restore N = 2.

An interesting picture begins to emerge by observing that the classical string

effective theories associated to N = 2 type II/heterotic duals fall precisely into the

class of supergravities that satisfy the necessary conditions for partial supersymmetry

breaking. Would it not be for the instanton effects, we would get N = 1 supersym-

metric dual pairs in this way. Turning to the instanton corrections one observes that

they represent non-perturbative space-time effects in the heterotic string and tree level

geometric instantons in the type II theory. In other words, the instanton effects that re-

store the no-go theorem embody precisely the sought for description of non-perturbative

dynamical supersymmetry breaking. Using mirror symmetry in the tree level type II

theory to determine the geometric instantons we are thus in the remarkable situation

to be able to systematically calculate the instanton effects of a phenomenologically

relevant non-perturbative supersymmetry breaking.
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Interestingly, and in full agreement with the observations made in the free orb-

ifold models of [7], the supersymmetry breaking is intimately related to strong gauge

interactions in a SYM theory embedded into the string theory. In fact this theory is

of “the world on a brane” type, with the gauge fields localized on a hypersurface of

ten-dimensional space-time. These theories have been very successfully studied in the

N = 2 context in terms of curved brane geometries in string theory, either in the geo-

metric engineering of type II strings on singularities of Calabi–Yau 3-folds [15][16][17]

or, for simple enough gauge group G, in terms of the T-dual type IIA 5-brane [15].

The latter realization can also be reached starting from field theories living on the

world-volume of “flat branes” which are bent by quantum corrections in a way de-

termined by the non-perturbative duality to M-theory [18]. Both, the “flat” and the

curved brane constructions, give a string theory realization of the intensively discussed

extra large dimension scenarios [19]. In particular the “flat branes” have become a

most popular tool in qualitative phenomenological studies due to their conceptional

simplicity as compared to the geometric approach.

So finally, taking the point particle limit of the eventually non-supersymmetric

dual pair, leads us right to an extension of geometric engineering2 to more realistic

SYM theories on the brane, with broken supersymmetry and patterns of confinement

and chiral symmetry breaking3. Using the results from mirror symmetry in the type

II theory allows to derive the explicit non-perturbative scalar potential in the SYM

theory on the brane.

It is worth noting that the description of supersymmetry breaking in the SYM

theory on the brane is quite relevant for the large dimension scenarios one of whose

primary motivations has been the hierarchy problem. A serious attempt to explain

the apparent weakness of gravity should be based on a framework of quantum gravity

such as string theory, and not just field theories on “flat branes”. Note that the

resurrection of the no-go theorem implies that the complete breakdown to N = 0

(rather than N = 1) is inevitable when the SYM is coupled to string theory. It

would be quite interesting to develop the understanding of the field theories based

“flat branes” with N = 1 supersymmetry [21] to a level where the supersymmetry

2 A different approach uses F-theory compactifications [20].
3 In the following we will use the definiton of a brane in the general sense of specifying a

hypersurface on which the gauge fields localize. This notion is independent of the specific string

theory construction in terms of dual D-branes, M-branes or geometrically engineered theories at

a singularity.
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breakdown can be seen, at least qualitatively. The reason that the flat branes miss

this effect is apparently the lack of a satisfying description of the coupling of the world

volume theory to gravity and string theory.

Note that we argued that the restoration of the no-go theorem relies on stringy

instantons on a finite volume manifold. This does not exclude partial supersymmetry

breaking in diverse non-compact limits. In particular, taking all, transverse as well

as tangential dimensions of infinite volume gives a pure field theory decoupled from

strings and gravity. It should be clear that neither there is a no-go theorem in pure

field theory nor do we claim so4. In fact, while we completed this work, an interesting

paper appeared [23], which also describes supersymmetry breaking by RR fluxes in the

context of geometric engineering. In ref.[23] the limit of infinite string mass Mstr is

taken which results in a pure field theory decoupled from string theory where partial

breaking is possible. Moreover this reference contains an elegant derivation of how

the relevant N = 1 superpotentials follow from soliton masses in the presence of RR-

potentials.

This paper is organized in two parts. In the first part we consider the issue of

partial supersymmetry breaking in the string effective supergravity. In section 2 we

argue that for string compactifications on manifolds with finite volume, any classical

partial breaking to N = 1 is followed by a further breakdown to N = 0 by instanton

effects. We resurrect the general no-go theorem on partial breaking for string effective

theories. In section 3 we relate these results to the class of string effective theories

which reduce to ordinary Super-Yang-Mills theories in the point particle limit. The

instantons that are relevant for the supersymmetry breakdown turn out to be non-

perturbative in the field theory coupling. In section 4 we describe in more detail the

mechanism of supersymmetry breaking and the calculation of the non-perturbative

gravitino masses by mirror symmetry. Moreover we observe a general link between the

breakdown of supersymmetry and that of conformal invariance.

In the second part, which starts with section 5 and can be read almost inde-

pendently, we focus further on the pattern of supersymmetry breaking in the point

particle limit, namely in the SYM on the brane embedded in the string theory. The

general non-perturbative scalar potential contains apart from the N = 1 adjoint mass

term extra soft breaking terms that arise from the coupling to the string sector. We

use special geometry to proof that these terms are mandatory and there is no partial

4 E.g., gaugino condensation does not break supersymmetry in field theory [22].
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breaking to N = 1 in the field theory coupled to string theory. The scale of supersym-

metry breaking terms is determined by the string scale Mstr, which is argued to be

favorably in the TeV range, multiplied by a factor ∼ b1 ·V −1
TV , where b1 is the one-loop

beta function coefficient of the SYM theory and VTV the volume of the dimensions

transverse to the gauge theory. Details on the supergravity calculations are relegated

to the appendices.

2. Partial supersymmetry breaking in N = 2 supergravity

(or “Two into one still won’t go”)

Before focusing on the string theory embeddings of SYM theories let us ask in

general what patterns of supersymmetry breaking may appear in the N = 2 string

effective theory. As far as partial local supersymmetry breaking by a Super-Higgs

effect is concerned, there used to be a very strong result, the “Two into one won’t go”

theorem of [10]. It states that a zero eigenvalue of the gravitino mass matrix implies

that the second one is zero, too.

However, the no-go theorem is based on the existence of a holomorphic prepo-

tential F(zi) that defines the effective N = 2 supergravity action of the nV vector

multiplets. At that time this was indeed the only known description of the N = 2 su-

pergravity theory [12]. Since then, an alternative definition has been formulated which

is not based on a prepotential [24]. It thus appeared that the absence of a prepoten-

tial might possibly allow to evade the no-go theorem and indeed it was shown in [11]

that partial supersymmetry breaking is possible in this special situation. The globally

supersymmetric version of this partial breaking has been described independently in

[25].

The necessary condition for the absence of a prepotential and thus partial super-

symmetry breaking is the following one. The framework of [24] starts from a section

Π = (XΣ, FΣ)T of a Sp(2nV + 2,Z) bundle over MV . It is invariant under symplectic

transformations acting on Π:

Π →M Π, M ∈ Sp(2n+ 2,Z). (2.1)

The components XΣ, FΣ of the section Π, also called periods, depend on the nV scalar

components zi of the vector multiplets which parametrize an nV dimensional special

Kähler manifold MV . In a generic situation the upper components XΣ can be thought

of as homogeneous coordinates on MV , while the lower half FΣ of Π is related to a
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prepotential F(XΛ) of homogeneous degree two by FΣ = ∂F/∂XΣ. The transition to

the generic inhomogeneous variables zi on MV is described by the matrix

AΣi =
∂XΣ

∂zi
. (2.2)

For a special form of the prepotential F and a special choice of the section Π, the matrix

AΣi may be degenerate. Then the XΣ can not serve as homogeneous coordinates on

MV and no prepotential F(XΛ) exists. Note that this statement is not invariant

under Sp(2n+ 2,Z) transformations and by choosing a different section Π̃ = MΠ one

may always transform to homogeneous coordinates X̃Σ in which a prepotential F̃(X̃Σ)

exists.

A string effective supergravity related to the geometric type II compactification

on a Calabi–Yau manifold M is classically described by a cubic prepotential

F =
1

3!
CijkX

iXjXk/X0 = (X0)2
1

3!
Cijktitjtk, (2.3)

where ti = X i/X0 are so-called special coordinates that parametrize volumes of homol-

ogy 2-cycles in M . Depending on the intersection matrix Cijk of M it may be possible

to choose a section Π where the XΣ are dependent, the matrix AΣi is degenerate and

partial breaking to N = 1 supersymmetry is possible5.

However in a finite volume there are stringy instanton corrections to the classical

prepotential (2.3) that change this picture. The exact instanton corrected prepotential

can be determined [26] using mirror symmetry6. Specifically, the components of Π are

identified under mirror symmetry with the period integrals of the holomorphic 3-form

Ω3,0 on the mirror manifold W of M :

XΣ =

∫

AΣ

Ω(3,0)(W ), FΣ =

∫

BΣ

Ω(3,0)(W ). (2.4)

Here {AΣ} denotes an integral basis of homology 3-cycles and {BΣ} their duals. The

period integrals FΣ have the large ti expansion

FΣ =
1

2!
Cijktjtk + f(tn, qn), (2.5)

5 We will argue that this happens for string theory embeddings of SYM theories in the next

section.
6 For an overview and references, see [27]. For a recent proof in the supersymmetric sigma

model, see [28].
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where qn = exp(2πitn) are the instanton corrections suppressed by the exponential of

the Kähler volumes of 2-spheres.

We want to argue now that even in a situation where the geometrical data Cijk

allow for a partial supersymmetry breaking to N = 1, the stringy instanton corrections

always lead to a complete breakdown of supersymmetry. To do so we have to assure

that after the inclusion of the instanton corrections, the upper part X̂Σ of any section

Π̂ gives good homogeneous coordinates on MV . By the relation (2.4) this is the same

as asking whether for any choice of a basis of A-cycles in (2.4), the period integrals

represent locally good homogeneous coordinates on MV . Luckily this type of question

is a prominent one in algebraic geometry and is part of the so-called infinitesimal

Torelli problem. In the present context it has been shown in ref.[29] that the period

integrals indeed have the required property.

In conclusion, although partial supersymmetry breaking may appear to be possible

in the classical string theory, there will be always stringy instanton corrections that

lead to a complete breakdown of supersymmetry and the mechanism of refs.[11] can

not be realized in the string effective theory.

3. Localized SYM theories and their string theory embedding

Form the point of physics, the situation that the classical section Π allows for

partial supersymmetry breaking while the instanton corrected one does not is quite

a remarkable one. Specifically the supersymmetry breaking scale will depend non-

perturbatively on the Kähler moduli. We will argue now that this is the case in the

class of string effective theories realizing SYM theories localized on a six-dimensional

hypersurface of space-time. As we will discuss in the following, the relevant modulus

is identical to the field theory coupling constant and the supersymmetry breakdown is

thus interpreted as a non-perturbative breaking by space-time instantons.
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3.1. Geometry and couplings

The geometric engineering approach [15][16][17] starts from a type II string com-

pactified on an almost singular Calabi–Yau manifold X7. It is useful to think about

this compactification as a two step process of a compactification to six dimensions on

a singular two complex-dimensional manifold Y followed by a further compactifica-

tion on the base sphere B to four dimensions. At the singular point p of Y there are

r = rkG small 2-spheres Ci with an intersection matrix equal to the negative of the

Cartan matrix CGij . D2-branes wrapped on the 2-spheres Ci represent N = 2 vector

multiplets in six dimensions with a gauge kinetic term (in a tree level approximation)

Lkin =
1

4
CijF

(i)µνF (j)
µν . (3.1)

In particular the effective action is independent of the directions transverse to the

singularity, as is expected from the fact that the gauge fields are localized on the

six-dimensional hypersurface specified by p ⊂ Y . This gives a natural string theory

realization of the (possibly large) extra dimension scenario of [19].

Upon compactification on the sphere B one obtains an N = 2 supersymmetric

QFT with gauge group G in four dimensions. Dimensional reduction implies that

the four-dimensional tree level gauge coupling is given by the (complexified) Kähler

volume VB of B:
θFT
2π

+
4πi

g2
FT

=

∫

B

BNS + i VB ≡ s. (3.2)

The real part of s describes the integral of the Neveu-Schwarz B-field on the base

2-sphere B.

At this point it seems useful to fix the notation for the coupling constants. In

the following we will refer to the field theory coupling constant s as “the coupling

constant” and use “perturbative” with respect to the the field theory which is designed

to describe our world. The string theory embedding with s identical to the string

coupling constant is a heterotic string on K3×T 2. It is dual [5][6] to the geometric

type II compactification where s is the geometric volume (3.2) and not the string

coupling. This is the usual story used in geometric engineering: we can calculate

non-perturbative phenomena of the effective field theory by using the geometric type

II picture. In the present paper we extend this correspondence to also calculate non-

perturbative quantities of the string effective supergravity theory to which the SYM

theory is coupled.

7 For a basic introduction and further references, see [30].
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3.2. The string effective supergravity

The four-dimensional tree level coupling (3.2) fixes the classical piece of the pre-

potential to be

F = −sCijtitj + . . . , (3.3)

where the dots denote α′ and finite coupling corrections. It is easy to see that the string

effective supergravity obtained from geometric engineering has precisely the property

to allow for a partial supersymmetry breaking. In the inhomogenous coordinates ti, s,

the standard section Π = (XΣ, ∂F/∂XΣ) is

XΣ = (1, s, ti), FΣ = (2F − sFs −
∑

k

tk Fk,Fs,Fi), (3.4)

where subscripts denote differentiation. From the prepotential (3.3) one obtains after

a simple symplectic transformation (s,Fs) → (Fs,−s) a section Π̃ with

X̃Σ = ( 1,Fs, ti )T , F̃Σ = ( 2F − sFs −
∑

k tkFtk ,−s,Fi )
T
, (3.5)

In particular

Fs = ∂F/∂s = −Ckltktl. (3.6)

Note that the X̃Σ do not depend on s and thus the necessary condition for partial

supersymmetry breaking is satisfied.

However, as we argued on general grounds in section 2, instanton corrections will

change this picture. In the present situation the relevant instantons have an action

∼ e2πis which is characteristic of space-time instantons as interpreted in the field

theory. It is one of the most powerful aspects of the geometrically engineered quantum

field theories (GEQFT’s) that one may determine these non-perturbative corrections

from the dual, geometric type II instantons by mirror symmetry. We will use this

information in the next section to study the pattern of supersymmetry breaking in the

exact string effective supergravity theory.

4. Non-perturbative supersymmetry breaking in the string effective theory

Apart from the vector multiplets, the general N = 2 supergravity can be coupled

to N = 2 matter hypermultiplets. These couplings may generate a non-trivial scalar

potential which determines the vacuum structure. We review a few facts and defini-

tions in appendix A. In string theory these couplings may arise as the consequence of

background fields such as RR fields in type II strings [13] and magnetic backgrounds

in the heterotic string [14]. In the following we study the contribution of instanton

effects in the presence of such backgrounds.
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4.1. The SU(2) GEQFT on a compact manifold

Let us first consider a global type II compactification associated to the SU(2)

GEQFT as an explicit example for the supersymmetry breaking by instantons on a

compact manifold. It will be rather obvious how to generalize to the generic situation

subsequently.

The prepotential of the string effective supergravity is of the form

F(s, t) = −s(t2 + 1) − a t3 + b t+ c+ f(s, t), a, b, ic ∈ R. (4.1)

The modulus t is related to the single 2-sphere of the singularity supporting the SU(2)

theory. In the tree level approximation s → ∞, eq.(4.1) is the same as (3.3) for

G = SU(2) up to a shift of t by a constant. This shift is an effect of the global

geometry. It has no further consequences except for the translation of the origin

of the SU(2) theory to t = i. The function f depends only on the exponentials

(qs, qt) = (e2πis, e2πit). The s-independent piece of F(s, t) describes one-loop effects in

the heterotic string theory whereas a term ∼ qks corresponds to an k instanton effect.

The presence of background fields induces charges of a hypermultiplet w.r.t. to a

gauge symmetry gauged by the vector multiplets. Let us first ask what kind of gauge

charges will be relevant. In the Super-Higgs effect, one gravitino becomes part of a

massive super multiplet with spin content (3/2, 1, 1, 1/2) [12]. It is natural to identify

these two spin one vectors with the ones in the universal sector of the graviphoton

and the dilaton s, Σ = 0, 1. Note that this choice is universal and is valid for any

gauge group G. In addition there may be an ordinary Higgs effect in the magnetic

field theory U(1) factors related to the condensation of monopoles.

To proceed we perform a symplectic transformation on the standard section (3.4)

and obtain a period vector Π̃ of the form

X̃Σ =





−1
2 (t2 − 1) + 1

2 fs
−t

−1
2 (t2 + 1) + 1

2 fs



 , F̃Σ =





−t2s+ at3 − bt+ s− 2c− 2f + tft + sfs
−2ts+ 3at2 + b+ ft

t2s− at3 + bt+ s+ 2c+ 2f − tft − sfs



 .

(4.2)

This basis is the equivalent of (3.5) in the global compactification. Note that the s-

dependend piece of X̃Σ is entirely due to the space-time instantons correction fs =

∂f/∂s ∼ qs = e2πis + . . .. Therefore in the perturbative, tree-level plus one-loop

corrected supergravity, no prepotential exists and partial supersymmetry breaking

appears to be possible.

10



4.2. Non-perturbative gravitino masses

However, as asserted already, including the space-time instantons, the XΣ should

be always good homogeneous coordinates and the arguments of the no-go theorem [10]

apply. To be concrete, let us consider a breaking to N = 1 near the origin t = i of

the field theory Coulomb branch. The gravitino mass matrix is proportional to the

supersymmetry variation SAB:

iSAB = − i

2
eK/2

(

P 1
0 − iP 1

1 − iP 1
0 − P 2

1 −P 3
0 + iP 3

1

−P 3
0 + iP 3

1 −P 1
0 + iP 1

1 − iP 2
0 − P 2

1

)

(4.3)

A representative chocie for a breaking to N = 1 with a zero single eigenvalue of the

matrix S is

P 1
0 = P 2

1 = m, P xΣ = 0 for Σ = 0, 1, else. (4.4)

With this choice the mass matrix for generic moduli is

iSAB =
im eK/2

4

(

(t− i)2 − fs 0
0 −(t+ i)2 + fs

)

(4.5)

For qs → 0 there is a N = 1 vacuum at t = i. For qs 6= 0 the instantons lift the zero

eigenvalue. Since the no-go theorem applies, there must be either N = 2 or N = 0

supersymmetry. An N = 2 vacuum requires t = 0, fs = −1. Even if such a point in

the moduli space would exist, it would not be connected to the large s vacuum. Thus

the instantons break further N = 1 → N = 0 at a scale Λ ∼ e−8π2/g2 .

The exciting fact about this instanton generated supersymmetry breaking is that

the non-perturbative effects are determined by mirror symmetry in the geometric type

II theory. Since the non-perturbative gravitino masses arise from the coupling of the

GEQFT to the string and gravity sector, the precise instanton series depends on the

individual compactification manifold M. As an example let us consider the mirror of

the Calabi–Yau manifold8 M defined by the polynomial

p = x12
1 + x12

2 + x6
3 + x6

4 + x2
5 − 12µx1x2x3x4x5 − 2φx6

1x
6
2. (4.6)

Here the xi are coordinates of a weighted projective space in which M is embedded

as the hypersurface p = 0 and (µ, φ) are coordinates on MV (W ) related to (t, s) by

8 This Calabi–Yau manifold served already as a prominent example in the understanding of

typeIIA/heterotic duality [5][31] and GEQFT’s [32].
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the mirror map. By calculating the period integrals and using the mirror map9 we

obtain the following result for the instanton expansion ∆
m(ψ)
np = fs that governs the

non-perturbative gravitino masses:

∆m(ψ)
np = e2πis (2+2496q1t +1941264q2t +1327392512q3t+861202986072q4t+540194037151104q5t+...) +

e4πis ( 1

2
+448128q2t +2654785024q3t+5718020769540q4t+8494210810708992q5t+...) +

e6πis ( 2

9
+ 347738368

3
q3t +2583608958216q4t+12741316216063488q5t+...) +

e8πis ( 1

8
+36401011968q4t+2160776148604416q5t+...) +

. . .

(4.7)
It would be interesting to study the global non-perturbative vacuum structure using

this exact information. In fact the coefficient functions fk(qt) of the k-th instanton

term are generally modular functions of the heterotic modular group, which is known

for certain compactifications10. This information might be sufficient to determine

global properties of the associated scalar potential. In the following we will take a

different route and analyze the vacuum structure directly in an expansion around the

point particle limit of the SYM theory.

4.3. Generalizations

It is easy to argue that the pattern of non-perturbative supersymmetry breaking

described in the above SU(2) case is generic for any gauge group G. First note that

we used only the universal sector of the dilaton and the graviphoton in the gauging

and the generalization to general G is therefore trivial. Consider now the electric

component X̃Σ of the field theory section (3.5). On general grounds it is clear that the

entries 1 and ti will not receive s dependent instanton corrections. So the instanton

corrections that lift the N = 1 vacuum are entirely due to the modifications of the

remaining period

X̃2 =
∂F
∂s

= −Cijtitj + . . . . (4.8)

This period describes tree-level gauge kinetic terms, and its s corrections non-

perturbative field theory corrections to it plus additional non-perturbative gravita-

tional and string effects in the full theory. Thus on pure field theory grounds, the

9 We refer again to refs. [26][27] for details and references on calculations of this type.
10 A study of the modular functions for special cases can be found in [33].
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N = 1 vacuum will be lifted in any N = 2 QFT with non-perturbative corrections

coupled to string theory11. The only case left over are conformal QFT’s with the

exact gauge coupling being equal to the tree level coupling. Still in this case we ex-

pect that, after adding the coupling to gravity and breaking of conformal invariance

as a consequence, s dependent instantons appear in the string/gravity sector12. It is

interesting to observe that the lift of the N = 1 vacuum seems to be closely related to

the breaking of conformal invariance.

5. Supersymmetry breaking in the point particle limit

In the following we want to pin down the structure of supersymmetry breaking as

seen by the low energy observable gauge theory. The string theory embedding predicts

a special form of the non-perturbative scalar potential of the low energy gauge theory

with the supersymmetry breaking parameters linked in a useful way to the string

geometric moduli.

5.1. What can be expected from the field theory

Let us first ask what might be expected from what is known about supersymmetry

breaking in field theory. Obviously, since we consider spontaneous breaking in the

N = 2 supergravity theory which encodes the exact non-perturbative N = 2 SYM

theory, the supersymmetry breakdown should have a consistent formulation in terms

of the latter. There are three known patterns of supersymmetry breaking consistent

with the holomorphic structure of the N = 2 theory.

The first one is the addition of the N = 1 supersymmetric adjoint mass term

discussed in the original work of Seiberg and Witten [3]. It was argued there that this

term drives the theory to the point in the Coulomb moduli where the monopole gets

massless. The combined superpotenial including the monopole hypermultiplet (m, m̃)

is

W =
√

2aDmm̃+madj u. (5.1)

The minimum of the scalar potential is at aD = 0, m = m̃ = −madj√
2

du
daD

, where

the monopole becomes massless and condenses. The condensation of the magnetically

11 We emphasize once again that the no-go theorem applies to the string effective supergravity,

not to a pure field theory decoupled from string theory.
12 It follows from the general arguments in section 2 that this is indeed the case.
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charged monopoles leads to a mass for the magnetic gauge field and confinement of

the electric fields à la t’Hooft [2].

Another very elegant and interesting approach to supersymmetry breaking start-

ing from the holomorphic properties of the N = 2 theory has been considered in

refs.[34]. Compatibility with the analycity properties of the exact field theory can be

implemented by the introduction of so-called spurion fields with vev’s that trigger the

breaking. It was already argued there that the structure of the potential obtained in

this way is in qualitative agreement with what one expects from a supergravity theory.

Indeed, we will find that the supersymmetry breaking in string theory is morally

a generalization of the two mechanisms13. In particular the supersymmetry breaking

parameters will depend in a specific way on the geometry of the transverse dimensions.

5.2. String effective action

To study the string effective theory near the point particle limit, we consider an

expansion in α′ ∼ 1/M2
str, keeping the exact quantities including the infinite instanton

series at each order. This approach has been introduced in [32] to derive the non-

perturbative field theory results from string theory. Specifically one considers the

limit of small ǫ with

Λ

Mstr
= ǫ, Λ ∼Mstr e

−8π2/b1g
2

= fixed, (5.2)

where b1 is the one loop beta coefficient of the SYM theory. Note that the tree

level coupling g at the string scale - equal to the volume of the base B - behaves as

Im s ∼ −b1 ln ǫ. It was further argued in [32] that in this limit the string effective

action is described by a supergravity period vector Π with building blocks

1, ǫ ak, ǫ akD, ǫ
2 u, s, ǫ2 su, k = 1, . . . , r, (5.3)

where the ak (akD) are the vev’s of the scalar fields in the electric (magnetic) vector

multiplets of the SYM theory. A crucial fact for the following is the appearance of

u = 〈Trφ2〉 at order ǫ2. The dependence of Π on u will be generate the N = 1

supersymmetric mass term for the adjoint scalar in (5.1).

13 There are extra terms that resemble the soft breaking terms of the N = 1 spurion approach

[35].
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The structure of the string effective action around the field theory limit turns

out to be quite intricate. We will banish details of the supergravity calculations in

the appendix and content ourself with an outline of the qualitative structure in the

following. We start with the following ansatz for the symplectic section Π = (XΣ, FΣ):

XΣ =

(

fα + ǫ2cα u
ǫcak

)

, FΣ =

(

2ηα fα (s+ const. )
ǫcakD

)

, (5.4)

where η = −,+,+, . . .. The entries Xα, α = 1, . . . , 2 +m describe (together with the

dual periods Fα) the universal graviphoton/dilaton sector and m extra scalar fields

ta that parametrize the geometry of the transverse dimensions. On the other hand

the entries Xk, Fk, k = 1, . . . , r are associated to the r = rk G field theory periods.

The expressions fα, cα are so far arbitrary functions of the moduli ta but will have

to satisfy some constraints imposed on the section Π by N = 2 special geometry. The

Kähler potential obtained from Π has the form

K = −ln(V) +
ǫ2

V K, (5.5)

where the precise expression for K can be found in eq.(B.1) and the leading term is

V = VB · VTV ,
VB = i (s− s̄+ const. ) ≡ Σ/2,

VTV = 2
∑

α

ηα|fα|2 ≡ 2 Ω.

(5.6)

In fact V is the volume of the Calabi–Yau manifold M . Note that the field theory

dependent terms are contained in K and, apart from the inverse powers of Mstr, sup-

pressed by the overall inverse power of the volume V. One can distinguish two different

geometric scales contained in V which will be enter the supersymmetry breaking scales

in the following. These are the volume of the base VB ∼ Σ ∼ ln ǫ on which the gauge

fields propagate and the volume VTV ∼ Ω of the dimensions transverse to the field

theory.

5.3. A first look at the scalar potential

The coupling of the hypermultiplets to the vector multiplets14 induces a non-

trivial scalar potential V for the scalars [12]

V = VδΨ + Vδξ
+ Vδλ

= −3P xΣP
x
Λ̄ V

ΣΛ̄ + 4kuΣhuvk
v
Λ̄ V

ΣΛ̄ + P xΣP
x
Λ̄ U

ΣΛ̄, (5.7)

14 See appendix A for more details.
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where the three terms are due to the gravitino, hyperino and gaugino variations,

respectively. The couplings P xΣ, x = 1, 2, 3 (and kuΣ) describe the interactions of the

hypermultiplets qu with the four-dimensional vector multiplet AΣ
µ , where Σ is a gauge

index and x an index of the SU(2)R symmetry. In the present context the couplings

P xα in the universal dilaton/graviphoton sector parametrize the Super-Higgs effect

discussed in the previous section. Since we will be interested in a region of the field

theory moduli space where the monopoles are light, we must also add their couplings

to the magnetic U(1) factors of the field theory15. If (mi, m̃i), i = 1, . . . , r denote the

r = rkG monopole hypermultiplets with charges qik, these couplings are described by

P xk = Qxk with

ǫ−2Qxk = qik (m̄i, m̃i) σx (mi, ¯̃m
i
)T . (5.8)

The matrices U and V depend on the scalars zi in the vector multiplets. As their

general form is quite involved we will restrict to give explicit expressions along the

way when needed.

The cosmological term

The leading term in the scalar potential arises from the Super–Higgs effect in the

universal sector and does not depend on the field theory moduli. It represents the

cosmological constant from the view of the brane world. Its moduli dependence is

described by the ǫ0-piece of the matrices U and V :

e−K V αβ̄0 = fαf̄β e−K Uαβ̄0 = wα,ρg
ρρ̄w̄β̄,ρ̄ (5.9)

where we used tρ = {ta, s} to denote the non field theory moduli and wα,ρ = Kρfα +

fα,ρ. To avoid a cosmological constant of the order of the string scale, the sum of

the leading contributions from the gravitino, hyperino and gaugino variations in (5.7)

should vanish. There are various possibilities to achieve such a cancellation at special

values of the vector and/or hypermultiplets.

In the following we will mostly separate the question of why the cosmological

constant is so small compared to Msusy from the study of the pattern supersymmetry

breaking on the brane as a function of the couplings P xα that determine the Super–

Higgs effect. Note that providing a solution to the cosmological constant problem in

the present context would be rather significant as even non-perturbative effects are

15 We will write all following equations in the appropriate local magnetic variables which are

equal to ak

D = ∂/∂ak
F in the UV region.
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included. Although we will not solve the problem of the cosmological constant we

will observe some interesting interrelations between the supersymmetry breaking on

the brane and the cosmological term and keep an eye on possible mechanisms for a

cancellation of the latter.

The N = 1 preserving adjoint mass term

Let us consider for a moment a naive cancellation of the individual contributions to

the cosmological term by imposing

P xα ·wα,ρ = 0, P xα · fα = 0. (5.10)

Assuming that eq.(5.10) holds, one finds for the leading piece of the scalar potential

in the field theory limit:

ǫ−4 V =
1

2

∑

x

(Qxl +mx
adj ul) τ

lk̄ (Qxk + m̄x
adj ūk̄)

+ 2 qilq
i
k a

lak̄(|mi|2 + |m̃i|2),
(5.11)

where

mx
adj = Mstr ·

P xαcα
c

. (5.12)

Eq. (5.11) describes precisely the scalar potential of the N = 2 field theory with a

mass term ∼ madj for the adjoint scalars in the vector multiplets. As argued in ref.[3],

the N = 2 theory is driven to the point al = 0, ∀l in the Coulomb moduli, where r

mutually local monopoles become massless and condense with a vev ∼
√

madjΛ in a

new N = 1 supersymmetric vacuum.

Relations from special geometry and breaking to N = 0

Imposing the condition (5.10) not only cancels the leading order contribution to the

scalar potential but also a number of extra terms at O(ǫ4). As the expression in

eq.(5.11) is the most general one compatible with N = 1 supersymmetry these terms

must necessarily break N = 1 → N = 0 in the SYM theory.

An generic solution to (5.10) is the limit of infinitely large extra dimensions, as will

be discussed below. It might appear that partial supersymmetry breaking to N = 1

with the adjoint mass term (5.12) is possible for any such solution. However this is in

fact not true. The reason is that the general ansatz (5.4) for the supergravity section

Π must be subject to further conditions in order that Π is a valid symplectic section
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of N = 2 special geometry. In the appendix B we find that these relations have the

important implication

P xα · fα = 0 ⇒ mx
adj ∼ P xα · cα = 0. (5.13)

Thus cancellation of the N = 1 supersymmetry breaking terms at O(ǫ4) implies also

the cancellation of the leading N = 1 adjoint mass term. Therefore, contrary to what

might have been naively expected, there will be no excessively large separation of the

two breaking scales to N = 1 and N = 0, respectively.

As we pointed out already, the no-go theorem in the string effective supergrav-

ity does not imply a no-go theorem for the pure field theory completely decoupled

from string theory. This decoupling can be achieved by taking a strictly infinite string

scale Mstr = ∞ which, by eq.(5.2), amounts to a non-compact limit in the (tangen-

tial) direction of the base. In this case certain terms dressed by inverse powers of

Σ ∼ lnΛ/Mstr drop from the effective field theory potential and eq.(5.10) can be re-

placed by a weaker condition that can be satisfied and connects to the N = 1 pure

field theory vacuum discussed in [23]. However note that in the field theory coupled to

string theory the phenomenologically acceptable regime is ln Λ/Mstr
∼
< 20 and super-

symmetry is broken by the terms with extra powers of Σ (and in fact we will argue

that the phenomenologically interesting region is in the range of moderately small Σ).

This leads again to a quite restricted hierarchy for the breaking scales to N = 1 and

N = 0, respectively

In appendix B we collect a few additional relations derived from special geometry

which contain some useful information. In particular they imply that the scale of the

supersymmetry breaking is given by

mQ ∼ b1 ·
Pαfα

Ω
, (5.14)

which is also equal to the scale of the monopole condensate. The fact that mQ is

proportional to the one-loop beta function coefficient fits well the discussion in section

4.3 where we observed that the supersymmetry breakdown is apparently linked to

the violation of conformal invariance. Moreover eq.(5.14) displays the important fact

that the supersymmetry breaking scale tends to be suppressed by the volume of the

transverse dimensions.
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Non-compact transverse dimensions

The defining data of the string effective theory is is the period vector Π of a K3 fibered

Calabi–Yau manifold. A special property of the leading periods fα in the universal

sector is that they are free of any instanton corrections arising from a finite transverse

volume Ω. The reason is that these s-independent pieces are identical to the periods of

a K3 manifold which is of the same type as the generic fiber in the fibration. Moreover

on the K3 manifold there are no instanton corrections to the period integrals as a

consequence of the (4, 4) supersymmetry of the CFT. Explicitly this means that the

periods fα are polynomial in the ta of degree two with the precise form dictated by

the K3 intersection matrix. Note that there are instanton corrections with an action

proportional to the Kähler volumes {ta} in the K3 fibration.

Obviously, a solution to both conditions in (5.10) can not exist for generic mod-

uli. It would be interesting to classify possible solutions on sub-slices of the moduli

of all K3’s, which would be tantamount for finding solutions for a vacuum with van-

ishing leading cosmological constant. In the next section we will study in detail the

dependence of the scalar potential on the universal volume modulus t of the trans-

verse dimensions. In this case it is easy to verify that the only solution to (5.10) is

the limit of infinitely large transverse dimensions, t = ∞. For the reasons described

above this does not lead to partial supersymmetry breaking, however. Note that non-

compact transverse volume should not be confused with the pure field theory case,

which requires infinitely large tangential dimensions VB ∼ lnΛ/Mstr → ∞.

6. Supersymmetry breaking on the brane

After having outlined some general features we give now details of the supersym-

metry breaking in the effective SYM theory on the brane as a function of the couplings

P xα parametrizing the Super–Higgs effect in the universal string sector16. For concrete-

ness we will restrict the description of the deformations of the transverse geometry to

the generic volume modulus t. Introducing extra moduli will not change the effective

theory in the sector of the SYM theory; the way that these extra moduli enter is in

the leading, cosmological term.

16 Note that the following expressions describe the supersymmetry breaking on the brane for

arbitrary general couplings and thus the distinction of patterns with partial or complete classical

Super-Higgs effect in the string sector arises only after making a specific choice for them.
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The universal sector of the graviphoton, the dilaton and the universal modulus t

is described by the following ansatz for the functions fα:

f0 =
1

2
(1 + t2), f1 =

1

2
(1 − t2), f2 = t. (6.1)

Moreover it follows from the relations of special geometry that the coefficients of the

u dependent terms in the symplectic section (5.4) are

c0 = −b, c1 = b, c2 = 0, c̄0 = −c0, (6.2)

where b ∼ b1 with a numerical coefficient specified in (B.5). With this information

one can determine the matrices U and V and the scalar potential eq.(5.7). Since its

general form is at first sight involved, we will perform the analysis in various steps.

6.1. Leading terms in a large Σ expansion

Let us start with the leading terms of the field theory potential in an expansion

in powers of

Σ = −b1
π

lnΛ/Mstr. (6.3)

The motivation for this expansion is that for a very large string scale, the terms with

lower powers of Σ are suppressed17. In particular the pure field theory potential will

correspond to keeping only the leading terms in the limit Σ = ∞. However for the

theory coupled to gravity, the logarithmic dependence on Mstr implies relative small

values of Σ bounded from above by the value ∼ 10 b1 for Mstr ∼ Mpl. In fact, as we

will argue that the supersymmetry breaking scale is proportional to the string scale

and moreover the latter can well be in the TeV range in this “world on a brane”

scenario, the value of Σ can be actually quite small for a moderate to low value of the

string scale. In this case the terms with lower powers in Σ are relevant. However we

find it still useful to display the structure of the potential by organizing it in powers

of Σ, keeping in mind that this will only give a good physical hierarchy for extremely

large values of Mstr.

From the general expressions in appendix C one obtains the following leading term

of the scalar potential in the SYM theory:

17 In fact the relative contribution of these terms might be underestimated by the naive formula

(6.3), since it does not take into account threshold effects which are known to be sizable in string

theory compactifications with large compact dimensions.
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ǫ−4 V =
1

2
{Q−

l +M−
l } τ lk̄ {Q+

k +M+
k } +

1

2
{Q3

l +M3
l } τ lk̄ {Q3

k +M3
k}

+ 2 qilq
i
k a

lak̄(|mi|2 + |m̃i|2)

− α
ib

2Ω2
(us − ūs̄) + (

i

2Ω
βus + c.c.).

(6.4)

Here the superscripts ± refer to complex combinations x1 ± ix2 of the real fields.

In particular Q−
l = 2mim̃iqil is the holomorphic bilinear in the monopole fields and

Q+
l = (Q−

l )∗. The supersymmetry breaking terms in the potential can be divided into

i) F − type terms:

The vev of the holomorphic bilinear term in the monopole fields will be determined

by the quantity M−
l which can be split into its holomorphic and harmonic pieces in

the SYM fields, respectively:

M−
l = m

N=1
ul +m

N=0
(ul − c.c.). (6.5)

The holomorphic piece

m
N=1

=
b

c̄Ω
P−
α (fα − f̄ᾱ), (6.6)

represents the N = 1 preserving adjoint mass term depending on the transverse

volume as dictated by (6.1). On the other hand, the harmonic piece

m
N=0

=
b

cΩ
P−
α fα (6.7)

induces a soft breaking of supersymmetry.

ii) D − type terms:

The alignment of the vev’s of the scalar components of the individual chiral N = 1

multiplets in the monopole hypermultiplet are determined by the remaining compo-

nent M3
l = ζul + c.c. with

ζ =
b

cΩ
P 3
αf̄ᾱ. (6.8)

iii) Remaining terms:

In addition there are further soft-breaking terms that depend on us with coefficients

α =
Ω2

b2
|c|2(1

2
|m

N=0
|2 +

1

2
|m

N=0
+m

N=1
|2 + |ζ|2),

β =
Ω

b
(
1

2
c(m

N=1
+m

N=0
)C+ +

1

2
c̄m̄

N=0
C− − cζC3),

(6.9)
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where Cx = P xαcα. A nice heuristic interpretation of these terms can be given as

follows. Let us consider the N = 1 supersymmetric term in (6.5). In the field theory

this term can be associated with a superpotential term um
N=1

in eq.(5.1). At the

point where the N = 1 vacuum branches off, u = ωGΛ2, where ωG is a c2(G)-th root

of unity. Moreover the scale of the N = 1 theory is related to that of the N = 2

theory by Λ3
N=1

= m
N=1

Λ2. Thus the superpotential term um
N=1

, evaluated at the

N = 1 point of the Coulomb branch is

W = ωGΛ3
N=1

. (6.10)

So remarkably enough, evaluating the superpotential of ref.[3] at the extremum with

respect to the SYM fields, gives precisely the expected dynamical generated su-

perpotential in the N = 1 theory. In the string theory context there are further

contributions from the superpotential (6.10) to the scalar potential because Λ ∼ eiγs

is to be treated as a field rather than a constant. These terms have the form of the

us dependent terms in the scalar potential (6.4).

To determine the scale of supersymmetry breaking, note that ∂τ lk̄/∂an is very large in

a region with light monopoles, ak ∼ 0. As a consequence, minimization with respect to

the fields ak will require an adjustment of the monopole bilinears Qxl ∼Mx
l to a high

precision. Thus the generic scale of the monopole condensate and the supersymmetry

breakdown is given by

Msusy ∼
b1
Ω
P xαfαMstr ∼

b1
Ω
Mstr, (6.11)

where in the second expression we have assumed that the couplings in the universal

string sector are of order one in string units. As we will discuss in the next section,

this is indeed the case if these couplings P xα arise from certain background fields in the

string theory compactification.

The N = 1 pure field theory vacuum18

If we are not interested in string theory but pure field theory, we can take the de-

coupling limit of infinite string mass which implies Σ → ∞ by eq.(5.2). Only the

leading terms (6.4) survive in this pure field theory case. This case was considered in

[23] and it was asserted that a solution with N = 1 supersymmetry exists. Note that

18 I thank Cumrun Vafa for conversations on the following issues.
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there are many choices for the Super–Higgs effect that lead to partial supersymmetry

breaking in the classical supergravity and break the remaining supersymmetry only

by instanton effects. However only a very special subset will be related to a vacuum

of the N = 1 pure field theory at Mstr = ∞.

A choice of or RR-fluxes (or Super–Higgs effect) that cancels all supersymmetry

breaking terms in the leading part of the potential must correspond to ζ = m
N=0

= 0

and values for α and β such that the last terms in (6.4) cancel. From eqs.(6.7) – (6.9)

we find that the solution is given by

P−
0 = −1 + t20

1 − t20
P−

1 , P−
2 =

2t0
1 − t20

P−
1 , P 3

α = 0, ∀α. (6.12)

The meaning of this equations is that for fixed t0, the choice (6.12) of the Super–Higgs

cancels the supersymmetry breaking terms in the leading potential at t = t0.

Let us summarize some relevant properties of the solution (6.12) that represents

a special configuration of RR-fluxes that preserve N = 1 in the decoupled field theory

at Mstr = ∞. (1) It corresponds to a special fine tuning of fluxes dual to 0, 2

and 4-form charges on the non-compact manifold. The leading contribution in the

non-compact transverse limit relevant for geometric engineering of N = 1 QFT’s is

from the flux dual to the 0 and 4-form charges (this outcome is slightly different

from the 2-form flux proposed in [23]). (2) The solution exists already at finite t.

The relevant decoupling is due to the infinite volume of the dimension parallel to

the brane, Im s ∼ ln Λ/Mstr → ∞ which gives an infinite mass to the string states.

This is in nice agreement with our previous assertion that the breaking to N = 0 is

indeed only due to the s-dependent instantons in the string sector, which are non-

perturbative in the field theory coupling (rather than instantons from the, in string

units, finite transverse volume). (3) For finite Mstr there are extra terms discussed in

the next section that come with additional powers of 1/Σ and break supersymmetry.

Canceling the leading terms by (6.12) leads to an extra logarithmic dependence of

the supersymmetry breaking scale on Mstr. It is interesting to mention that the

overall coefficient of these subleading terms depends on the hypermultiplet involved

in the Super–Higgs effect (the value of λ defined in the next paragraph). For the

hypermultiplet involved in the string theory Super–Higgs effect this coefficient is non-

zero [13][36]. If the coefficient would have been zero, supersymmetry breaking would

have been postponed to the next order of Λ/Mstr.
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6.2. Subleading terms and a vanishing leading cosmological constant

Subleading terms in the Σ expansion can be straightforwardly added using the

expressions in appendix C. For the purpose of displaying their structure however it is

useful to temporarily make a concrete and simple choice for the Super–Higgs effect.

For a physically motivated illustration let us cancel the leading cosmological constant

in the large volume limit by imposing eq.(5.10) on the leading terms. This is achieved

by

P 1
0 = P 1

1 ≡ m/Mstr, P xα = 0, else, (6.13)

were we have used a SU(2) rotation to fix the direction of the triplet of Killing pre-

potentials. To treat the hyperino contribution in (5.7) on the same footing with the

gaugino and gravitino we will use the relation kuΣhuvk
v
Λ = λP xΛP

x
Σ. This simplifica-

tion is justified for the couplings in string theory with λ = 4, as will be outlined in

the next section. The full field theory dependent scalar potential for the Super-Higgs

determined by (6.13) is

ǫ−4 V =
1

2
{Q1

k −
M̂

|c|2 u
I
k} τkl̄ {Q1

l −
M̂

|c|2 u
R
l } +

1

2
τkl̄ (Q2

kQ
2
l +Q3

kQ
3
l )

+ {γ (2u− alul)
iM̂2

2b
+ c.c.} + 2 (alqil ) (āk̄qik) (|mi|2 + |m̃i|2)

− {2M2

bΣ
(1 − 2i

γΣ
) u+ c.c.}

− {2cM
bΣ

Q1
l a
l + c.c.} + 2i|c|2 M

2

b2Σ2
(alDā

l − c.c.) + λ
M2

b2Σ2
K.

(6.14)

Here uIk = c uk + c̄ ūk̄ and

M =
b

Ω

m

Λ
, M̂ = (1 − 4i

γΣ
)M. (6.15)

Let us compare this result with the soft breaking terms discussed in the context of SYM

theories in the literature. The first two lines of eq.(6.14) have the form of soft breaking

terms generated by the spurion approach of [34]. The term in the third line is of the

form generated by the N = 1 spurion of [35]. The coefficients of these breaking terms

are related in the string effective theory which can be thought of explicitly determining

the vev’s of the spurion fields. The fourth line contains some additional soft breaking

terms.

Note that the N = 1 adjoint mass term is absent only because of the choice of

couplings (6.13) and as a consequence of eqs.(5.12) and (6.2).
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6.3. Minima of the potential

Ultimately, all moduli including the numerical values of Σ and Ω should be fixed

by the minima of the potential. The minimization with respect to the field theory

moduli is relatively straightforward and reduces approximately to Qxl ∼ Mx
l with

small corrections from the additional finite terms near the monopole point. In the

special case with m
N=1

= 0 above, the leading potential in a large Σ expansion is

of the form of the soft supersymmetry breaking considered in refs.[34], which include

a detailed numeric study of the vacuum structure for the gauge group SU(2). By

comparison, the spurion vev should be identified with the scale Msusy in (6.11).

To determine the string vacuum, one needs also to vary with respect to the dilaton

s and the transverse volume modulus t. This brings us back to the question of the

cosmological term. We will not solve the question of minimization for these fields,

which we leave for the future, but point out some qualitative features. As for the

dilaton, a stabilization is possible due to the subleading terms in Σ with explicit s

dependence. Note that there are also further calculable terms at order ǫ6 and higher

which depend non-trivially on s. Thus although we do not know in the moment which

value of s corresponds to a minimum, there is no obstruction in principle to answer

this question.

A similar situation holds for the volume modulus t of the large extra dimensions.

For a fixed Msusy ∼ 1TeV, the behavior of the typical inverse radius vs. Mstr is plotted

in the figure below.
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In particular, for small a Mstr in the TeV range, the average radius is close to M−1
str

while it is larger by a factor of ∼ 104 for a string scale equal to the Planck scale.

Since the scale of supersymmetry breaking is Msusy ∼ V −1
TV one suspects there is no

local minimum for the volume modulus and thus t will run away to infinity to restore

supersymmetry. A natural idea to fix the minimization of the transverse volume is

to link it to the minimization of the field theory moduli space [37]. In other words,

we can use, as in the compactification discussed in section 4, the fact that the volume

modulus itself can correspond to one of the vev’s of the field theory gauge group. Since

the transverse volume is of order one in string units in such a model, one expects a

relation

Msusy ∼Mstr ∼ R−1. (6.16)

Therefore this class of compactifications requires the string scale to be equal to the

supersymmetry breaking scale in the TeV range and predicts it to be equal to the scale

of the extra large dimensions.

7. Geometric charges in string theory and why Mstr should be small

In the previous sections we have described the supersymmetry breakdown as a

consequence of a Super-Higgs effect in the universal sector, parametrized by the cou-

plings P xα . Let us finally comment on some important details of the relation of these

couplings to the background fields in string theory.

In ref.[13] it was shown that backgrounds of RR 2p-forms in the type IIA theory

induce charges of the dilaton hypermultiplet w.r.t. a gauge symmetry of the vector

multiplets specified by the cohomology class of the background. From the equations

in [13] it also follows that λ = 4 for this case. Due to the special property of the RR

sector in the type II theory these couplings are suppressed by a factor of the string

coupling λII .

This is an extremely important detail from the world on a brane point of view

since i) the string scale Mstr may be in the TeV range in this scenario[38]; ii) the

supersymmetry breaking scale (6.11) is of the order of Mstr rather than Mpl. In fact

the relation between these two scales is given by dimensional reduction as

M2
pl ∼

ΣΩ

λ2
II

M2
str. (7.1)
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The special origin of the SYM theory - its origin in the RR sector which makes its

coupling independent of λII and its localization on a hypersurface which makes its

coupling independent of the transverse volume Ω - has the consequence that the values

of Ω and λII remain largely undetermined by phenomenological requests. This allows

for a large separation of the string scale and the Planck scale arising from a large

transverse volume Ω and/or a small string coupling λII .

After supersymmetry breaking, even a small mismatch in the cancellation of the

cosmological constant in the field theory will drive the string scale to as small a value

as possible. In other words not only is it consistent to have strings at the TeV scale

in this world on a brane scenario, but, after the supersymmetry breakdown, a low

string scale may well be energetically favored. In fact the solution to the cosmological

constant problem should tell us why Mstr ∼ a few TeV instead of being zero.

Hidden sectors

A type IIB version of the backgrounds of ref.[13], with a generalization to also in-

clude NS backgrounds has been given in refs.[36][23]19. In ref.[23] the coupling of the

universal hypermultiplet to the vector gauge symmetries was derived from the BPS

tension of NS and RR 5 branes in the presence of such backgrounds. As the tension of

the NS brane lacks the suppression factor λII , NS backgrounds will naturally lead to

a supersymmetry breaking scale ∼ Mpl. A low supersymmetry breaking scale could

still be obtained by breaking first supersymmetry on a “hidden singularity” and then

transmitting the breakdown by gravitational interactions to the observable branes,

similarly as in refs.[1].

Outlook

Using the appropriate geometric singularities of ref.[17], there are no obvious obstacles

to model a N = 2 supersymmetric string theory embedding of the gauge group of the

19 To compare the results of these two papers, which in fact seem to disagree in that the scalar

potential of the [23] is SL(2,Z) invariant whereas the one of [36] is not, one needs to rewrite

the N = 2 scalar potential in terms of a N = 1 superpotential, a task that appears to have

been settled only in very special cases, see [39]. We propose the general form of the N = 1

superpotential to be W = PΣXΣ
− P̃ΣFΣ, where PΣ = P 1

Σ + iP 2

Σ is the complex combination of

the real Killing prepotentials and we have included a similar term P̃Σ for the couplings to the

magnetic fields to ensure symplectic covariance. To verify the consistency of this ansatz, the use

of the supersymmetric Ward-identity in eq.(2.97) of ref.[40] is essential.
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standard model on a brane and its matter spectrum. Breaking supersymmetry in the

way described in this paper leads to a generalized, calculable scalar potential depending

on the parameters of this “standard model”. Apart from questions of details, e.g. how

natural the standard model spectrum appears in the context of geometric singularities,

higher derivative corrections etc, this appears to be an unexpectedly accomplishable

scenario for the study of a phenomenologically relevant string vacuum with calculable,

dynamically fixed mass and coupling parameters.
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Appendix A. A brief review of the N = 2 scalar potential

Apart from the vector multiplets, the N = 2 supergravity may contain a number

nH of matter hypermultiplets qu, with the 4 nH scalars components parametrizing

a quaternionic manifold MH . The N = 2 supergravity allows for couplings of the

hypers to the vectors by gauging isometries of MH . In other words, hypermultiplets

can be charged under the U(1)nV +1 gauge symmetry

qu → qu + kuΣǫ
Σ, (A.1)

with the Killing vector kuΣ defining the charge of qu under the Σ-th U(1) symmetry20.

We refer to [41] for a most general and modern account of the combined N = 2 effective

action and a detailed list of references.

The supersymmetry variations of the gauginos λāA, the hyperinos ξα and the

gravitino ψAµ depend on the scalars zi as:

δλāA = W ā
AB ηB, δξα = Nα

A ηA, δψAµ = iSABγµη
B, (A.2)

20 In particular FI terms can be included in this description by gauging a “trivial” hypermultiplet.
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with
W ā
AB = ieK/2(σxǫ)ABP

x
Σ(∂b + ∂bK)XΣgbā,

Nα
A = 2UαBu ǫBAe

K/2kuΣX
Σ,

SAB = −1

2
(σxǫ)ABP

x
Σe

K/2XΣ.

(A.3)

Here A = 1, 2, Σ = 0, . . . , nV , a = 1, . . . , nV , K is the Kähler potential, UαBu the

symplectic vielbein and moreover the P xΣ, x = 1, 2, 3 a triplet of Killing prepotentials

associated to the gauging (A.1).

The coupling (A.1) of the hypermultiplets to the vector multiplets induces a non-

trivial scalar potential V for the scalars [12] which can be written in terms of the

supersymmetry variations as

V = − 6 trS S∗ + trN †N +
1

2
gab̄ tr (W ā)∗W ā =

(−3P xΣP
x
Λ̄ + 4kuΣhuvk

v
Λ̄)V ΣΛ̄ + P xΣP

x
Λ̄ U

ΣΛ̄,
(A.4)

with

V ΣΛ̄ = eK XΣX̄ Λ̄, UΣΛ̄ = fΣ
i g

ij̄ f̄ Λ̄
j̄ , fΣ

i = eK/2 (∂i +Ki)X
Σ. (A.5)

Appendix B. Special geometry of the string effective GEQFT’s

To determine the effective string theory we need the precise form of the section

Π. The large s behavior (3.3) and the consistency of the supergravity monodromies

with the monodromies of the embedded field theory imply the general form (5.4)

XΣ =

(

fα + ǫ2cα u
ǫcak

)

, FΣ =

(

2 ηαfα (s+ const. )
ǫcakD

)

.

The Kähler potential has the ǫ expansion

K = − ln i(X̄ΣFΣ −XΣF̄Σ) = −ln(V) +
ǫ2

V K,

with V given in (5.6), A =
∑

ηαf̄αcα and

K = i|c|2(akākD − ākakD) + 2i(As̄u− c.c.) + h(u, s) + h̄(ū, s̄). (B.1)

The moduli dependent quantity Ω =
∑

α ηα |fα|2 describes the volume of the transverse

dimensions. From the above expressions we can determine the matrices U and V

entering the scalar potential (5.7).
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Special geometry of Π

Special geometry implies some important conditions on the functions appearing in the

ansatz for Π (5.4). From the supergravity identity

UΛΣ̄ = −1

2
(ImN )ΛΣ + V ΛΣ̄, (B.2)

and the fact that U is hermitian we see that U − V must be a real symmetric matrix.

Let us consider the leading ǫ1 term of U ᾱk. After some algebraic manipulations we

obtain

U ᾱk1 = V ᾱk1 + Aαgk̄lul +Bαgkl̄ūl̄,

Aα = − cb

VΩ
{V f̄ᾱ +

2i

γ
w̄ᾱ,āg

ābΩb},

Bα = − cĀ

VΩ
{V(f̄ᾱ − Ω

Ā
c̄ᾱ) − w̄ᾱ,āg

āb (2isΩ(
Āb
Ā

− Ωb
Ω

)+

Ω

Ā
(
Ωb
Ω
h̄ū − h̄ūb)},

(B.3)

where wα,a = Ka fα + fα,a. Moreover b and γ are two constants that are defined in

the field theory:

∂sFFT = − 2

|c|2 b u, Λ = eγs,

FFT =
1

2

∑

rkG

akakD +
b

|c|2γ u.
(B.4)

In particular the constant b is proportional to the one-loop beta function coefficient

[42][43].

From (Aα)∗ = Bα one can derive the following useful relations satisfied by the

functions fα, cα and h appearing in the ansatz for Π and in K:

h = − 2iA u (s− 1

γ
) + Ωu (ĉ1 s+ ĉ2), ĉi ∈ C,

0 =
∑

α

f2
αηα

B = ηαfαcα = −c
c̄
b

|A2| = |B2|

(B.5)

and

Pαfα = 0 ⇒ Pαcα = 0. (B.6)
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Appendix C. The scalar potential for the universal volume modulus

The ǫ expansion of the matrices V and Ũ = U − V for the section Π in (6.1) is

given by

O(ǫ0) : e−K V αβ̄0 = fαf̄β e−K Uαβ̄0 = wα,ρg
ρρ̄w̄β̄,ρ̄, e−K U lk̄0 =

V
2
τ lk̄

O(ǫ1) : e−K V αk̄1 = fα c̄ā
k̄,

e−K Ũαk̄1 =
V

2|c|2 τ
k̄l {Aαul + c.c.},

O(ǫ2) : e−K V αβ̄2 = cαf̄β u+ c̄βfα ū, e−K V kk̄2 = |c|2 akāk̄,

e−K Ũαβ̄2 =
V

2|c|2 X
α
k τ

kl̄X̄ β̄

l̄
+ { ibΣ

2
(ηα − fα

Ω
) f̄β̄ us + h.c.} +

{− 1√
2Ω

(Ks̄ +
2i

Σ
K) fαw̄β̄,t̄ + h.c.} +

{i
√

2Ω (ηα bu+
K

ΩΣ
fα) w̄β̄,t̄ + h.c.} − 3K

Σ
wα,t w̄β̄,t̄,

(C.1)

where tρ = {t, s} and

Aα = −cb
Ω
{f̄ᾱ +

2
√

2Ω

γ Σ
w̄ᾱ,t̄},

Xα
k =

1

c̄
(Aα uk + c.c.) +

2
√

2i|c|2
Σ
√

Ω
wα,t τkl̄ ā

l̄,

τk,l̄ = Im akD,l.

(C.2)

31



References

[1] H.P. Nilles, Phys. Lett. B115 (1982) 193, Nucl. Phys. B217 (1983) 366;

S. Ferrara, L. Girardello and H.P. Nilles, Phys. Lett. B125 (1983) 457;

for a review and further references see H.P. Nilles, Int. J. Mod. Phys. A5 (1990)

4199.

[2] G. t’Hooft, Nucl. Phys. B190 (1981) 455.

[3] N. Seiberg and E. Witten, Nucl. Phys. B426 (1994) 19, erratum: ibid 430 (1994)

396.

[4] K. Konishi, Phys. Lett. B392 (1997) 101.

[5] S. Kachru and C. Vafa, Nucl. Phys. B450 (1995) 69.

[6] S. Ferrara, J. A. Harvey, A. Strominger and C. Vafa, Phys. Lett. B361 (1995) 59.

[7] S. Kachru and E. Silverstein, Nucl. Phys. B463 (1996) 369.

[8] C. Vafa and E. Witten, Nucl. Phys. Proc. Suppl. 46 (1996) 225.

[9] E. Kiritsis and C. Kounnas, Nucl. Phys. B503 (1997), 117;

E. Kiritsis, C. Kounnas, P. M. Petropoulos and J. Rizos, Nucl. Phys. B540 (1999)

87.

[10] S. Cecotti, L. Girardello and M. Porrati, Phys. Lett. B145 (1984) 61.

[11] S. Ferrara, L. Girardello and M. Porrati, Phys. Lett. B366 (1996) 155; Phys. Lett.

B376 (1996) 275.

[12] B. de Wit, P. Lauwers and A. Van Proeyen, Nucl. Phys. B255 (1985) 269.

[13] J. Polchinski and A. Strominger, Phys. Lett. B388 (1996) 736.

[14] C. Bachas, A Way to break supersymmetry, hep-th/9503030;

I. Antoniadis, E. Gava, K.S. Narain and T.R. Taylor, Nucl. Phys. B511 (1998)

611.

[15] A. Klemm, W. Lerche, P. Mayr, C. Vafa, N. Warner, Nucl. Phys. B477 (1996)

746.

[16] S. Katz, A. Klemm and C. Vafa, Nucl. Phys. B497 (1997) 173.

[17] S. Katz, P. Mayr and C. Vafa, Adv. Theor. Math. Phys. 1 (1998) 53.

[18] E. Witten, Nucl. Phys. B500 (1997) 3.

[19] N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys. Lett. B429 (1998) 263;

I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys. Lett. B436

(1998) 257.

32

http://arXiv.org/abs/hep-th/9503030


[20] S. Katz and C. Vafa, Nucl. Phys. B497 (1997) 196;

M. Bershadsky, A. Johansen, T. Pantev, V. Sadov and C. Vafa, Nucl. Phys. B505

(1997) 153;

P. Mayr and P. Berglund, Adv. Theor. Math. Phys. 2 (1999) 1307.

[21] J.L.F. Barbón, Phys. Lett. B402 (1997) 59.

[22] H.P. Nilles, Phys. Lett. B112 (1982) 455;

G. Veneziano and S. Yankielowicz, Phys. Lett. B113 (1982) 231.

[23] T.R. Taylor and C. Vafa, RR flux on Calabi-Yau and partial supersymmetry break-

ing, hep-th/9912152.

[24] A. Ceresole, R. D’Auria, S. Ferrara and A. Van Proeyen, Nucl. Phys. B444 (1995)

92.

[25] I. Antoniadis, H. Partouche and T. R. Taylor, Phys. Lett. B372 (1996) 83.

[26] P. Candelas, X.C. De La Ossa, P.S. Green and L. Parkes, Nucl. Phys. B359 (1991)

21.

[27] Essays on Mirror Manifolds, (ed. S.T. Yau), Int. Press, Hong Kong, 1992.

[28] K. Hori and C. Vafa, Mirror symmetry, hep-th/0002222.

[29] R.L. Bryant and P.A. Griffiths, Some observations on the infinitesimal period re-

lations for regular threefolds with trivial canonical bundle, in Arithmetic and Ge-

ometry Volume II (M. Artin and J. Tate, eds.), Progress in Math. 39, Birkhäuser,
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